1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Glycolysis and Flux Control

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Tony Romeo1, and Jacky L. Snoep2
  • Editor: Valley Stewart3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322; 2: Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and Department of Molecular Cell Physiology, Vrije Universiteit, Amsterdam, The Netherlands; 3: University of California, Davis, Davis, CA
  • Received 16 March 2005 Accepted 27 May 2005 Published 07 October 2005
  • Address correspondence to Tony Romeo romeo@microbio.emory.edu
image of Glycolysis and Flux Control
    Preview this reference work article:
    Zoom in
    Zoomout

    Glycolysis and Flux Control, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/2/3_5_1_module-1.gif /docserver/preview/fulltext/ecosalplus/1/2/3_5_1_module-2.gif
  • Abstract:

    Central metabolism of carbohydrates uses the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways. This review reviews the biological roles of the enzymes and genes of these three pathways of . Glucose, pentoses, and gluconate are primarily discussed as the initial substrates of the three pathways, respectively. The genetic and allosteric regulatory mechanisms of glycolysis and the factors that affect metabolic flux through the pathways are considered here. Despite the fact that a lot of information on each of the reaction steps has been accumulated over the years for , surprisingly little quantitative information has been integrated to analyze glycolysis as a system. Therefore, the review presents a detailed description of each of the catalytic steps by a systemic approach. It considers both structural and kinetic aspects. Models that include kinetic information of the reaction steps will always contain the reaction stoichiometry and therefore follow the structural constraints, but in addition to these also kinetic rate laws must be fulfilled. The kinetic information obtained on isolated enzymes can be integrated using computer models to simulate behavior of the reaction network formed by these enzymes. Successful examples of such approaches are the modeling of glycolysis in , the parasite , and the red blood cell. With the rapid developments in the field of Systems Biology many new methods have been and will be developed, for experimental and theoretical approaches, and the authors expect that these will be applied to glycolysis in the near future.

  • Citation: Romeo T, Snoep J. 2005. Glycolysis and Flux Control, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.5.1

Key Concept Ranking

Aromatic Amino Acid Biosynthesis
0.40408295
Commensal Escherichia coli
0.3181693
0.40408295

References

1. Fraenkel DG. 1986. Mutants in glucose metabolism. Annu Rev Biochem 55:317–337. [CrossRef]
2. Fraenkel DG. 1996. Glycolysis, p 189–198. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, D.C.
3. Ginsburg A, Peterkofsky A. 2002. Enzyme 1: the Gateway to the bacterial phosphoenolpyruvate: sugar transferase system. Arch Biochem Biophys 397:273–278. [CrossRef]
4. Flores N, Xiao J, Berry A, Bolivar F, Valle F. 1996. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623. [CrossRef]
5. Curtis, Epstein SJW. 1975. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol 122:1189–1199.
6. Meyer D, Schneider-Fresenius C, Horlacher R, Peist R, Boos W. 1997. Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 179:1298–1306. [PubMed]
7. Ferenci T. 1996. Adaptation to life at micromolar nutrient levels: the reglation of Escherichia coli glucose transport by endoinduction and cAMP. FEMS Microbiol Rev 18:301–317. [PubMed][CrossRef]
8. Notley L, Ferenci T. 1996. Induction of RpoS-dependent functions in glucose-limited continuous culture: what level of nutrient limitation induces the stationary phase of Escherichia coli? J Bacteriol 178:1465–1468.
9. Saadat D, Harrison DH. 1999. The crystal structure of methylglyoxal synthase from Escherichia coli. Structure 7:309–317. [PubMed][CrossRef]
10. Fraenkel DG, Levisohn SR. 1967. Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J Bacteriol 93:1571–1578.
11. Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U. 2001. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204:247–252. [CrossRef]
12. Kabir MM, Shimizu K. 2003. Gene expression patterns for metabolic pathway in pgi knockout Escherichia coli with and without phb genes based on RT-PCR. J Biotechnol 105:11–31. [PubMed][CrossRef]
13. Vinopal RT, Fraenkel DG. 1974. Phenotypic suppression of phosphofructokinase mutations in Escherichia coli by constitutive expression of the glyoxylate shunt. J Bacteriol 118:1090–1100.
14. Blangy D, Buc H, Monod J. 1968. Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J Mol Biol 31:13–35. [PubMed][CrossRef]
15. Hellinga HW, Evans PR. 1985. Nucleotide sequence and high-level expression of the major Escherichia coli phosphofructokinase. Eur J Biochem 149:363–373. [PubMed][CrossRef]
16. Babul J. 1978. Phosphofructokinases from Escherichia coli. Purification and characterization of the nonallosteric isozyme. J Biol Chem 253:4350–4355. [PubMed]
17. Guixe V, Babul J. 1985. Effect of ATP on phosphofructokinase-2 from Escherichia coli. A mutant enzyme altered in the allosteric site for MgATP. J Biol Chem 260:11001–11005. [PubMed]
18. Guixe V, Rodriguez PH, Babul J. 1998. Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2−. Biochemistry 37:13269–13275. [CrossRef]
19. Daldal F. 1983. Molecular cloning of the gene for phosphofructokinase-2 of Escherichia coli and the nature of a mutation, pfkB1, causing a high level of the enzyme. J Mol Biol 168:285–305. [CrossRef]
20. Varma A, Palsson BO. 1994. Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12:994–998. [CrossRef]
21. Rodionov DA, Mironov AA, Rakhmaninova AB, Gelfand MS. 2000. Transcriptional regulation of transport and utilization systems for hexuronides, hexuronates and hexonates in gamma purple bacteria. Mol Microbiol 38:673–683. [CrossRef]
22. Chin AM, Feldheim DA, Saier MH, Jr. 1989. Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon. J Bacteriol 171:2424–2434. [PubMed]
23. Daldal F, Babul J, Guixe V, Fraenkel DG. 1982. An alteration in phosphofructokinase 2 of Escherichia coli which impairs gluconeogenic growth and improves growth on sugars. Eur J Biochem 126:373–379. [PubMed]
24. Tong S, Porco A, Isturiz T, Conway T. 1996. Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism. J Bacteriol 178:3260–3269. [PubMed]
25. Fraenkel DG, Horecker BL. 1965. Fructose-1,6-diphosphatase and acid hexose phosphatase of Escherichia coli. J Bacteriol 90:837–842. [PubMed]
26. Babul J, Guixe V. 1983. Fructose bisphosphatase from Escherichia coli. Purification and characterization. Arch Biochem Biophys 225:944–949. [PubMed][CrossRef]
27. Schuster S. 2004. Metabolic pathway analysis in biotechnology, p 181–208. In Kholodenko BN and Westerhoff HV (ed), Metabolic Engineering in the Post Genomic Era. Horizon Bioscience, Wymondham, United Kingdom.
28. Donahue JL, Bownas JL, Niehaus WG, Larson TJ. 2000. Purification and characterization of glpX-encoded fructose 1,6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli. J Bacteriol 182:5624–5627. [PubMed][CrossRef]
29. Sprenger GA, Schorken U, Sprenger G, Sahm H. 1995. Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains. J Bacteriol 177:5930–5936. [PubMed]
30. Baldwin SA, Perham RN, Stribling D. 1978. Purification and characterization of the class-II D-fructose 1,6-bisphosphate aldolase from Escherichia coli (Crookes' strain). Biochem J 169:633–641.
31. Pfeiffer T, Sanchez-Valdenebro I, Nuno JC, Montero F, Schuster S. 1999. METATOOL: for studying metabolic networks. Bioinformatics 15:251–257. [PubMed][CrossRef]
32. Zablotny R, Fraenkel DG. 1969. Glucose and gluconate metabolism in a mutant of Escherichia coli lacking gluconate-6-phosphate dehydrase. J Bacteriol 93:1579–1581.
33. Blom NS, Tetreault S, Coulombe R, Sygusch J. 1996. Novel active site in Escherichia coli fructose 1,6-bisphosphate aldolase. Nat Struct Biol 3:856–862. [PubMed][CrossRef]
34. Cooper SJ, Leonard GA, McSweeney SM, Thompson AW, Naismith JH, Qamar S, Plater A, Berry A, Hunter WN. 1996. The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold. Structure 4:1303–1315. [PubMed][CrossRef]
35. Schorken U, Thorell S, Schurmann M, Jia J, Sprenger GA, Schneide G. 2001. Identification of catalytically important residues in the active site of Escherichia coli transaldolase. Eur J Biochem 268:2408–2415. [CrossRef]
36. Schilling CH, Letscher D, Palsson BO. 2000. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203:229–248. [PubMed][CrossRef]
37. Close TJ, Choi DW. 1996. Submission. GenBank Nucleotide Sequence.
38. Theodore TS, Englesberg E. 1964. Mutant of Salmonella typhimurium deficient in the carbon dioxide-fixing enzyme phosphoenolpyruvic carboxylase. J Bacteriol 88:946–955.
39. Baldwin SA, Perham RN. 1978. Novel kinetic and structural properties of the class-I D-fructose 1,6-bisphosphate aldolase from Escherichia coli (Crookes' strain). Biochem J 169:643–652. [PubMed]
40. Savageau MA. 1976. Biochemical Systems Analysis. Addison-Wesley, London, United Kingdom.
41. Knowles JR. 1991. Enzyme catalysis: not different, just better. Nature 350:121–124. [PubMed][CrossRef]
42. Noble MEM, Ph J. Zeelen, Wierenga RK, Mainfroid V, Goraj K, Gohimont A-C, Martial JA. 1993. The structure of triose-phosphate isomerase from Escherichia coli determined at 2.6 A resolution. Acta Crystallogr D 49:403–417. [CrossRef]
43. Anderson A, Cooper RA. 1969. Gluconeogenesis in Escherichia coli. The role of triose phosphate isomerase. FEBS Lett 4:19–20. [CrossRef]
44. Irani MH, Maitra PK. 1976. Glyceraldehyde 3-P dehydrogenase, glycerate 3-P kinase and enolase mutants of Escherichia coli: genetic studies. Mol Gen Genet 145:65–71. [PubMed][CrossRef]
45. Hopper DJ, Cooper RA. 1971. The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis? FEBS Lett 13:213–216. [PubMed][CrossRef]
46. Cooper RA. 1984. Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol 38:49–68. [PubMed][CrossRef]
47. Sweeney NJ, Laux DC, Cohen PS. 1996. Escherichia coli F-18 and E. coli K-12 eda mutants do not colonize the streptomycin-treated mouse large intestine. Infect Immun 64:3504–3511.
48. Torres JC, Guixe V, Babul J. 1997. A mutant phosphofructokinase produces a futile cycle during gluconeogenesis in Escherichia coli. Biochem J 327(Pt 3):675–684.
49. Ruijter GJG, Postma PW, van Dam K. 1991. Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotranferase system in Escherichia coli. J Bacteriol 173:6184–6191. [PubMed]
50. Cooper RA, Anderson A. 1970. The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli. FEBS Lett 11:273–276. [PubMed][CrossRef]
51. Clugston SL, Yajima R, Honek JF. 2004. Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies. Biochem J 377:309–316. [PubMed][CrossRef]
52. VanBogelen RA, Olson ER, Wanner BL, Neidhardt FC. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J Bacteriol 178:4344–4366. [PubMed]
53. Hillman JD, Fraenkel DG. 1975. Glyceraldehyde 3-phosphate dehydrogenase mutants of Escherichia coli. J Bacteriol 122:1175–1179. [PubMed]
54. Irani MH, Maitra PK. 1977. Properties of Escherichia coli mutants deficient in enzymes of glycolysis. J Bacteriol 132:398–410. [PubMed]
55. Fraser HI, Kvaratskhelia M, White MF. 1999. The two analogous phosphoglycerate mutases of Escherichia coli. FEBS Lett 455:344–348. [CrossRef]
56. Alefounder PR, Perham RN. 1989. Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli. Mol Microbiol 3:723–732. [PubMed][CrossRef]
57. Sedivy JM, Babul J, Fraenkel DG. 1986. AMP-insensitive fructose bisphosphatase in Escherichia coli and its consequences. Proc Natl Acad Sci USA 83:1656–1659. [PubMed][CrossRef]
58. Yang C, Hua Q, Baba T, Mori H, Shimizu K. 2003. Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol Bioeng 84:129–144. [PubMed][CrossRef]
59. Duee E, Olivier-Deyris L, Fanchon E, Corbier C, Branlant G, Dideberg O. 1996. Comparison of the structures of wild-type and a N313T mutant of Escherichia coli glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity. J Mol Biol 257:814–838. [CrossRef]
60. Yap W. 1996. Enzyme IICBGlc of the phosphoenolpyruvate: glucose phosphotransferase system in Escherichia coli and Salmonella typhimurium. Ph.D. thesis. University of Amsterdam, The Netherlands.
61. Modun B, Morrissey J, Williams P. 2000. The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol 8:231–237. [PubMed][CrossRef]
62. Pancholi V, Fischetti VA. 1993. Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc Natl Acad Sci USA 90:8154–8158. [PubMed][CrossRef]
63. Kaga N, Umitsuki G, Nagai K, Wachi M. 2002. RNase G-dependent degradation of the eno mRNA encoding a glycolysis enzyme enolase in Escherichia coli. Biosci Biotechnol Biochem 66:2216–2220. [PubMed][CrossRef]
64. Lee K, Bernstein JA, Cohen SN. 2002. RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol Microbiol 43:1445–1456. [PubMed][CrossRef]
65. Kuhnel K, Luisi BF. 2001. Crystal structure of the Escherichia coli RNA degradosome component enolase. J Mol Biol 313:583–592. [PubMed][CrossRef]
66. Prüß BM, Campbell JW, Van Dyk TK, Zhu C, Kogan Y, Matsumura P. 2003. FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 185:534–543. [PubMed][CrossRef]
67. Morita T, Kawamoto H, Mizota T, Inada T, Aiba H. 2004. Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Mol Microbiol 54:1063–1075. [CrossRef]
68. Garrido-Pertierra A, Cooper RA. 1977. Pyruvate formation during the catabolism of simple hexose sugars by Escherichia coli: studies with pyruvate kinase-negative mutants. J Bacteriol 129:1208–1214. [PubMed]
69. Garrido-Pertierra A, Cooper RA. 1983. Evidence for two distinct pyruvate kinase genes in Escherichia coli K-12. FEBS Lett 162:420–422. [PubMed][CrossRef]
70. Malcovati M, Kornberg HL. 1969. Two types of pyruvate kinase in Escherichia coli K12. Biochim Biophys Acta 178:420–423. [PubMed]
71. Plater AR, Zgiby SM, Thomson GJ, Qamar S, Wharton CW, Berry A. 1999. Conserved residues in the mechanism of the E. coli Class II FBP-aldolase. J Mol Biol 285:843–855. [PubMed][CrossRef]
72. Vinopal RT, Hillman JD, Schulman H, Reznikoff WS, Fraenkel DG. 1975. New phosphoglucose isomerase mutants of Escherichia coli. J Bacteriol 122:1172–1174. [PubMed]
73. Waygood EB, Sanwal BD. 1974. The control of pyruvate kinases of Escherichia coli. I. Physicochemical and regulatory properties of the enzyme activated by fructose 1,6-diphosphate. J Biol Chem 249:265–274. [PubMed]
74. Bledig SA, Ramseier TM, Saier MH, Jr. 1996. FruR mediates catabolite activation of pyruvate kinase (pykF) gene expression in Escherichia coli. J Bacteriol 178:280–283. [PubMed]
75. Ashworth JM, Kornberg HL. 1966. The anaplerotic fixation of carbon dioxide by Escherichia coli. Proc R Soc Lond B Biol Sci 165:179–188. [PubMed][CrossRef]
76. Teusink B, Passarge J, Reijenga CA, Esgalhado E, Van der Weijden CC, Schepper M, Walsh MC, Bakker BM, Van Dam K, Westerhoff HV, Snoep JL. 2000. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329. [PubMed][CrossRef]
77. Morikawa M, Izui K, Taguchi M, Katsuki H. 1980. Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. Estimation of the activities in the cells grown on various compounds. J Biochem (Tokyo) 87:441–449.
78. Wiechert W. 2001. 13C Metabolic flux analysis. Metab Eng 3:195–206. [PubMed][CrossRef]
79. Kai Y, Matsumura H, Izui K. 2003. Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys 414:170–179. [PubMed][CrossRef]
80. Goldie AH, Sanwal BD. 1980. Genetic and physiological characterization of Escherichia coli mutants deficient in phosphoenolpyruvate carboxykinase activity. J Bacteriol 141:1115–1121. [PubMed]
81. Hansen EJ, Juni E. 1975. Isolation of mutants of Escherichia coli lacking NAD- and NADP-linked malic enzyme. Biochem Biophys Res Commun 65:559–566 [CrossRef]
82. Hansen EJ, Juni E. 1979. Properties of mutants of Escherichia coli lacking malic dehydrogenase and their revertants. J Biol Chem 254:3570–3575.
83. Iwakura M, Hattori J, Arita Y, Tokushige M, Katsuki H. 1979. Studies on regulatory functions of malic enzymes. VI. Purification and molecular properties of NADP-linked malic enzyme from Escherichia coli W. J Biochem (Tokyo) 85:1355–1365. [PubMed]
84. Cooper RA, Kornberg HL. 1967. The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli. Proc R Soc Lond B Biol Sci 168:263–280. [PubMed][CrossRef]
85. Skinner AJ, Cooper RA. 1974. Genetic studies on ribose 5-phosphate isomerase mutants of Escherichia coli K-12. J Bacteriol 118:1183–1185. [PubMed]
86. Krebs A, Bridger WA. 1980. The kinetic properties of phosphoenolpyruvate carboxykinase of Escherichia coli. Can J Biochem 58:309–318. [PubMed][CrossRef]
87. Stribling D, Perham RN. 1973. Purification and characterization of two fructose diphosphate aldolases from Escherichia coli (Crookes' strain). Biochem J 131:833–841. [PubMed]
88. Chulavatnatol M, Atkinson DE. 1973. Phosphoenolpyruvate synthetase from Escherichia coli. Effects of adenylate energy charge and modifier concentrations. J Biol Chem 248:2712–2715. [PubMed]
89. Chulavatnatol M, Atkinson DE. 1973. Kinetic competition in vitro between phosphoenolpyruvate synthetase and the pyruvate dehydrogenase complex from Escherichia coli. J Biol Chem 248:2716–2721. [PubMed]
90. Saier MH Jr, Ramseier TM. 1996. The catabolite repressor/activator (Cra) protein of enteric bacteria. J Bacteriol 178:3411–3417. [PubMed]
91. Goldie H. 1984. Regulation of transcription of the Escherichia coli phosphoenolpyruvate carboxykinase locus: studies with pck-lacZ operon fusions. J Bacteriol 159:832–836.
92. Romano AH, Conway T. 1996. Evolution of carbohydrate metabolic pathways. Res Microbiol 147:448–455. [PubMed][CrossRef]
93. Sabnis N, Yang H, Romeo T. 1995. Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J Biol Chem 270:29096–29104. [CrossRef]
94. Sprenger GA. 1993. Nucleotide sequence of the Escherichia coli K-12 transketolase (tkt) gene. Biochim Biophys Acta 1216:307–310. [PubMed]
95. Brumaghim JL, Li Y, Henle E, Linn S. 2003. Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli: changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III). J Biol Chem 278:42495–42504. [PubMed][CrossRef]
96. Lundberg BE, Wolf RE, Jr, Dinauer MC, Xu Y, Fang FC. 1999. Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect Immun 67:436–438.
97. Fraenkel DG. 1968a. Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase. J Bacteriol 95:1267–1271.
98. Fraenkel DG. 1968b. The accumulation of glucose 6-phosphate from glucose and its effect in an Escherichia coli mutant lacking phosphoglucose isomerase and glucose 6-phosphate dehydrogenase. J Biol Chem 243:6451–6457.
99. Kupor SR, Fraenkel DG. 1972. Glucose metabolism in 6-phosphogluconolactonase mutants of Escherichia coli. J Biol Chem 247:1904–1910. [PubMed]
100. Fischer E, Sauer U. 2003. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 270:880–891. [PubMed][CrossRef]
101. Hua Q, Yang C, Baba T, Mori H, Shimizu K. 2003. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185:7053–7067. [PubMed][CrossRef]
102. Fawcett WP, Wolf RE, Jr. 1995. Genetic definition of the Escherichia colizwf “soxbox,” the DNA binding site for SoxS-mediated induction of glucose 6-phosphate dehydrogenase in response to superoxide. J Bacteriol 177:1742–1750. [PubMed]
103. Griffith KL, Wolf RE, Jr. 2001. Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: identifying nucleotides required for DNA binding and transcription activation. Mol Microbiol 40:1141–1154. [CrossRef]
104. Jair KW, Martin RG, Rosner JL, Fujita N, Ishihama A, Wolf RE, Jr. 1995. Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. J Bacteriol 177:7100–7104. [PubMed]
105. Fraenkel DG, Banerjee S. 1971. A mutation increasing the amount of a constitutive enzyme in Escherichia coli, glucose 6-phosphate dehydrogenase. J Mol Biol 56:183–194. [PubMed][CrossRef]
106. Fraenkel DG, Parola A. 1972. “Up-promoter” mutations of glucose 6-phosphate dehydrogenase in Escherichia coli. J Mol Biol 71:107–111. [PubMed][CrossRef]
107. Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM. 1993. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175:4744–4755.
108. Rowley DL, Pease AJ, Wolf RE, Jr. 1991. Genetic and physical analyses of the growth rate-dependent regulation of Escherichia coli zwf expression. J Bacteriol 173:4660–4667. [PubMed]
109. Pease AJ, Wolf RE, Jr. 1994. Determination of the growth rate-regulated steps in expression of the Escherichia coli K-12 gnd gene. J Bacteriol 176:115–122. [PubMed]
110. Chang JT, Green CB, Wolf RE, Jr. 1995. Inhibition of translation initiation on Escherichia coli and mRNA by formation of a long-range secondary structure involving the ribosome binding site and the internal complementary sequence. J Bacteriol 177:6560–6567. [PubMed]
111. Orozco de Silva A, Fraenkel DG. 1979. The 6-phosphogluconate dehydrogenase reaction in Escherichia coli. J Biol Chem 254:10237–10242. [PubMed]
112. Lyngstadaas A, Lobner-Olesen A, Boye E. 1995. Characterization of three genes in the dam-containing operon of Escherichia coli. Mol Gen Genet 247:546–554. [PubMed][CrossRef]
113. Lyngstadaas A, Sprenger GA, Boye E. 1998. Impaired growth of an Escherichia coli rpe mutant lacking ribulose-5-phosphate epimerase activity. Biochim Biophys Acta 1381:319–330. [PubMed]
114. Mahajan SK, Chu CC, Willis DK, Templin A, Clark AJ. 1990. Physical analysis of spontaneous and mutagen-induced mutants of Escherichia coli K-12 expressing DNA exonuclease VIII activity. Genetics 125:261–273.
115. David J, Wiesmeyer H. 1970. Regulation of ribose metabolism in Escherichia coli. II. Evidence for two ribose-5-phosphate isomerase activities. Biochim Biophys Acta 208:56–67. [PubMed]
116. Essenberg MK, Cooper RA. 1975. Two ribose-5-phosphate isomerases from Escherichia coli K12: Partial characterisation of the enzymes and consideration of their possible physiological roles. Eur J Biochem 55:323–332. [PubMed][CrossRef]
117. Simons JA, Snoep JL, Feitz S, Teixeira de Mattos MJ, Neijssel OM. 1992. Anaerobic 2-ketogluconate metabolism of Klebsiella pneumoniae NCTC 418 grown in chemostat culture: involvement of the pentose phosphate pathway. J Gen Microbiol 138:423–428. [PubMed]
118. Skinner AJ, Cooper RA. 1971. The regulation of ribose-5-phosphate isomerisation in Escherichia coli K12. FEBS Lett 12:293–296. [PubMed][CrossRef]
119. Hove-Jensen B, Maigaard M. 1993. Escherichia coli rpiA gene encoding ribose phosphate isomerase A. J Bacteriol 175:5628–5635. [PubMed]
120. Rowley DL, Fawcett WP, Wolf RE, Jr. 1992. Molecular characterization of mutations affecting expression level and growth rate-dependent regulation of the Escherichia coli zwf gene. J Bacteriol 174:623–626. [PubMed]
121. Solem S, Jensen PR. 2002. Modulation of gene expression made easy. Appl Environ Microbiol 68:2397–2403. [PubMed][CrossRef]
122. Py B, Higgins CF, Krisch HM, Carpousis AJ. 1996. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381:169–712. [PubMed][CrossRef]
123. Zgiby S, Plater AR, Bates MA, Thomson GJ, Berry A. 2002. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli. J Mol Biol 315:131–140. [PubMed][CrossRef]
124. Iida A, Teshiba S, Mizobuchi K. 1993. Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12. J Bacteriol 175:5375–5383. [PubMed]
125. Josephson BL, Fraenkel DG. 1969. Transketolase mutants of Escherichia coli. J Bacteriol 100:1289–1295.
126. Josephson BL, Fraenkel DG. 1974. Sugar metabolism in transketolase mutants of Escherichia coli. J Bacteriol 118:1082–1089. [PubMed]
127. Sørensen KI, Hove-Jensen B. 1996. Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression. J Bacteriol 178:1003–1011. [PubMed]
128. Zhang RG, Andersson CE, Skarina T, Evdokimova E, Edwards AM, Joachimiak A, Savchenko A, Mowbray SL. 2003. The 2.2 Å resolution structure of RpiB/AlsB from Escherichia coli illustrates a new approach to the ribose-5-phosphate isomerase reaction. J Mol Biol 332:1083–1094. [PubMed][CrossRef]
129. Eidels L, Osborn MJ. 1971. Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium. Proc Natl Acad Sci USA 68:1673–1677. [PubMed][CrossRef]
130. Zhao G, Winkler ME. 1994. An Escherichia coli K-12 tktA tktB mutant deficient in transketolase activity requires pyridoxine (vitamin B6) as well as the aromatic amino acids and vitamins for growth. J Bacteriol 176:6134–6138. [PubMed]
131. Sprenger GA. 1995. Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol 164:324–330. [PubMed][CrossRef]
132. Schneider DA, Gourse RL. 2003. Changes in the concentrations of guanosine 5′-diphosphate 3′-diphosphate and the initiating nucleoside triphosphate account for inhibition of rRNA transcription in fructose-1,6-diphosphate aldolase (fda) mutants. J Bacteriol 185:6192–6194. [CrossRef]
133. Jia J, Huang W, Schorken U, Sahm H, Sprenger GA, Lindqvist Y, Schneider G. 1996. Crystal structure of transaldolase B from Escherichia coli suggests a circular permutation of the alpha/beta barrel within the class I aldolase family. Structure 4:715–724. [PubMed][CrossRef]
134. Conway T. 1992. The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 9:1–27. [PubMed]
135. Rohwer JM, Meadow ND, Roseman S, Westerhoff HV, Postma PW. 2000. Understanding the glucose transport by the bacterial phosphoenolpyruvate:glucose phosphotransferase system on the basis of kinetic measurements in vitro. J Biol Chem 275:34909–34921. [PubMed][CrossRef]
136. Egan SE, Fliege R, Tong S, Shibata A, Wolf RE, Jr, Conway T. 1992. Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli: sequence analysis and localization of promoters for the edd-eda operon. J Bacteriol 174:4638–4646. [PubMed]
137. Bausch C, Peekhaus N, Utz C, Blais T, Murray E, Lowary T, Conway T. 1998. Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli. J Bacteriol 180:3704–3710. [PubMed]
138. Yun M, Park CG, Kim JY, Park HW. 2000. Structural analysis of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli: direct evidence of substrate binding and cofactor-induced conformational changes. Biochemistry 39:10702–10710. [CrossRef]
139. Faik P, Kornberg HL, McEvoy-Bowe E. 1971. Isolation and properties of Escherichia coli mutants defective in 2-keto 3-deoxy 6-phosphogluconate aldolase activity. FEBS Lett 19:225–228. [CrossRef]
140. Fradkin JE, Fraenkel DG. 1971. 2-keto-3-deoxygluconate 6-phosphate aldolase mutants of Escherichia coli. J Bacteriol 108:1277–1283. [PubMed]
141. Cooper RA. 1978. The utilisation of D-galactonate and D-2-oxo-3-deoxygalactonate by Escherichia coli K-12. Biochemical and genetical studies. Arch Microbiol 118:199–206. [PubMed][CrossRef]
142. Peekhaus N, Conway T. 1998. What's for dinner?: Entner-Doudoroff metabolism in Escherichia coli. J Bacteriol 180:3495–3502.
143. Sudom A, Walters R, Pastushok L, Goldie D, Prasad L, Delbaere LT, Goldie H. 2003. Mechanisms of activation of phosphoenolpyruvate carboxykinase from Escherichia coli by Ca2+ and of desensitization by trypsin. J Bacteriol 185:4233–4242. [PubMed][CrossRef]
144. Sweeney NJ, Klemm P, McCormick BA, Moller-Nielsen E, Utley M, Schembri MA, Laux DC, Cohen PS. 1996. The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine. Infect Immun 64:3497–3503.
145. Hommes RW, Simons JA, Snoep JL, Postma PW, Tempest DW, Neijssel OM. 1991. Quantitative aspects of glucose metabolism by Escherichia coli B/r, grown in the presence of pyrroloquinoline quinone. Antonie Van Leeuwenhoek 60:373–382. [PubMed][CrossRef]
146. Cleton-Jansen AM, Goosen N, van de Putte P. 1990. Cloning, mapping, and sequencing of the gene encoding Escherichia coli quinoprotein glucose dehydrogenase. J Bacteriol 172:6308–6315. [PubMed]
147. Matsushita K, Arents JC, Bader P, Yamada M, Adachi O, Postma PW. 1997. Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiology 143:3149–3156. [PubMed][CrossRef]
148. Fliege R, Tong S, Shibata A, Nickerson KW, Conway T. 1992. The Entner-Doudoroff pathway in Escherichia coli is induced for oxidative glucose metabolism via pyrroloquinoline quinone-dependent glucose dehydrogenase. Appl Environ Microbiol 58:3826–3829. [PubMed]
149. Cayrol C, Petit C, Raynaud B, Capdevielle J, Guillemot JC, Defais M. 1995. Recovery of respiration following the SOS response of Escherichia coli requires RecA-mediated induction of 2-keto-4-hydroxyglutarate aldolase. Proc Natl Acad Sci USA 92:11806–11809. [PubMed][CrossRef]
150. Gupta SC, Dekker EE. 1984. Malyl-CoA formation in the NAD-, CoASH-, and alpha-ketoglutarate dehydrogenase-dependent oxidation of 2-keto-4-hydroxyglutarate. Possible coupled role of this reaction with 2-keto-4-hydroxyglutarate aldolase activity in a pyruvate-catalyzed cyclic oxidation of glyoxylate. J Biol Chem 259:10012–10019.
151. Izu H, Kawai T, Yamada Y, Aoshima H, Adachi O, Yamada M. 1997. Characterization of the gntT gene encoding a high-affinity gluconate permease in Escherichia coli. Gene 199:203–210. [PubMed][CrossRef]
152. Klemm P, Tong S, Nielsen H, Conway T. 1996. The gntP gene of Escherichia coli involved in gluconate uptake. J Bacteriol 178:61–67. [PubMed]
153. Peekhaus N, Tong S, Reizer J, Saier MH, Jr, Murray E, Conway T. 1997. Characterization of a novel transporter family that includes multiple Escherichia coli gluconate transporters and their homologues. FEMS Microbiol Lett 147:233–238. [PubMed][CrossRef]
154. Ponce E, Flores N, Martinez A, Valle F, Bolivar F. 1995. Cloning of the two pyruvate kinase isoenzyme structural genes from Escherichia coli: the relative roles of these enzymes in pyruvate biosynthesis. J Bacteriol 177:5719–5722. [PubMed]
155. Thomson GJ, Howlett GJ, Ashcroft A, Berry A. 1998. The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase. Biochem J 331:437–445. [PubMed]
156. Peekhaus N, Conway T. 1998. Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex. J Bacteriol 180:1777–1785. [PubMed]
157. Bachi B, Kornberg HL. 1975. Genes involved in the uptake and catabolism of gluconate by Escherichia coli. J Gen Microbiol 90:321–335. [PubMed]
158. Isturiz T, Celaya J. 1997. The metabolism of gluconate in Escherichia coli. The subsidiary system and the nature of the gntS gene. J Basic Microbiol 37:105–114. [PubMed][CrossRef]
159. Epstein W, Rothman-Denes LB, Hesse J. 1975. Adenosine 3′:5′-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc Natl Acad Sci USA 72:2300–2304. [PubMed][CrossRef]
160. Hogema BM, Arents JC, Inada T, Aiba H, van Dam K, Postma PW. 1997. Catabolite repression by glucose 6-phosphate, gluconate and lactose in Escherichia coli. Mol Microbiol 24:857–867. [PubMed][CrossRef]
161. Fuhrman LK, Wanken A, Nickerson KW, Conway T. 1998. Rapid accumulation of intracellular 2-keto-3-deoxy-6-phosphogluconate in an Entner-Doudoroff aldolase mutant results in bacteriostasis. FEMS Microbiol Lett 159:261–266. [CrossRef]
162. Porco A, Peekhaus N, Bausch C, Tong S, Isturiz T, Conway T. 1997. Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism. J Bacteriol 179:1584–1590. [PubMed]
163. Rangarajan ES, Sivaraman J, Matte A, Cygler M. 2002. Crystal structure of D-ribose-5-phosphate isomerase (RpiA) from Escherichia coli. Proteins 48:737–740. [PubMed][CrossRef]
164. Price ND, Papin JA, Schilling CH, Palsson BO. 2003. Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21:162–169. [PubMed][CrossRef]
165. Nyström T. 1994. The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol Microbiol 12:833–843. [PubMed][CrossRef]
166. Van der Vlag J, van't Hof R, Van Dam K, Postma PW. 1995. Control of glucose metabolism by the enzymes of the glucose transferase system in Salmonella typhimurium. Eur J Biochem 230:170–182. [PubMed][CrossRef]
167. Bonarius HPJ, Schmid G, Tramper J. 1997. Flux analysis of underdetermined metabolic networks: The quest for the missing constraints. Trends Biotechnol 15:308–314. [CrossRef]
168. Vander Jagt DL. 1989. The glyoxalase system, p 597–641. In Dolphin D, Poulson R, and Avramovic O (ed), Coenzymes Cofactors VIII: Glutathione Part A. John Wiley and Sons, New York, N.Y.
169. Seta FD, Boschi-Muller S, Vignais ML, Branlant G. 1997. Characterization of Escherichia coli strains with gapA and gapB genes deleted. J Bacteriol 179:5218–5221. [PubMed]
170. Nielsen J. 2003. It is all about metabolic fluxes. J Bacteriol 185:7031–7035. [PubMed][CrossRef]
171. Sanwal BD. 1970. Regulatory characteristics of the diphosphopyridine nucleotide-specific malic enzyme of Escherichia coli. J Biol Chem 245:1212–1216. [PubMed]
172. Waygood EB, Rayman MK, Sanwal BD. 1975. The control of pyruvate kinases of Escherichia coli. II. Effectors and regulatory properties of the enzyme activated by ribose 5-phosphate. Can J Biochem 53:444–454. [PubMed]
173. Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, T, Szyperski, Wuthrich K, Bailey JE, Sauer U. 2002. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184:152–164. [PubMed][CrossRef]
174. Clarke BL. 1981. Complete set of steady states for the general stoichiometric dynamical system. J Chem Phys 75:4970–4979. [CrossRef]
175. Schaaff I, Heinisch J, Zimmermann FK. 1989. Overproduction of glycolytic enzymes in yeast. Yeast 5:285–290. [PubMed][CrossRef]
176. Schuster R, Holzhutter HG. 1995. Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Application to enzyme deficiencies of red blood cells. Eur J Biochem 229:403–418. [PubMed][CrossRef]
177. Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BØ. 2004. Comparison of network-based pathway analysis methods, Trends Biotechnol 22:400–405. [PubMed][CrossRef]
178. Schuster S, Fell DA, Dandekar T. 2000. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol 18:326–332. [CrossRef]
179. Schuster, Hilgetag SC. 1994. On elementary flux modes in biochemical reaction systems in steady state. J Biol Syst 2:165–182. [CrossRef]
180. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF. 1987. Genetic engineering of ethanol production in E. coli. Appl Environ Microbiol 53:2420–2425. [PubMed]
181. Ohta K, Alterthum F, Ingram LO. 1990. Effects of environmental conditions on xylose fermentation by recombinant Escherichia coli. Appl Environ Microbiol 56:463–465. [PubMed]
182. Pouyssegur J, Stoeber F. 1974. Genetic control of the 2-keto-3-deoxy-d-gluconate metabolism in Escherichia coli K-12: kdg regulon. J Bacteriol 117:641–651. [PubMed]
183. Heinrich R, Rapoport TA. 1974. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42:89–95. [PubMed][CrossRef]
184. Kacser H, Burns JA. 1973. The control of flux, p 65–104. In Davies DD (ed), Rate Control of Biological Processes. Cambridge University Press, London, United Kingdom.
185. Sauer U. 2004. High-throughput phenomics: experimental methods for mapping fluxomes. Current Opin Biotechnol 15:58–63. [PubMed][CrossRef]
186. Scamuffa MD, Caprioli RM. 1980. Comparison of the mechanisms of two distinct aldolases from Escherichia coli grown on gluconeogenic substrates. Biochim Biophys Acta 614:583–590. [PubMed]
187. Smyer JR, Jeter RM. 1989. Characterization of phosphoenolpyruvate synthase mutants in Salmonella typhimurium. Arch Microbiol 153:26–32.[PubMed][CrossRef]
188. Snoep JL, Arfman N, Yomano LP, Westerhoff HV, Conway T, Ingram LO. 1996. Control of glycolytic flux in Zymomonas mobilis by glucose 6-phosphate dehydrogenase activity. Biotechnol Bioeng 51:190–197. [PubMed][CrossRef]
189. Roehl RA, Vinopal RT. 1976. Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli. J Bacteriol 126:852–860. [PubMed]
190. Totemeyer S, Booth NA, Nichols WE, Dunbar B, Booth IR. 1998. From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 27:553–562. [PubMed][CrossRef]
191. Yang Y, Zhao G, Man TK, Winkler ME. 1998. Involvement of the gapA- and epd (gapB)-encoded dehydrogenases in pyridoxal 5′-phosphate coenzyme biosynthesis in Escherichia coli K-12. J Bacteriol 180:4294–4299. [PubMed]
192. Babul J, Clifton D, Kretschmer M, Fraenkel DG. 1993. Glucose metabolism in Escherichia coli and the effect of increased amount of aldolase. Biochemistry 32:4685–4692. [PubMed][CrossRef]
193. Patnaik R, Roof WE, Young RF, Liao JC. 1992. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J Bacteriol 174:7527–7532. [PubMed]
194. Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR. 2002. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909–3916. [PubMed][CrossRef]
195. Causey TB, Zhou S, Shanmugam KT, Ingram LO. 2003. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100:825–832. [PubMed][CrossRef]
196. Hofmeyr JS, Cornish-Bowden A. 2000. Regulating the cellular economy of supply and demand. FEBS Lett 476:47–51. [PubMed][CrossRef]
197. Koebmann BJ, Westerhoff HV, Snoep JL, Solem C, Pedersen MB, Nilsson D, Michelsen O, Jensen PR. 2002. The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth. Mol Biol Rep 29:41–46. [CrossRef]
198. Causey TB, Shanmugam KT, Yomano LP, Ingram LO. 2004. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA 101:2235–2240. [PubMed][CrossRef]
199. Ingram LO, Doran JB. 1995. Conversion of cellulosic materials to ethanol. FEMS Microbiol Rev 16:235–241. [CrossRef]
200. Emmerling M, Bailey JF, Sauer U. 1999. Glucose catabolism of Escherichia coli strains with increased activity and altered regulation of key glycolytic enzymes. Metab Eng 1:117–127. [PubMed][CrossRef]
201. Emmerling M, Bailey JF, Sauer U. 2000. Altered regulation of pyruvate kinase or co-overexpression of phosphofructokinase increases glycolytic fluxes in resting Escherichia coli. Biotech Bioeng 67:623–627. [PubMed][CrossRef]
202. Teixeira de Mattos MJ, Streekstra H, Tempest DW. 1984. Metabolic uncoupling of substrate level phosphorylation in anaerobic glucose-limited chemostat cultures of Klebsiella aerogenes NCTC418. Arch Microbiol 139:260–264. [CrossRef]
203. Bakker BM, Michels P, Opperdoes FR, Westerhoff HV. 1997. Glycolysis in bloodstream from Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J Biol Chem 272:3207–3215. [PubMed][CrossRef]
204. Jamshidi N, Edwards JS, Fahland T, Church GM, Palsson BO. 2001. Dynamic simulation of the red blood cell metabolic network. Bioinformatics 17:286–287. [PubMed][CrossRef]
205. Mulquiney PJ, Kuchel PW. 1999. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo computer simulation and metabolic control analysis. Biochem J 342:597–604. [PubMed][CrossRef]
206. Schreyer R, Böck A. 1973. Phenotypic suppression of a fructose-1,6-diphosphate aldolase mutation in Escherichia coli. J Bacteriol 115:268–276.
207. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M. 2002. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotech Bioeng 79:53–73. [PubMed][CrossRef]
ecosalplus.3.5.1.citations
ecosalplus/1/2
content/journal/ecosalplus/10.1128/ecosalplus.3.5.1
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.5.1
2005-10-07
2017-12-14

Abstract:

Central metabolism of carbohydrates uses the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways. This review reviews the biological roles of the enzymes and genes of these three pathways of . Glucose, pentoses, and gluconate are primarily discussed as the initial substrates of the three pathways, respectively. The genetic and allosteric regulatory mechanisms of glycolysis and the factors that affect metabolic flux through the pathways are considered here. Despite the fact that a lot of information on each of the reaction steps has been accumulated over the years for , surprisingly little quantitative information has been integrated to analyze glycolysis as a system. Therefore, the review presents a detailed description of each of the catalytic steps by a systemic approach. It considers both structural and kinetic aspects. Models that include kinetic information of the reaction steps will always contain the reaction stoichiometry and therefore follow the structural constraints, but in addition to these also kinetic rate laws must be fulfilled. The kinetic information obtained on isolated enzymes can be integrated using computer models to simulate behavior of the reaction network formed by these enzymes. Successful examples of such approaches are the modeling of glycolysis in , the parasite , and the red blood cell. With the rapid developments in the field of Systems Biology many new methods have been and will be developed, for experimental and theoretical approaches, and the authors expect that these will be applied to glycolysis in the near future.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Citation: Romeo T, Snoep J. 2005. Glycolysis and Flux Control, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.5.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

This phase consists of an interconnecting series of reversible reactions and may be viewed as starting with ribulose 5-phosphate (Ru5P) from the oxidative phase, pentoses or pentose-containing compounds, or using products from the EMP pathway, fructose 6-phosphate (F6P), and glyceraldehyde-6-phosphate (G3P). It produces intermediary metabolites that are used in the synthesis of certain amino acids, vitamins, nucleotides, and lipopolysaccharide (LPS), as shown. Other abbreviations: R5P (ribose-5-phopshate), X5P (xylulose-5-phosphate), G3P (glyceraldehyde-3-phosphate), S7P (sedoheptulose-7-phosphate), E4P (erythrose-4-phosphate), KDO (ketodeoxyoctulosonic acid).

Citation: Romeo T, Snoep J. 2005. Glycolysis and Flux Control, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.5.1
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Reactions used in the structural analysis of the EMP, PP, and ED pathways

Citation: Romeo T, Snoep J. 2005. Glycolysis and Flux Control, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.5.1
Generic image for table
Table 2

Expression of the steady-state fluxes as a function of a set of independent fluxes

Citation: Romeo T, Snoep J. 2005. Glycolysis and Flux Control, EcoSal Plus 2005; doi:10.1128/ecosalplus.3.5.1

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error