1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: R. Gary Sawers1, and David P. Clark2
  • Editor: Valley Stewart3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom; 2: Department of Microbiology, Southern Illinois University, Carbondale, IL 62901; 3: University of California, Davis, Davis, CA
  • Received 15 December 2003 Accepted 05 March 2004 Published 27 July 2004
  • Address correspondence to R. Gary Sawers gary.sawers@bbsrc.ac.uk
image of Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism
    Preview this reference work article:
    Zoom in
    Zoomout

    Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/1/3_5_3_module-1.gif /docserver/preview/fulltext/ecosalplus/1/1/3_5_3_module-2.gif
  • Abstract:

    Pyruvate and acetyl-CoA form the backbone of central metabolism. The nonoxidative cleavage of pyruvate to acetyl-CoA and formate by the glycyl radical enzyme pyruvate formate lyase is one of the signature reactions of mixed-acid fermentation in enterobacteria. Under these conditions, formic acid accounts for up to one-third of the carbon derived from glucose. The further metabolism of acetyl-CoA to acetate via acetyl-phosphate catalyzed by phosphotransacetylase and acetate kinase is an exemplar of substrate-level phosphorylation. Acetyl-CoA can also be used as an acceptor of the reducing equivalents generated during glycolysis, whereby ethanol is formed by the polymeric acetaldehyde/alcohol dehydrogenase (AdhE) enzyme. The metabolism of acetyl-CoA via either the acetate or the ethanol branches is governed by the cellular demand for ATP and the necessity to reoxidize NADH. Consequently, in the absence of an electron acceptor mutants lacking either branch of acetyl-CoA metabolism fail to cleave pyruvate, despite the presence of PFL, and instead reduce it to -lactate by the -lactate dehydrogenase. The conversion of PFL to the active, radical-bearing species is controlled by a radical-SAM enzyme, PFL-activase. All of these reactions are regulated in response to the prevalent cellular NADH:NAD ratio. In contrast to and species, some genera of enterobacteria, e.g., and , produce the more neutral product 2,3-butanediol and considerable amounts of CO as fermentation products. In these bacteria, two molecules of pyruvate are converted to α-acetolactate (AL) by α-acetolactate synthase (ALS). AL is then decarboxylated and subsequently reduced to the product 2,3-butandiol.

  • Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.41309306
Lactic Acid Fermentation
0.4088363
0.41309306

References

1. Pascal MC, Chippaux M, Abou-Jaoude A, Blaschkowski HP, Knappe J. 1981. Mutants of Escherichia coli K12 with defects in anaerobic pyruvate metabolism. J Gen Microbiol 124:35–42. [PubMed]
2. Thauer RK, Jungermann K, Decker K. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180.
3. Clark DP. 1989. The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234. [CrossRef]
4. Sokatch JR. 1969. Bacterial Physiology and Metabolism. Academic Press, London, United Kingdom.
5. Novotny MJ, Reizer J, Esch F, Saier MH, Jr. 1984. Purification and properties of D-mannitol-1-phosphate dehydrogenase and D-glucitol-6-phosphate dehydrogenase from Escherichia coli. J Bacteriol 159:986–990.
6. Wolff JB, Kaplan NO. 1956. Hexitol metabolism in Escherichia coli. J Bacteriol 71:557–564.
7. Alam KY, Clark DP. 1989. Anaerobic fermentation balance of Escherichia coli as observed by in vivo nuclear magnetic resonance spectroscopy. J Bacteriol 171:6213–6217.[PubMed]
8. Hickman J, Ashwell G. 1960. Uronic acid metabolism in bacteria. II. Purification and properties of D-altronic and D-mannonic acid dehydrogenases in Escherichia coli. J Biol Chem 235:1566–1570.
9. Dawes EA, Foster SM. 1956. The formation of ethanol in Escherichia coli. Biochim Biophys Acta 22:253–265. [CrossRef]
10. Maloy SR, Nunn WD. 1982. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol 149:173–180. [PubMed]
11. Mat-Jan F, Alam KY, Clark DP. 1989. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol 171:342–348.
12. Suppmann B, Sawers G. 1994. Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol 11:965–982. [CrossRef]
13. Lawford HG, Rousseau JD. 1998. Fermentation of biomass-derived glucuronic acid by pet expressing recombinants of Escherichia coli B. Appl Biochem Biotechnol 63–65:221–241.
14. Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO. 2003. Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407.[CrossRef]
15. Cunningham PR, Clark DP. 1986. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation. Mol Gen Genet 205:487–493. [CrossRef]
16. Gupta S, Clark DP. 1989. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation. J Bacteriol 171:3650–3655.
17. Clark DP, Cunningham PR, Reams SG, Mat-Jan F, Mohammedkhani R, Williams CR. 1988. Mutants of Escherichia coli defective in acid fermentation. Appl Biochem Biotechnol 17:163–173. [CrossRef]
18. Kessler D, Herth W, Knappe J. 1992. Ultrastructure and pyruvate-formate-lyase quenching property of the multienzymic AdhE protein of Escherichia coli. J Biol Chem 267:18073–18079.
19. Kessler D, Leibrecht I, Knappe J. 1991. Pyruvate-formate-lyase-deactivase and acetyl-CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE. FEBS Lett 281:59–63. [CrossRef]
20. Clark DP, Cronan JE, Jr. 1980. Acetaldehyde coenzyme A dehydrogenase of Escherichia coli. J Bacteriol 144:179–184.
21. Alexeeva S, de Kort B, Sawers G, Hellingwerf KJ, Teixeira de Mattos MJ. 2000. Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. J Bacteriol 182:4934–4940. [CrossRef]
22. Ogino T, Arata Y, Fujiwara S. 1980. Proton correlation nuclear magnetic resonance study of metabolic regulations and pyruvate transport in anaerobic Escherichia coli cells. Biochemistry 19:3684–3691. [CrossRef]
23. Ogino T, Fujiwara YAS, Shoun H, Beppu T. 1978. Proton correlation nuclear magnetic resonance study of anaerobic metabolism of Escherichia coli. Biochemistry 17:4742–4745. [CrossRef]
24. Michels PAM, Michels JPJ, Boonstra J, Konings WN. 1979. Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiol Lett 5:357–364. [CrossRef]
25. Ten Brink B, Konings WN. 1980. Generation of an electrochemical proton gradient by lactate efflux in membrane vesicles of Escherichia coli. Eur J Biochem 111:59–66.
26. Taguchi H, Ohta T. 1991. D-Lactate dehydrogenase is a member of the D-isomer specific 2-hydroxyacid dehydrogenase family. J Biol Chem 266:12588–12594.
27. Tarmy EM, Kaplan NO. 1965. Interacting binding sites of L-specific lactic dehydrogenase of Escherichia coli. Biochem Biophys Res Commun 21:379–383. [CrossRef]
28. Tarmy EM, Kaplan NO. 1968. Chemical characterization of D-lactate dehydrogenase from Escherichia coli B. J Biol Chem 243:2579–2586.
29. Shimizu M, Suzuki T, Kameda K-Y, Abiko Y. 1969. Phosphotransacetylase of Escherichia coli B, purification and properties. Biochim Biophys Acta 191:550–558.
30. Tarmy EM, Kaplan NO. 1968. Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate controlled change in conformation. J Biol Chem 243:2587–2596.
31. Yang YT, San KY, Bennett GN. 1999. Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion. Metab Eng 1:141–152. [CrossRef]
32. Yang YT, Bennett GN, San KY. 2001. The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli. Metab Eng 3:115–123. [CrossRef]
33. Mayr U, Hansel R, Deparade M, Pauly HE, Pfleiderer G, Tromer WE. 1982. Structure-function relationship in the allosteric L-lactate dehydrogenases from Lactobacillus casei and Lactobacillus curvatus. Eur J Biochem 126:549–558. [CrossRef]
34. Bunch PK, Mat-Jan F, Lee N, Clark DP. 1997. The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 143:187–195. [CrossRef]
35. Bernard N, Ferain T, Garmyn D, Hols P, Delcour J. 1991. Cloning of the D-lactate dehydrogenase gene from Lactobacillus delbrueckii subsp. bulgaricus by complementation in Escherichia coli FEBS Lett 290:61–64. [CrossRef]
36. Bhowmik T, Steele JL. 1994. Cloning, characterization and insertional inactivation of the Lactobacillus helveticus D(−) lactate dehydrogenase gene. Appl Microbiol Biotechnol 41:432–439. [CrossRef]
37. Contag PR, Williams MG, Rogers P. 1990. Cloning of a lactate dehydrogenase gene from Clostridium acetobutylicum B643 and expression in Escherichia coli. Appl Environ Microbiol 56:3760–3765.
38. Nunez MF, Pellicer MT, Badia J, Aguilar J, Baldoma L. 2001. Biochemical characterization of the 2-ketoacid reductases encoded by ycdW and yiaE genes in Escherichia coli. Biochem J 354:707–715. [CrossRef]
39. Branden C, Tooze J. 1991. Enzymes that bind nucleotides. In Introduction to Protein Structure, p 141–159. Garland Publishing, New York, N.Y.
40. Llanos RM, Hillier AJ, Davidson BE. 1992. Cloning, nucleotide sequence, expression and chromosomal location of ldh, the gene encoding L-(+)-lactate dehydrogenase, from Lactococcus lactis. J Bacteriol 174:6956–6964.
41. Eklund HH, Samama P, Wallen L, Branden C-I. 1981. Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9A resolution. J Mol Biol 146:561–587. [CrossRef]
42. Wierenga RK, Terpstra P, Hol WGJ. 1986. Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187:101–107. [CrossRef]
43. Konings WN, Hellingwerf KJ, Elferink MG. 1984. The interaction between electron transfer, proton motive force and solute transport in bacteria. Antonie Leeuwenhoek 50:545–555. [CrossRef]
44. Nunez MF, Kwon O, Wilson TH, Aguilar J, Baldoma L, Lin EC. 2002. Transport of L-lactate, D-lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli. Biochem Biophys Res Commun 290:824–829. [PubMed][CrossRef]
45. Chuang SE, Blattner FR. 1993. Characterization of twenty-six new heat shock genes of Escherichia coli. J Bacteriol 175:5242–5252.
46. Lilic M, Jovanovic M, Jovanovic G, Savic DJ. 2003. Identification of the CysB-regulated gene, hslJ, related to the Escherichia coli novobiocin resistance phenotype. FEMS Microbiol Lett 224:239–246. [CrossRef]
47. Jiang GR, Nikolova S, Clark DP. 2001. Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 147:2437–2446. [PubMed]
48. Becker S, Vlad D, Schuster S, Pfeiffer P, Unden G. 1997. Regulatory O2 tensions for the synthesis of fermentation products in Escherichia coli and relation to aerobic respiration. Arch Microbiol 168:290–296. [PubMed][CrossRef]
49. Yamamoto I, Ishimoto M. 1975. Effect of nitrate reduction on the enzyme levels in carbon metabolism in Escherichia coli. J Biochem (Tokyo) 78:307–315.
50. Riondet C, Cachon R, Wache Y, Alcaraz G, Divies C. 2000. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J Bacteriol 182:620–626. [CrossRef]
51. Jiang GR. 1999. Genetic Regulation of the Fermentative Lactate Dehydrogenase of Escherichia coli. Ph.D. dissertation. Southern Illinois University, Carbondale.
52. Masse E, Gottesman S. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625. [CrossRef]
53. Masse E, Escorcia FE, Gottesman S. 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383. [PubMed][CrossRef]
54. Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Blasi U. 2003. Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9:1308–1314. [CrossRef]
55. Gokarn RR, Eiteman MA, Altman E. 2000. Metabolic analysis of Escherichia coli in the presence and absence of carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase. Appl Environ Microbiol 66:1844–1850. [CrossRef]
56. Guest JR, Angier SJ, Russell GC. 1989. Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli. Ann N Y Acad Sci 573:76–99. [CrossRef]
57. Kaiser M, Sawers G. 1994. Pyruvate formate-lyase is not essential for nitrate respiration by Escherichia coli. FEMS Microbiol Lett 117:163–168. [PubMed][CrossRef]
58. De Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ. 1999. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181:2351–2357.
59. Hansen RG, Henning U. 1966. Regulation of pyruvate dehydrogenase activity in Escherichia coli K12. Biochim Biophys Acta 122:355–358.
60. Kessler D, Knappe J. 1996. Anaerobic dissimilation of pyruvate, p 199–205. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C.
61. Knappe J, Sawers G. 1990. A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol Rev 75:383–398. [CrossRef]
62. Sawers G. 1999. Biochemistry, physiology and molecular biology of glycyl radical enzymes. FEMS Microbiol Rev 22:543–551. [CrossRef]
63. Sawers G, Watson G. 1998. A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 29:945–954. [CrossRef]
64. Knappe J, Wagner AFV. 2001. Stable glycyl radical from pyruvate fomate-lyase and ribonucleotide reductase(III). Adv Protein Chem 58:277–315. [CrossRef]
65. Langley D, Guest JR. 1977. Biochemical genetics of the α-keto acid dehydrogenase complexes of Escherichia coli K12: isolation and biochemical properties of deletion mutants. J Gen Microbiol 99:263–276.[PubMed]
66. Varenne S, Casse F, Chippaux M, Pascal MC. 1975. A mutant of Escherichia coli deficient in pyruvate formate-lyase. Mol Gen Genet 141:181–184. [CrossRef]
67. Poole RK, Hill S. 1997. Respiratory protection of nitrogenase activity in Azotobacter vinelandii—roles of the terminal oxidases. Biosci Rep 17:303–317. [CrossRef]
68. Knappe J, Neugebauer FA, Blaschkowski HP, Gänzler M. 1984. Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci USA 81:1332–1335. [CrossRef]
69. Wagner AFV, Frey M, Neugebauer FA, Schäfer W, Knappe J. 1992. The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci USA 89:996–1000. [CrossRef]
70. Becker A, Fritz-Wolf K, Kabsch W, Knappe J, Schultz S, Wagner AFV. 1999. Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat Struct Biol 6:969–975. [CrossRef]
71. Leppännen V-M, Merckel MC, Ollis DL, Wong KK, Kozarich JW, Goldman A. 1999. Pyruvate formate-lyase is structurally homologous to type I ribonucleotide reductase. Structure 7:733–744. [CrossRef]
72. Logan DT, Andersson J, Sjöberg B-M, Nordlund P. 1999. A glycyl radical site in the crystal structure of a class III ribonucleotide reductase. Science 283:1499–1504. [CrossRef]
73. Stubbe J. 2000. Ribonucleotide reductases: the link between an RNA and a DNA world? Curr Opin Struct Biol 10:731–736. [CrossRef]
74. Eklund H, Fontecave M. 1999. Glycyl radical enzymes: a conservative structural basis for radicals. Structure 7:R257–R262. [CrossRef]
75. Becker A, Kabsch W. 2002. X-ray structure of pyruvate formate-lyase in complex with pyruvate and CoA. J Biol Chem 277:40036–40042. [CrossRef]
76. Lethiö, L, Leppännen V-M, Kozarich JW, Goldman A. 2002. Structure of Escherichia coli pyruvate formate-lyase with pyruvate. Acta Crystalogr D58:2209–2212.
77. Stubbe J, van der Donk WA. 1998. Protein radicals in enzyme catalysis. Chem Rev 98:705–762. [CrossRef]
78. Knappe J, Blaschkowski HP, Gröbner P, Schmitt T. 1974. Pyruvate formate-lyase of Escherichia coli: the acetyl-enzyme intermediate. Eur J Biochem 50:253–263. [CrossRef]
79. Parast CV, Wong KK, Lewisch SA, Kozarich JW, Peisach J, Magliozzo RS. 1995. Hydrogen exchange of the glycyl radical of pyruvate formate-lyase is catalyzed by cysteine 419. Biochemistry 34:2393–2399. [CrossRef]
80. Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W, Schilz E, Schägger H, Heider J. 1998. Biochemical and genetic characterisation of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628. [CrossRef]
81. Himo F, Eriksson LA. 1998. Catalytic mechanism of pyruvate formate-lyase (PFL): a theoretical study. J Am Chem Soc 120:11449–11455. [CrossRef]
82. Knappe J, Elbert S, Frey M, Wagner AFV. 1993. Pyruvate formate-lyase mechanism involving the protein-based glycyl radical. Biochem Soc Trans 21:731–739.
83. Plaga W, Frank R, Knappe J. 1988. Catalytic-site mapping of pyruvate formate-lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate). Eur J Biochem 178:445–450. [CrossRef]
84. Plaga W, Vielhaber G, Wallach J, Knappe J. 2000. Modification of Cys-418 of pyruvate formate-lyase by methacrylic acid, based on its radical mechanism. FEBS Lett 466:45–48. [CrossRef]
85. Reddy SG, Wong KK, Parast CV, Peisach J, Magliozzo RS, Kozarich JW. 1998. Dioxygen inactivation of pyruvate formate-lyase: EPR evidence for the formation of protein-based sulfinyl and peroxyl radicals. Biochemistry 37:558–563. [CrossRef]
86. Zhang W, Wong KK, Magliozzo RS, Kozarich JW. 2001. Inactivation of pyruvate formate-lyase by dioxygen: defining the mechanistic interplay of glycine 734 and cysteine 419 by rapid freeze quench EPR. Biochemistry 40:4123–4130. [CrossRef]
87. Knappe J, Bohnert E, Brümmer W. 1965. S-Adenosyl-L-methionine, a component of the clastic dissimilation of pyruvate in Escherichia coli. Biochim Biophys Acta 107:603–605.
88. Frey M, Rothe M, Wagner AFV, Knappe J. 1994. Adenosylmethionine-dependent synthesis of the glycyl radical in pyruvate formate-lyase by abstraction of the glycine C-2 pro-S hydrogen atom. Studies of [2H]glycine-substituted enzyme and peptides homologous to the glycine 734 site. J Biol Chem 269:12432–12437.
89. Vetter H Jr, Knappe J. 1971. Flavodoxin and ferredoxin of Escherichia coli. Hoppe-Seyler Z Physiol Chem 352:433–446.
90. Wan JT, Jarrett JT. 2002. Electron acceptor specificity of ferredoxin (flavodoxin):NADP+ oxidoreductase from Escherichia coli. Arch Biochem Biophys 406:116–126. [CrossRef]
91. Hoover DM, Ludwig ML. 1997. A flavodoxin that is required for enzyme activation: the structure of oxidized flavodoxin from Escherichia coli at 1.8Å resolution. Protein Sci 6:2525–2537. [CrossRef]
92. Walsby CJ, Hong W, Broderick WE, Cheek J, Ortillo D, Broderick JB, Hoffman BM. 2002. Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionein binds in contact with the catalytically active [4Fe-4S]+ cluster of pyruvate formate-lyase activating enzyme. J Am Chem Soc 124:3143–3151. [CrossRef]
93. Ingleman M, Bianchi V, Eklund H. 1997. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 Å resolution. J Mol Biol 268:147–157. [CrossRef]
94. Tamarit J, Gerez C, Meier C, Mulliez E, Trautwein A, Fontecave M. The activating component of the anaerobic ribonucleotide reductase from Escherichia coli. J Biol Chem 275:15669–15675. [CrossRef]
95. Sofia HJ, Chen G, Hetzler BG, Reyes-Spinolda JF, Miller NE. 2001. Radical Sam, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information methods. Nucleic Acids Res 29:1097–1106. [CrossRef]
96. Knappe J, Schacht J, Möckel W, Höpner T, Vetter H, Jr, Edenharder R. 1969. Pyruvate formate-lyase reaction in Escherichia coli. The enzymatic system converting an inactive form of the lyase into the catalytically active enzyme. Eur J Biochem 11:316–327. [CrossRef]
97. Broderick JB, Duderstadt RE, Fernandez DC, Wojtuszewski K, Henshaw TF, Johnson MK. 1997. Pyruvate formate-lyase activating enzyme is an iron-sulfur protein. J Am Chem Soc 119:7396–7397. [CrossRef]
98. Broderick JB, Henshaw TF, Cheek J, Wojtuszewski K, Smith SP, Trojan MR, McGhan RM, Kopf A, Kibbey M, Broderick WE. 2000. Pyruvate formate-lyase-activating enzyme: strictly anaerobic isolation yields active enzyme containing a [3Fe-4S]+ cluster. Biochem Biophys Res Commun 269:451–456. [CrossRef]
99. Külzer R, Pils T, Kappl R, Hüttermann J, Knappe J. 1998. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J Biol Chem 273:4897–4903. [CrossRef]
100. Frey PA. 2001. Radical mechanism of enzymatic catalysis. Annu Rev Biochem 70:121–148. [CrossRef]
101. Krebs C, Broderick WE, Henshaw TF, Broderick JB, Huynh BH. 2002. Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study. J Am Chem Soc 124:912–913. [CrossRef]
102. Cheek J, Broderick JB. 2001. Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role. J Biol Inorg Chem 6:209–226. [CrossRef]
103. Fontecave M, Mulliez E, Ollagnier-de-Choudens S. 2001. Adenosylmethionine as a source of 5′-deoxyadenosyl radicals. Curr Opin Chem Biol 5:506–511. [CrossRef]
104. Cosper MM, Cosper NJ, Hong W, Shokes JE, Broderick WE, Broderick JB, Johnson MK, Scott RA. 2003. Structural studies of the interaction of S-adenosylmethionine with the [4Fe-4S] clusters in biotin synthase and pyruvate formate-lyase-activating enzyme. Protein Sci 12:1573–1577. [CrossRef]
105. Walsby CJ, Ortillo D, Broderick WE, Broderick JB, Hoffman BM. 2002. An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme. J Am Chem Soc 124:11270–11271. [CrossRef]
106. Wagner AFV, Demand J, Schilling G, Pils T, Knappe J. 1999. A dehydroalanyl residue can capture the 5′ deoxyadenosyl radical generated from S-adenosylmethionine by pyruvate formate-lyase-activating enzyme. Biochem Biophys Res Commun 254:306–310. [CrossRef]
107. Drapal N, Sawers G. 1995. Purification of ArcA and analysis of its specific interaction with the pfl promoter-regulatory region. Mol Microbiol 16:597–607. [CrossRef]
108. Drapal N, Sawers G. 1995. Promoter 7 of the Escherichia coli pfl operon is a major determinant in the anaerobic regulation of expression by ArcA. J Bacteriol 177:5338–5341.
109. Kaiser M, Sawers G. 1995. Nitrate repression of the Escherichia coli pfl operon is mediated by the dual sensors NarQ and NarX and dual regulators NarL and NarP. J Bacteriol 177:3647–3655.
110. Kaiser M, Sawers G. 1995. Fnr activates transcription from the P6 promoter of the pfl operon in vitro. Mol Microbiol 18:331–342. [CrossRef]
111. Kaiser M, Sawers G. 1997 Overlapping promoters modulate Fnr- and ArcA-dependent anaerobic transcriptional activation of the focApfl operon in Escherichia coli. Microbiology 143:775–783. [CrossRef]
112. Sawers G. 1993. Specific transcriptional requirements for positive regulation of the anaerobically inducible pfl operon by ArcA and FNR. Mol Microbiol 10:737–747. [CrossRef]
113. Sawers G, Böck A. 1988. Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12. J Bacteriol 170:5330–5336.
114. Sawers G, Böck A. 1989. Novel transcriptional control of the pyruvate formate-lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. J Bacteriol 171:2485–2498.
115. Sawers G, Kaiser M, Sirko A, Freundlich M. 1997. Transcriptional activation by FNR and CRP: reciprocity of binding-site recognition. Mol Microbiol 23:835–845. [CrossRef]
116. Sawers G, Suppmann B. 1992. Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins.J Bacteriol 174:3474–3478.
117. Sawers G, Wagner AFV, Böck A. 1989. Transcription initiation at multiple promoters of the pfl gene by Eσ70?? dependent transcription in vitro and heterologous expression in Pseudomonas putida in vivo. J Bacteriol 171:4930–4937.
118. Sirko A, Zehelein E, Freundlich M, Sawers G. 1993. Integration host factor is required for anaerobic pyruvate induction of pfl operon expression in Escherichia coli. J Bacteriol 175:5769–5777.
119. Rödel W, Plaga W, Frank R, Knappe J. 1988. Primary structures of Escherichia coli pyruvate formate-lyase and pyruvate formate-lyase-activating enzyme deduced from the DNA nucleotide sequence. Eur J Biochem 177:153–158. [CrossRef]
120. Sauter M, Sawers RG. 1990. Transcriptional analysis of the gene encoding pyruvate formate-lyase-activating enzyme of Escherichia coli. Mol Microbiol 4:355–363. [CrossRef]
121. Weidner G, Sawers G. 1996. Molecular characterization of the genes encoding pyruvate formate-lyase and its activating enzyme of Clostridium pasteurianum. J Bacteriol 178:2440–2444.
122. Sun X, Harder J, Krook M, Jörnvall H, Sjöberg B-M, Reichard P. 1993. A possible glycyl radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene. Proc Natl Acad Sci USA 90:577–581. [CrossRef]
123. Heβlinger C, Fairhurst SA, Sawers G. 1998. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol Microbiol 27:477–492. [CrossRef]
124. Sawers G, Heβlinger C, Muller N, Kaiser M. 1998. The glycyl radical enzyme TdcE can replace pyruvate formate-lyase in glucose fermentation. J Bacteriol 180:3509–3516.
125. Wu Y, Patil RV, Datta P. 1992. Catabolite activator protein and integration host factor act in concert to regulate tdc operon expression in Escherichia coli. J Bacteriol 174:6918–6927.
126. Sawers G. 2001. A novel mechanism controls anaerobic and catabolite regulation of the Escherichia coli tdc operon. Mol Microbiol 39:1285–1298. [CrossRef]
127. Wagner AFV, Schultz S, Bomke J, Pils T, Lehman WD, Knappe J. 1999. YfiD of Escherichia coli and Y061 of bacteriophage T4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygen-fragmented pyruvate formate-lyase. Biochem Biophys Res Commun 285:456–462. [CrossRef]
128. Wyborn NR, Messenger SL, Henderson RA, Sawers G, Roberts RE, Attwood MM, Green J. 2002. Expression of the Escherichia coli yfiD gene responds to intracellular pH and reduces the accumulation of acidic metabolic end products. Microbiology 148:1015–1026.
129. Blankenhorn D, Phillips J, Slonczewski J. 1999. Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216.
130. Green J, Baldwin ML. 1997. HlyX, the FNR homologue of Actinobacillus pleuropneumoniae, is a [4Fe-4S]-containing oxygen-responsive transcription regulator that anaerobically activates FNR-dependent class I promoters via an enhanced AR1-contact. Mol Microbiol 24:593–605. [CrossRef]
131. Marshall FA, Messenger SL, Wyborn NR, Guest JR, Wing HJ, Busby SJW, Green J. 2001. A novel promoter architecture for microaerobic activation by the anaerobic transcription factor FNR. Mol Microbiol 39:747–753. [CrossRef]
132. Kumari S, Tishel R, Eisenbach M, Wolfe AJ. 1995. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 177:2878–2886.
133. Brown TDK, Jones-Mortimer MC, Kornberg HL. 1977. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol 102:327–336.
134. Brown TDK, Pereira CRS, Størmer. 1972. Studies of the acetate kinase phosphotransacetylase and the butanediol-forming systems in Aerobacter aerogenes. J Bacteriol 112:1106–1111.
135. Wagner C, Odom R, Briggs WT. 1972. The uptake of acetate by Escherichia coli W. Biochem Biophys Res Commun 47:1036–1043. [CrossRef]
136. Gimenez R, Nunez MF, Badia J, Aguilar J, Baldoma L. 2003. The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 185:6448–6455. [CrossRef]
137. Matsuyama A, Yamamoto H, Nakano E. 1989. Cloning, expression, and nucleotide sequence of the Escherichia coli K-12 ackA gene. J Bacteriol 171:577–580.
138. Kukuruzinska MA, Turner BW, Ackers GK, Roseman S. 1984. Subunit association of enzyme I of the Salmonella typhimurium phosphoenolpyruvate:glycose phosphotransferase system: temperature dependence and thermodynamic properties. J Biol Chem 259:11679–11681.
139. Fox DK, Roseman S. 1986. Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli. J Biol Chem 261:13487–13497.
140. Katayama A, Tsujii A, Wada A, Nishino T, Ishihama A. 2002. Systematic search for zinc-binding proteins in Escherichia coli. Eur J Biochem 269:2403–2413. [CrossRef]
141. Romaniuk PJ, Eckstein F. 1981. Structure of the metal-nucleotide complex in the acetate kinase reaction. A study with γ-32P-labeled phosphorothioate analogs of ATP. J Biol Chem 256:7322–7328.[PubMed]
142. Anthony RS, Spector LB. 1970. A phosphoenzyme intermediary in acetate kinase action. J Biol Chem 245:6739–6741.
143. Fox DK, Meadow ND, Roseman S. 1986. Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J Biol Chem 261:13498–13503.
144. Janson CA, Cleland WW. 1974. The inhibition of acetate, pyruvate, and 3-phosphoglycerate kinases by chromium adenosine triphosphate. J Biol Chem 249:2567–2571.
145. Wong SS, Wong LJ. 1981. Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase. Biochim Biophys Acta 660:142–147.
146. Blattler WA, Knowles JR. 1979. Stereochemical course of phosphokinases. The use of adenosine [gamma-(S)-16O,17O,18O] triphosphate and the mechanistic consequences for the reactions catalyzed by glycerol kinase, hexokinase, pyruvate kinase, and acetate kinase Biochemistry 18:3927–3933. [CrossRef]
147. Matsuyama A, Yamamoto-Otake H, Hewitt J, MacGillivray RT, Nakano E. 1994. Nucleotide sequence of the phosphotransacetylase gene of Escherichia coli strain K12. Biochim Biophys Acta 1219:559–562.
148. LeVine S, Ardeshir F, Ames GF-L. 1980. Isolation and characterization of acetate kinase and phosphotransacetylase mutants of Escherichia coli and Salmonella typhimurium. J Bacteriol 143:1081–1085.
149. Suzuki T. 1969. Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides. Biochim Biophys Acta 191:559–569.
150. Galperin MY, Grishin NV. 2000. The synthetase domains of cobalamin biosynthesis amidotransferases CobB and CobQ belong to a new family of ATP-dependent amidoligases, related to dethiobiotin synthetase. Proteins 41:238–247. [CrossRef]
151. Chang DE, Jung HC, Rhee JS, Pan JG. 1999. Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389.
152. Hahm DH, Pan J, Rhee JS. 1994. Characterization and evaluation of a pta (phosphotransacetylase) negative mutant of Escherichia coli HB101 as production host of foreign lipase. Appl Microbiol Biotechnol 42:100–107. [CrossRef]
153. Chang DE, Shin S, Rhee JS, Pan JG. 1999. Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol 181:6656–6663.
154. Yang YT, Bennett GN, San KY. 1999. Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol Bioeng 65:291–297. [CrossRef]
155. Zhu T, Yang Y, Jiao R. 2000. The selection of fluoroacetate-resistant mutant from E. coli MMR204 and its influence on the expression of heterologous GL-7ACA acylase. Wei Sheng Wu Xue Bao 40:100–104. (In Chinese.)[PubMed]
156. Guest JR. 1979. Anaerobic growth of Escherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants. J Gen Microbiol 115:259–271.
157. Kwan HS, Chui HW, Wong KK. 1988. ack::Mud1-8 (Aprlac) operon fusions of Salmonella typhimurium LT2. Mol Gen Genet 211:183–185. [PubMed][CrossRef]
158. Oh MK, Liao JC. 2000. Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278–286. [CrossRef]
159. Oh MK, Rohlin L, Kao KC, Liao JC. 2002. Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 277:13175–13183. [CrossRef]
160. Kirkpatrick C, Maurer LM, Oyelakin NE, Yoncheva YN, Maurer R, Slonczewski JL. 2001. Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol 183:6466–6477. [CrossRef]
161. Peng L, Shimizu K. 2003. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178.
162. Wanner BL. 1995. Signal transduction and cross regulation in the Escherichia coli phosphate regulon by PhoR, CreC, and acetyl phosphate, p 203–221. In Hoch JA and Silhavy TJ (ed), Two-Component Signal Transduction. American Society for Microbiology, Washington, D.C.
163. Avison MB, Horton RE, Walsh TR, Bennett PM. 2001. Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. J Biol Chem 276:26955–26961. [CrossRef]
164. Kim S-K, Wilmes-Riesenberg MR, Wanner BL. 1996. Involvement of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate. Mol Microbiol 22:135–147. [PubMed][CrossRef]
165. Head CG, Tardy A, Kenney LJ. 1998. Relative binding affinities of OmpR and OmpR-phosphate at the ompF and ompC regulatory sites. J Mol Biol 281:857–870. [CrossRef]
166. Nyström T. 1994. The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol Microbiol 12:833–843. [CrossRef]
167. Hsing W, Silhavy TJ. 1997. Function of conserved histidine-243 in phosphatase activity of EnvZ, the sensor for porin osmoregulation in Escherichia coli. J Bacteriol 179:3729–3735.
168. Leonardo MR, Forst S. 1996. Re-examination of the role of the periplasmic domain of EnvZ in sensing of osmolarity signals in Escherichia coli. Mol Microbiol 22:405–413. [CrossRef]
169. McCleary WR, Stock JB. 1994. Acetyl phosphate and the activation of two-component response regulators. J Biol Chem 269:31567–31572.
170. Shin S, Park C. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702.
171. Mattison K, Oropeza R, Byers N, Kenney LJ. 2002. A phosphorylation site mutant of OmpR reveals different binding conformations at ompF and ompC. J Mol Biol 315:497–511. [CrossRef]
172. Tran VK, Oropeza R, Kenney LJ. 2000. A single amino acid substitution in the C terminus of OmpR alters DNA recognition and phosphorylation. J Mol Biol 299:1257–1270. [CrossRef]
173. Chamnongpol S, Groisman EA. 2000. Acetyl phosphate-dependent activation of a mutant PhoP response regulator that functions independently of its cognate sensor kinase. J Mol Biol 300:291–305. [CrossRef]
174. Heyde M, Laloi P, Portalier R. 2000. Involvement of carbon source and acetyl phosphate in the external-pH-dependent expression of porin genes in Escherichia coli. J Bacteriol 182:198–202. [CrossRef]
175. Dailey FE, Berg HC. 1993. Change in direction of flagellar rotation in Escherichia coli mediated by acetate kinase. J Bacteriol 175:3236–3239.
176. Barak R, Abouhamad WN, Eisenbach M. 1998. Both acetate kinase and acetyl coenzyme A synthetase are involved in acetate-stimulated change in the direction of flagellar rotation in Escherichia coli. J Bacteriol 180:985–988.
177. Ramakrishnan R, Schuster M, Bourret RB. 1998. Acetylation of Lys-92 enhances signaling by the chemotaxis response regulator protein CheY. Proc Natl Acad Sci USA 95:4918–4923. [CrossRef]
178. Prϋβ, BM, Wolfe AJ. 1994. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol Microbiol 12:973–984. [CrossRef]
179. Liu X, Ferenci T. 2001. An analysis of multifactorial influences on the transcriptional control of ompF and ompC porin expression under nutrient limitation. Microbiology 147:2981–2989.
180. Vadali RV, Horton CE, Rudolph FB, Bennett GN, San KY. 2004. Production of isoamyl acetate in ackA-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2. Appl Microbiol Biotechnol 63:698–704. [PubMed][CrossRef]
181. Lesley JA, Waldburger CD. 2003. Repression of Escherichia coli PhoP-PhoQ signaling by acetate reveals a regulatory role for acetyl coenzyme A. J Bacteriol 185:2563–2570. [CrossRef]
182. Georgellis D, Kwon O, Lin EC. 1999. Amplification of signaling activity of the arc two-component system of Escherichia coli by anaerobic metabolites. An in vitro study with different protein modules. J Biol Chem 274:35950–35954. [CrossRef]
183. Goodlove PE, Cunningham PR, Parker J, Clark DP. 1989. Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene 85:209–214. [CrossRef]
184. Rudolph FB, Purich DL, Fromm HJ. 1968. Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli: partial purification, properties, and kinetic studies of the enzyme. J Biol Chem 243:5539–5545.
185. Clark DP, Cronan JE, Jr. 1980. Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J Bacteriol 141:177–183.
186. Melchiorsen CR, Jokumsen KV, Villadsen J, Johnsen MG, Israelsen H, Arnau J. 2000. Synthesis and posttranslational regulation of pyruvate formate-lyase in Lactococcus lactis. J Bacteriol 182:4783–4788. [CrossRef]
187. Matayoshi S, Oda H, Sarwar G. 1989. Relationship between the production of spirosomes and anaerobic glycolysis activity in Escherichia coli. J Gen Microbiol 135:525–529.
188. Schmitt B. 1975. Aldehyde dehydrogenase activity of a complex particle from E. coli. Biochimie 57:1001–1004. [CrossRef]
189. Manjasetty BA, Powlowski J, Vrielink A. 2003. Crystal structure of a bifunctional aldolase-dehydrogenase: sequestering a reactive and volatile intermediate. Proc Natl Acad Sci USA 100:6992–6997. [CrossRef]
190. Palosaari NR, Rogers P. 1988. Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum. J Bacteriol 170:2971–2976.
191. Shone CC, Fromm HJ. 1981. Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli. Biochemistry 20:7494–7501. [CrossRef]
192. Smith LT, Kaplan NO. 1980. Purification, properties, and kinetic mechanism of coenzyme A-linked aldehyde dehydrogenase from Clostridium kluyveri. Arch Biochem Biophys 203:663–675. [CrossRef]
193. 1994. Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56.
194. Conway T, Sewell GW, Osman YA, Ingram LO. 1987. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J Bacteriol 169:2591–2597.
195. Williamson VM, Paquin CE. 1987. Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Mol Gen Genet 209:374–381. [CrossRef]
196. Fischer RJ, Helms J, Durre P. 1993. Cloning, sequencing, and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis. J Bacteriol 175:6959–6969.
197. Nair RV, Bennett GN, Papoutsakis ET. 1994. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol 176:871–885.
198. Dailly YP, Bunch P, Clark DP. 2000. Comparison of the fermentative alcohol dehydrogenases of Salmonella typhimurium and Escherichia coli. Microbios 103:179–196.
199. Bruchhaus I, Tannich E. 1994. Purification and molecular characterization of the NAD+-dependent acetaldehyde/alcohol dehydrogenase from Entamoeba histolytica. Biochem J 303:743–748.
200. Yang W, Li E, Kairong T, Stanley SL, Jr. 1994. Entamoeba histolytica has an alcohol dehydrogenase homologous to the multifunctional adhE gene product of Escherichia coli. Mol Biochem Parasitol 64:253–260. [CrossRef]
201. Rosenthal B, Mai Z, Caplivski D, Ghosh S, de la Vega H, Graf T, Samuelson J. 1997. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica. J Bacteriol 179:3736–3745.
202. Yong TS, Li E, Clark DP, Stanley SL, Jr. 1996. Complementation of an Escherichia coli adhE mutant by the Entamoeba histolytica EhADH2 gene provides a method for the identification of new antiamebic drugs. Proc Natl Acad Sci USA 93:6464–6469. [CrossRef]
203. Avila EE, Martinez-Alcaraz ER, Barbosa-Sabanero G, Rivera-Baron EI, Arias-Negrete S, Zazueta-Sandoval R. 2002. Subcellular localization of the NAD+-dependent alcohol dehydrogenase in Entamoeba histolytica trophozoites. J Parasitol 88:217–222. [CrossRef]
204. Wong P-K, Barrett EL. 1983. Aerobic and anaerobic alcohol dehydrogenases of Escherichia coli. FEMS Microbiol Lett 22:143–148. [CrossRef]
205. Lorowitz W, Clark DP. 1982. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase. J Bacteriol 152:935–938.
206. Casse F, Pascal M-C, Chippaux M, Ratouchniak J. 1976. Genetic analysis of mutants from Escherichia coli K12 unable to grow anaerobically without exogenous acceptor. Mol Gen Genet 148:337–340. [CrossRef]
207. Gupta S, Mat-Jan F, Latifi M, Clark DP. 2000. Acetaldehyde dehydrogenase activity of the AdhE protein of Escherichia coli is inhibited by intermediates in ubiquinone synthesis. FEMS Microbiol Lett 182:51–55. [CrossRef]
208. Leonardo MR, Cunningham PR, Clark DP. 1993. Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli. J Bacteriol 175:870–878. [PubMed]
209. Chen YM, Lin EC. 1991. Regulation of the adhE gene, which encodes ethanol dehydrogenase in Escherichia coli. J Bacteriol 173:8009–8013.
210. Leonardo MR, Dailly Y, Clark DP. 1996. Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol 178:6013–6018.
211. Alexeeva S, Hellingwerf KJ, Teixeira de Mattos MJ. 2003. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol 185:204–209. [PubMed][CrossRef]
212. Clark DP, Rod ML. 1987. Regulatory mutations which allow the growth of Escherichia coli on butanol as carbon source. J Mol Evol 25:151–158. [CrossRef]
213. Dailly YP. 1998. Molecular Cloning and Analysis of AdhR, a Protein Regulating Alcohol Fermentation in Escherichia coli. Ph.D. dissertation. Southern Illinois University, Carbondale, Ill.
214. Mikulskis A, Aristarkhov A, Lin EC. 1997. Regulation of expression of the ethanol dehydrogenase gene (adhE) in Escherichia coli by catabolite repressor activator protein Cra. J Bacteriol 179:7129–7134.
215. Kaga N, Umitsuki G, Clark DP, Nagai K, Wachi M. 2002. Extensive overproduction of the AdhE protein by rng mutations depends on mutations in the cra gene or in the Cra-box of the adhE promoter. Biochem Biophys Res Commun 295:92–97. [CrossRef]
216. Membrillo-Hernandez J, Kwon O, De Wulf P, Finkel SE, Lin EC. 1999. Regulation of adhE (encoding ethanol oxidoreductase) by the Fis protein in Escherichia coli. J Bacteriol 181:7390–7393.
217. Membrillo-Hernandez J, Lin EC. 1999. Regulation of expression of the adhE gene, encoding ethanol oxidoreductase in Escherichia coli: transcription from a downstream promoter and regulation by Fnr and RpoS. J Bacteriol 181:7571–7579.
218. Leonardo MR. 1993. Analysis of the Promoter Region of the Fermentative Alcohol Dehydrogenase Gene (adhE) of Escherichia coli. Ph.D. dissertation. Southern Illinois Uiversity, Carbondale.
219. Aristarkhov A, Mikulskis A, Belasco JG, Lin EC. 1996. Translation of the adhE transcript to produce ethanol dehydrogenase requires RNase III cleavage in Escherichia coli. J Bacteriol 178:4327–4332.
220. Umitsuki G, Wachi M, Takada A, Hikichi T, Nagai K. 2001. Involvement of RNase G in in vivo mRNA metabolism in Escherichia coli. Genes Cells 6:403–410. [CrossRef]
221. Kaga N, Umitsuki G, Nagai K, Wachi M. 2002. RNase G-dependent degradation of the eno mRNA encoding a glycolysis enzyme enolase in Escherichia coli. Biosci Biotechnol Biochem 66:2216–2220. [PubMed][CrossRef]
222. Wachi M, Kaga N, Umitsuki G, Clark DP, Nagai K. 2001. A novel RNase G mutant that is defective in degradation of adhE mRNA but proficient in the processing of 16S rRNA precursor. Biochem Biophys Res Commun 289:1301–1306. [CrossRef]
223. Holland-Staley CA, Lee K, Clark DP, Cunningham PR. 2000. Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid. J Bacteriol 182:6049–6054. [CrossRef]
224. Membrillo-Hernandez J, Echave P, Cabiscol E, Tamarit J, Ros J, Lin EC. 2000. Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins. J Biol Chem 275:33869–33875. [CrossRef]
225. Echave P, Esparza-Ceron MA, Cabiscol E, Tamarit J, Ros J, Membrillo-Hernandez J, Lin EC. 2002. DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc Natl Acad Sci USA 99:4626–4631. [CrossRef]
226. Echave P, Tamarit J, Cabiscol E, Ros J. 2003. Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli. J Biol Chem 278:30193–30198. [CrossRef]
227. Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI. 2001. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67:148–154. [CrossRef]
228. Donnelly MI, Millard CS, Clark DP, Chen MJ, Rathke JW. 1998. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid and ethanol. Appl Biochem Biotechnol 70–72:187–198. [CrossRef]
229. Brecker L, Weber H, Griengl H, Ribbons DW. 1999. In situ proton-NMR analyses of Escherichia coli HB101 fermentations in 1H2O and in D2O. Microbiology 145:3389–3397.
230. Hochuli M, Szyperski T, Wuthrich K. 2000. Deuterium isotope effects on the central carbon metabolism of Escherichia coli cells grown on a D2O-containing minimal medium. J Biomol NMR 17:33–42. [CrossRef]
231. Dailly YP, Mat-Jan F, Clark DP. 2001. Novel alcohol dehydrogenase activity in a mutant of Salmonella able to use ethanol as sole carbon source. FEMS Microbiol Lett 201:41–45. [CrossRef]
232. Harden A, Walpole GS. 1906. Chemical action of Bacillus lactis aerogenes (Escherich) on glucose and mannitol: production of 2,3-butyleneglycol and acetylmethylcarbinol. Proc R Soc Lond B 77:399–404. [CrossRef]
233. Magee RJ, Kosaric N. 1987. The microbial production of 2,3-butanediol. Adv Appl Microbiol 32:89–161. [CrossRef]
234. Reynolds H, Werkman CH. 1937. The intermediate dissimilation of glucose by Aerobacter indologenes. J Bacteriol 33:603–614.
235. Blackwood AC, Neish AC, Ledingham GA. 1956. Dissimilation of glucose at controlled pH values by pigmented and non-pigmented strains of Escherichia coli. J Bacteriol 72:497–499. [CrossRef]
236. Eddy BP. 1961. The Voges-Proskauer reaction and its significance: a review. J Appl Bacteriol 24:27–41.
237. Størmer FC. 1968. The pH 6 acetolactate-forming enzyme from Aerobacter aerogenes. I. Kinetic studies. J Biol Chem 243:3735–3739.
238. Malthe-Sørenssen D, Størmer. 1970. The pH 6 acetolactate-forming enzyme from Serratia marcescens. Purification and properties. Eur J Biochem 14:127–132. [CrossRef]
239. Huseby N-E, Christensen TB, Olsen BJ, Størmer. 1971. The pH 6 acetolactate-forming enzyme from Acetobacter aerogenes. Subunit structure. Eur J Biochem 20:209–214. [CrossRef]
240. Holtzclaw WD, Chapman LF. 1975. Degradative acetolactate synthase of Bacillus subtilis: purification and properties. J Bacteriol 121:917–922.
241. Løken JP, Størmer. 1970. Acetolactate decarboxylase from Aerobacter aerogenes. Purification and properties. Eur J Biochem 14:133–137. [CrossRef]
242. Rasmussen AM, Gibson RM, Godtfredsen SE, Ottesen M. 1985. Purification of α-acetolactate decarboxylase from Lactobacillus casei DSM 2547. Carlsberg Res Commun 50:73–82. [CrossRef]
243. Ohshiro T, Aisaka K, Uwajima T. 1989. Purification and characterization of α-acetolactate decarboxylase from Brevibacterium acetylicum. Agric Biol Chem 53:1913–1918.
244. Svendsen I, Jensen BR, Ottesen M. 1989. Complete amino acid sequence of α-acetolactate decarboxylase from Bacillus brevis. Carlsberg Res Commun 54:157–183. [CrossRef]
245. Godtfredsen SE, Lorck H, Sigsgaard P. 1983. On the occurrence of α-acetolactate decarboxylases among microorganisms. Carlsberg Res Commun 48:239–247. [CrossRef]
246. Størmer FC. 1975. 2,3-Butanediol biosynthetic system in Aerobacter aerogenes. Methods Enzymol 41B:518–533. [CrossRef]
247. Hohn-Bentz H, Radler F. 1978. Bacterial 2,3-butanediol dehydrogenases. Arch Mikrobiol 116:197–203.
248. Blomqvist K, Nokkola M, Lehtovaara P, Suihko M-J, Airaksinen U, Stråby KB, Knowles JKC, Penttilä ME. 1993. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175:1392–1404.
249. Silber P, Chung H, Gargiulo P, Schulz H. 1974. Purification and properties of a diacetyl reductase from Escherichia coli. J Bacteriol 118:919–927.
250. Böck A, Sawers G. 1996. Fermentation, p 262–282. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C.
251. Johansen L, Bryn K, Størmer. 1975. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. J Bacteriol 123:1124–1130.
252. Størmer FC. 1968. Evidence for induction of the 2,3-butanediol-forming enzymes in Aerobacter aerogenes. FEBS Lett 2:36–28. [PubMed][CrossRef]
253. Størmer FC. 1977. Evidence for regulation of Aerobacter aerogenes pH 6 acetolactate-forming enzyme by acetate ions. Biochem Biophys Res Commun 74:898–902. [CrossRef]
254. Mayer D, Schlensog V, Böck A. 1995. Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena. J Bacteriol 177:5261–5269.
255. Renna MC, Najimudin N, Winik LR, Zahler SA. 1993. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in the post-exponential-phase production of acetoin. J Bacteriol 175:3863–3875.
ecosalplus.3.5.3.citations
ecosalplus/1/1
content/journal/ecosalplus/10.1128/ecosalplus.3.5.3
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.5.3
2004-07-27
2017-12-14

Abstract:

Pyruvate and acetyl-CoA form the backbone of central metabolism. The nonoxidative cleavage of pyruvate to acetyl-CoA and formate by the glycyl radical enzyme pyruvate formate lyase is one of the signature reactions of mixed-acid fermentation in enterobacteria. Under these conditions, formic acid accounts for up to one-third of the carbon derived from glucose. The further metabolism of acetyl-CoA to acetate via acetyl-phosphate catalyzed by phosphotransacetylase and acetate kinase is an exemplar of substrate-level phosphorylation. Acetyl-CoA can also be used as an acceptor of the reducing equivalents generated during glycolysis, whereby ethanol is formed by the polymeric acetaldehyde/alcohol dehydrogenase (AdhE) enzyme. The metabolism of acetyl-CoA via either the acetate or the ethanol branches is governed by the cellular demand for ATP and the necessity to reoxidize NADH. Consequently, in the absence of an electron acceptor mutants lacking either branch of acetyl-CoA metabolism fail to cleave pyruvate, despite the presence of PFL, and instead reduce it to -lactate by the -lactate dehydrogenase. The conversion of PFL to the active, radical-bearing species is controlled by a radical-SAM enzyme, PFL-activase. All of these reactions are regulated in response to the prevalent cellular NADH:NAD ratio. In contrast to and species, some genera of enterobacteria, e.g., and , produce the more neutral product 2,3-butanediol and considerable amounts of CO as fermentation products. In these bacteria, two molecules of pyruvate are converted to α-acetolactate (AL) by α-acetolactate synthase (ALS). AL is then decarboxylated and subsequently reduced to the product 2,3-butandiol.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Depending on the substrate, either the Embden-Meyerhoff or the Entner-Doudoroff glycolytic pathway is used. Fermentation products are colored green; ATP and NAD are colored red. Key enzymes of fermentation are shown.

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The PFL-activating (PFL-AE) and –deactivating (AdhE) enzymes are shown in red. The radical-free form of the enzyme is designated PFL-H, and the radical-containing form of PFL is shown as PFL. Fd, ferredoxin; Fld, flavodoxin; FldH, dehydroflavodoxin.

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The locations of pyruvate and CoASH are shown by arrows. Residues Cys418, Cys419, and Gly734 are shown as ball-and-stick representations, with sulfurs shown in yellow. The Protein Data Bank accession code is 1h16. (B) Juxtaposition of key active-site residues in PFL, Gly734, Cys418, and Cys419. The sulfurs of the cysteinyl residues are shown in yellow. The arginines hydrogen bond with the pyruvate substrate. The Protein Data Bank accession code is 1h16.

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The three amino acids Gly734, Cys418, and Cys419 involved in radical transfer and catalysis are shown, and the red dots indicate the locations of the radicals. Upon its formation, formate leaves the active site and is replaced by acetyl-CoA.

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

(Left) Alignment of amino acid sequences around the three conserved cysteinyl residues proposed to coordinate the iron-sulfur cluster among the recognized gene products of glycyl radical-activating enzymes of . The numbers above the first amino acids indicate the locations in the polypeptide chain. NrdG T4 is the activating enzyme subunit of class III anaerobic ribonucleotide reductase from bacteriophage T4 (accession number P07075); NrdG is the activating enzyme subunit of class III anaerobic ribonucleotide reductase from (accession number NP_418658); PFL-AE is the PFL-activating enzyme from (accession number NP_415422); PFLE is the putative activating enzyme of the PFL-like enzyme PFLF (see the text for details) from (accession number P75794); PFLC is the putative activating enzyme of the PFL-like protein PFLD from (accession number P32675). (Right) Model of [4Fe-4S] cluster of PFL-AE and simplified mode of AdoMet binding and homolytic cleavage based on studies presented in reference 90 .

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

The genes encoding the formate transport channel (), PFL(), and PFL-AE () are represented by colored cylinders. The bent arrows indicate the 5′ ends of transcripts, while the straight arrows indicate positive (+) or negative (−) effects on transcription of the genes by the respective transcription factors or effectors.

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

The proteolytic cleavage site described in reference 18 is located at amino acid position 762. The resulting 86-kDa truncated product retains AHD activity and, based on amino acid sequence analysis, is localized to amino acids 450 to 772.

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

The large pluses next to green arrows indicate positive effects of the metabolite, and the minus next to the red arrow indicates anaerobiosis. Fermentation products are shown in green.

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

AHAS, anabolic α-acetohydroxyacid synthase; 2-OA, 2-oxo-acid.

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Oxidation states of various substrates and products of fermentation

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Generic image for table
Table 2

Calculation of fermentation balance for growth of on glucose

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3
Generic image for table
Table 3

Comparison of fermentation products of and

Citation: Sawers R, Clark D. 2004. Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.5.3

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error