1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biosynthesis of Arginine and Polyamines

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Daniel Charlier1, and Nicolas Glansdorff2
  • Editor: Valley Stewart3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Erfelijkheidsleer en Microbiologie (MICR), Vrije Universiteit Brussel, Pleinlaan, 2, B-1050 Brussels, Belgium; 2: J. M. Wiame Institute for Microbiological Research, 1, ave E. Gryzon, B1070 Brussels, Belgium; 3: University of California, Davis, Davis, CA
  • Received 30 March 2004 Accepted 17 June 2004 Published 09 September 2004
  • Address correspondence to Daniel Charlier dcharlie@vub.ac.be and Nicolas Glansdorff nglansdo@vub.ac.be
image of Biosynthesis of Arginine and Polyamines
    Preview this reference work article:
    Zoom in
    Zoomout

    Biosynthesis of Arginine and Polyamines, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/1/3_6_1_10_module-1.gif /docserver/preview/fulltext/ecosalplus/1/1/3_6_1_10_module-2.gif
  • Abstract:

    Early investigations on arginine biosynthesis brought to light basic features of metabolic regulation. The most significant advances of the last 10 to 15 years concern the arginine repressor, its structure and mode of action in both and , the sequence analysis of all structural genes in and , the resulting evolutionary inferences, and the dual regulation of the . This review provides an overall picture of the pathways, their interconnections, the regulatory circuits involved, and the resulting interferences between arginine and polyamine biosynthesis. Carbamoylphosphate is a precursor common to arginine and the pyrimidines. In both and serovar Typhimurium, it is produced by a single synthetase, carbamoylphosphate synthetase (CPSase), with glutamine as the physiological amino group donor. This situation contrasts with the existence of separate enzymes specific for arginine and pyrimidine biosynthesis in and fungi. Polyamine biosynthesis has been particularly well studied in , and the cognate genes have been identified in the genome as well, including those involved in transport functions. The review summarizes what is known about the enzymes involved in the arginine pathway of and serovar Typhimurium; homologous genes were identified in both organisms, except (encoding a supplementary OTCase), which is lacking in . Several examples of putative enzyme recruitment (homologous enzymes performing analogous functions) are also presented.

  • Citation: Charlier D, Glansdorff N. 2004. Biosynthesis of Arginine and Polyamines, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.10

Key Concept Ranking

Aromatic Amino Acid Biosynthesis
0.44866773
Nuclear Magnetic Resonance Spectroscopy
0.3957253
Transcription Start Site
0.35783002
Acetyl Coenzyme A
0.3546651
0.44866773

References

1. Jacob F, Monod J. 1961. Genetic regulatory mechanism in the synthesis of proteins. J Mol Biol 3:318–356.
2. Bachmann B. 1990. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev 54:130–197.
3. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462.
4. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, et al. 2001. Comlete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852–856.
5. Vogel HJ. 1957. Repression and induction as control mechanism of enzyme biogenesis: the “adaptive” formation of acetylornithinase, p 276–289. In McElroy WD and Glass B (ed), The Chemical Basis of Heredity. Johns Hopkins Press, Baltimore, Md.
6. Gorini L, Maas WK. 1957. The potential for the formation of a biosynthetic enzyme in Escherichia coli. Biochim Biophys Acta 25:208–209.
7. Novick RP, Maas WK. 1961. Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli. J Bacteriol 81:236–240.
8. Gorini L, Gundersen W, Burger M. 1961. Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harbor Symp Quant Biol 26:173–182.
9. Maas WK. 1961. Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harbor Symp Quant Biol 26:183–191.
10. Maas WK, Clark AJ. 1964. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. II. Dominance of repressibility in diploids. J Mol Biol 8:365–370.
11. Maas WK, Maas R, Wiame JM, Glansdorff N. 1964. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. I. Dominance of repressibility in zygotes. J Mol Biol 8:359–364.
12. Cohen GN, Jacob F. 1959. Sur la répression de la synthèse des enzymes intervenant dans la formation du tryptophane chez E. coli. C R Acad Sci Paris, 248:3490.
13. Pardee AB, Jacob P, Monod J. 1959. The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by Escherichia coli. J Mol Biol 1:165–178.
14. Charlier D, Roovers M, Van Vliet F, Boyen A, Cunin R, Nakamura Y, Glansdorff N, Piérard A. 1992. Arginine regulon of Escherichia coli K-12. A study of repressor-operator interactions and of in vitro binding affinities versus repression. J Mol Biol 226:367–386.
15. Lim D, Oppenheim JD, Eckhardt T, Maas WK. 1987. Nucleotide sequence of the argR gene of Escherichia coli K12 and isolation of its product the arginine repressor. Proc Natl Acad Sci USA 84:6697–6701.
16. Weyens G, Charlier D, Roovers M, Piérard A, Glansdorff N. 1988. On the role of the Shine-Dalgarno sequence in determining the efficiency of translation initiation at a weak start codon in the car operon of Escherichia coli K12. J Mol Biol 204:1045–1048.
17. Yanofaky C, Kolter R. 1982. Attenuation in amino acid biosynthetic operons. Annu Rev Genet 16:113–134.
18. Cunin R, Eckhardt T, Piette J, Boyen A, Piérard A, Glansdorff N. 1983. Molecular basis for modulated regulation of gene expression in the regulon of Escherichia coli K-12. Nucleic Acids Res 11:5007–5019.
19. Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M. 1996. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 24:1029–1036.
20. Matsugami A, Kobayashi S, Ouhashi K, Uesugi S, Yamamoto R, Taira K, Nishikawa S, Kumar PK, Katahira M. 2003. Structural basis of the highly efficient trapping of the HIV Tat protein by an RNA aptamer. Structure (Camb.) 11:533–545.
21. Rodionov DA, Vitreschak AG, Mironov AA Gelfand MS. 2003. Regulation of lysine biosynthesis and transport in bacteria: yet another RNA riboswitch. Nucleic Acids Res 31:6748–6757.
22. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. 2004. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 20:44–50.
23. Gorini L, Kataja E. 1964. Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc Natl Acad Sci USA 51:487–493.
24. Elseviers D, Cunin R, Glansdorff N, Baumberg S, Ashcroft E. 1972. Control regions within the argECBH gene cluster of Escherichia coli K12. Mol Gen Genet 117:349–366.
25. Jacoby GA. 1972. Control of the argECBH cluster in Escherichia coli. Mol Gen Genet 177:337–348.
26. Beeftink F, Cunin R, Glansdorff N. 1974. Arginine gene duplication in recombination proficient and deficient strains of Escherichia coli K-12. Mol Gen Genet 106:162–173.
27. Charlier D, Crabeel M, Cunin R, Glansdorff N. 1979. Tandem and inverted repeats of arginine genes in Escherichia coli K 12. Mol Gen Genet 174:75–88.
28. Charlier D, Severne Y, Zafarullah M, Glansdorff N. 1983. Turn-on of inactive genes by promoter recruitment in Escherichia coli: inverted repeats resulting in artificial divergent operons. Genetics 105:469–488.
29. Clugston CK, Jessop AP. 1991. A bacterial position effect: when the F factor in E. coli K12 is integrated in cis to a chromosomal gene that is flanked by IS1 repeats the elements are activated so that amplification and other regulatory changes that affect the gene can occur. Mutat Res 248:1–15.
30. Jessop AP, Clugston C. 1985. Amplification of the argF region in strain Hfr P4X of E. coli K12. Mol Gen Genet 201:347–350.
31. Jessop AP, Glansdorff N. 1980. Genetic factors affecting recovery of non-point mutations in the region of a gene coding for ornithine transcarbamylase: involvement of both the F factor in its chromosomal state and the recA gene. Genetics 96:779–799.
32. Charlier D, Piette J, Glansdorff N. 1982. IS3 can function as a mobile promoter in E. coli. Nucleic Acids Res 10:5935–5948.
33. Bouvier J, Patte J-C, Stragier P. 1984. Multiple regulatory signals in the control region of the Escherichia coli carAB operon. Proc Natl Acad Sci USA 81:4139–4143.
34. Piette J, Nyunoya H, Lusty C, Cunin R, Weyens G, Crabeel M, Charlier D, Glansdorff N, Piérard A. 1984. DNA sequence of the carA gene and the control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoylphosphate synthetase in Escherichia coli K12. Proc Natl Acad Sci USA 81:4134–4138.
35. Schneider BL, Kiupakis AK, Reitzer LJ. 1998. Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J Bacteriol 180:4278–4286.
36. Bacon DF, Vogel HJ. 1963. A regulatory gene simultaneously involved in repression and induction. Cold Spring Harbor Symp Quant Biol 28:437–438.
37. Glansdorff N. 2000. About the last common ancestor, the universal life-tree and lateral gene transfer: a reappraisal. Mol Microbiol 38:177–185.
38. Glansdorff N, Sand G, Verhoef G. 1967. The dual genetic control of ornithine transcarbamylase synthesis in Escherichia coli K-12. Mutat Res 4:743–751.
39. Van Vliet F, Boyen A, Glansdorff N. 1988. On interspecies gene transfer: the case of the argF gene of Escherichia coli. Ann Inst Pasteur/ Microbiol (Paris) 139:493–496.
40. Houghton JE, Bencini DA, O’Donovan GA, Wild JR. 1984. Protein differentiation: a comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coli K12. Proc Natl Acad Sci USA 81:4864–4868.
41. Van Vliet F, Cunin R, Jacobs A, Piette J, Gigot D, Lauwereys M, Piérard A, Glansdorff N. 1984. Evolutionary divergence of genes for ornithine and aspartate carbamoyltransferases—complete sequence and mode of regulation of the Escherichia coli argF gene: comparison with argI and pyrB. Nucleic Acids Res 12:6277–6289.
42. Cunin R. 1983. Regulation of arginine biosynthesis in prokaryotes, p 53–79. In Herman K and Somerville R (ed), Biotechnology Series 3: Amino Acid Biosynthesis and Genetic Regulation. Addison-Wesley, New York, N.Y.
43. Cunin R, Glansdorff N, Piérard A, Stalon V. 1986. Biosynthesisand metabolism of arginine in bacteria. Microbiol Rev 50:314–352.
44. Haas D, Winteler H, Nguyen V-T, Tricot C, Stalon V. 1997. Arginine catabolism in Pseudomonas aeruginosa: key regulatory features of the arginine deiminase pathway, p 389–399. In De Deyn PP, Marescau B, Qureshi IA, and Mori A (ed), Guanidino Compounds in Biology and Medicine, 2nd ed. J. Libbey & Company Ltd., Sydney, Australia.
45. Baumberg S, Klingel U. 1993. Biosynthesis of arginine, proline and related compounds, p 299–306. In Sonenshein AL, Losick RM, and Hoch JA (ed), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
46. Vogel HJ. 1970. Arginine biosynthetic system in Escherichia coli. Methods Enzymol 17A:249–251.
47. Sakanyan V, Charlier D, Legrain C, Kochikyan A, Mett I, Piérard A, Glansdorff N. 1993. Primary structure, partial purification and regulation of key enzymes of the acetyl cycle of arginine biosynthesis in Bacillus stearothermophilus: dual function of ornithine acetyltransferase. J Gen Microbiol 139:393–402.
48. Sakanyan V, Kochikyan A, Mett I, Legrain C, Charlier D, Piérard A, Glansdorff N. 1992. A re-examination of the pathway for ornithine biosynthesis in a thermophilic and two mesophilic Bacillus species. J Gen Microbiol 138:125–130.
49. Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N. 1996. Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiol (UK) 142:99–108.
50. Van De Casteele M, Demarez M, Legrain C, Glansdorff N, Piérard A. 1990. Pathways of arginine biosynthesis in extreme thermophilic archaeo- and eubacteria. J Gen Microbiol 136:1177–1183.
51. Xu Y, Liang Z, Legrain C, Rüger HJ, Glansdorff N. 2000. Evolution of arginine biosynthesis in the bacterial domain: novel gene-enzyme relationships from psychrophilic Moritella strains (Vibrionaceae) and evolutionary significance of N-α-acetyl ornithinase. J Bacteriol 182:1609–1615.
52. Udaka S, Kinoshita S. 1958. Studies on L-ornithine fermentation. I. The biosynthetic pathway of L-ornithine in Micrococcus glutamicus. J Gen Appl Microbiol 4:283–288.
53. De Deken RH. 1963. Biosynthèse de l’arginine chez la levure. I. Le sort de la N-α-acétylornithine. Biochim Biophys Acta 78:606–616.
54. Udaka S. 1966. Pathway-specific pattern of control of arginine biosynthesis in bacteria. J Bacteriol 91:617–621.
55. Haas D, Kurer V, Leisinger T. 1972. N-acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Eur J Biochem 31:290–295.
56. Vyas S, Maas WK. 1963. Feedback inhibition of acetylglutamate synthase by arginine in Escherichia coli. Arch Biochem Biophys 100:542–546.
57. Abdelal A, Nainan OV. 1979. Regulation of N-acetylglutamate synthesis in Salmonella typhimurium. J Bacteriol 137:1040–1042.
58. Gardner MM, Hennig DD, Kelln RA. 1983. Control of arg gene expression in Salmonella typhimurium by the arginine repressor from Escherichia coli K12. Mol Gen Genet 189:458–462.
59. Kelln RA, O’Donovan GA. 1976. Isolation and partial characterization of an argR mutant of Salmonella typhimurium. J Bacteriol 128:528–535.
60. Abdelal A, Ingraham JL. 1969. Control of carbamoylphosphate synthesis in Salmonella typhimurium. J Biol Chem 244:4033–4038.
61. Piérard A, Glansdorff N, Mergeay M, Wiame JM. 1965. Control of the biosynthesis of carbamoylphosphate in Escherichia coli. J Mol Biol 14:23–36.
62. Piérard A, Wiame JM. 1964. Regulation and mutation affecting a glutamine-dependent formation of carbamoylphosphate in Escherichia coli. Biochem Biophys Res Commun 15:76–81.
63. Davis R. 1983. Arginine synthesis in eukaryotes, p 81–102. In Herman K and Somerville R (ed), Biotechnology Series 3: Amino Acid Biosynthesis and Genetic Regulation. Addison-Wesley, New York, N.Y.
64. Davis R. 1986. Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomy cescerevisiae. Microbiol Rev 50:280–313.
65. Anderson PM, Meister A. 1966. Control of Escherichia coli carbamoylphosphate synthetase by purine and pyrimidine nucleotides. Biochemistry 5:3164–3167.
66. Piérard A. 1966. Control of the activity of Escherichia coli carbamoylphosphate synthetase by antagonistic allosteric effectors. Science 154:1572–1573.
67. Abdelal ATH, Griego E, Ingraham JL. 1976. Arginine-sensitive phenotype of mutations in pyrA of Salmonella typhimurium: role of ornithine carbamoyltransferase in the assembly of mutant carbamoylphosphate synthase. J Bacteriol 128:105–113.
68. Piérard A, Glansdorff N, Yashphe J. 1972. Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli. Effects on carbamoylphosphate and pyrimidine biosynthesis and on uracil uptake. Mol Gen Genet 118:235–245.
69. Glansdorff N, Bourgeois S, Wiame JM. 1962. Interaction de régulation enzymatique entre la biosynthèse de l’arginine et des pyrimidines chez Escherichia coli. Arch Int Physiol Biochim 70:149–151.
70. Gorini L, Kalman SM. 1963. Control by uracil of carbamoylphosphate synthesis in Escherichia coli. Biochim Biophys Acta 69:335–360.
71. Piérard A, Glansdorff N, Gigot D, Crabeel M, Halleux P, Thiry L. 1976. Repression of Escherichia coli carbamoylphosphate synthetase: relationship with enzyme synthesis in the arginine and pyrimidine pathways. J Bacteriol 127:291–301.
72. Itikawa H, Baumberg S, Vogel HJ. 1968. Enzymic basis for a genetic suppression: accumulation and deacylation of N-acetylglutamine-γ-semialdehyde in enteric bacterial mutants. Biochim Biophys Acta 159:547–550.
73. Kuo T, Stocker BAD. 1969. Suppression of proline requirement of proA and proAB deletion mutants in Salmonella typhimurium by mutation to arginine requirement. J Bacteriol 98:593–598.
74. Ledwidge R, Blanchard JS. 1999. The dual biosynthetic capability of N-acetylornithine aminotransferase in arginine and lysine biosynthesis. Biochemistry 38:3019–3024.
75. Nakada Y, Jiang Y, Nishijyo Y, Itoh T, Lu CD. 2001. Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 184:3377–3384.
76. Nakada Y, Itoh Y. 2003. Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of arginine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiol (UK) 149:707–714.
77. Sekowska A, Bertin P, Danchin A. 1998. Characterization of polyamine synthesis pathway in Bacillus subtilis 168. Mol Microbiol 29:851–858.
78. Sekowska A, Danchin A. 2002. The methionine salvage pathway in Bacillus subtilis. BMC Microbiology 2:8–21.
79. Sekowska A, Danchin A, Risler JL. 2000. Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiol (UK) 146:1815–1828.
80. Morris DR, Pardee AB. 1965. A biosynthetic ornithine decarboxylase in Escherichia coli. Biochem Biophys Res Commun 20:697–702.
81. Morris DR, Pardee AB. 1966. Multiple pathways of putrescine biosynthesis in Escherichia coli. J Biol Chem 241:3129–3135.
82. Morris DR, Koffron KL. 1967. Urea production and putrescine biosynthesis in Escherichia coli. J Bacteriol 94:1516–1519.
83. Tabor CW, Tabor H. 1984. Polyamines. Annu Rev Biochem 53:749–790.
84. Kikuchi, Y, Kojima H, Tanaka T, Kamio Y. 1997. Characterization of a second lysine decarboxylase isolated from Escherichia coli. J Bacteriol 179:4486–4492.
85. Linn T, Goman M, Scaife J. 1979. Lambda transducing bacteriophage carrying deletion of the argECBH-rpoBC region of the Escherichia coli chromosome. J Bacteriol 140:479–489.
86. Wertheimer SJ, Leifer Z. 1983. Putrescine and spemidine sensitivity of lysine decarboxylase in Escherichia coli: evidence for a constitutive enzyme and its mode of regulation. Biochem Biophys Res Commun 114:882–888.
87. Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H. 1997. The Escherichia coli ldc gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes Genet Syst 72:167–172.
88. Appelbaum DM, Dunlop JC, Morris DR. 1977. Comparison of the biosynthetic and biodegradative ornithine decarboxylases of Escherichia coli. Biochemistry 16:1580–1584.
89. Morris DR, Koffron KL. 1969. Putrescine biosynthesis in Escherichia coli. J Biol Chem 244:6094–6099.
90. Tabor H, Tabor CW. 1969. Formation of 1,4-diaminobutane and of spermidine by an ornithine auxotroph of Escherichia coli grown under limiting ornithine or arginine. J Biol Chem 244:2286–2292.
91. Emery T. 1971. Hydroxamic acids of natural origin. Adv Enzymol 35:135–186.
92. Kersten H. 1984. On the biological significance of of modified nucleotides in tRNA. Prog Nucleic Acid Res Mol Biol 31:59–113.
93. Crabeel M, Charlier D, Cunin R, Boyen A, Glansdorff N, Piérard A. 1974. Accumulation of arginine precursors in Escherichia coli: effects on growth, enzyme repression, and application to the forward selection of arginine auxotrophs. J Bacteriol 123:898–904.
94. Cataldi AA, Algranati ID. 1989. Polyamines and regulation of ornithine biosynthesis in Escherichia coli. J Bacteriol 171:1998–2002.
95. Verkamp F, Backman V, Björnsson J, Sol D, Eggertson G. 1993. The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli. J Bacteriol 175:1452–1456.
96. Krieger R, Rompf A, Schobert M, Jahn D. 2002. The Pseudomonas aeruginosa hemA promoter is regulated by Anr, Dnr, NarL and integration host factor. Mol Genet Genomics 267:409–417.
97. Lu C-D, Winteler H, Abdelal A, Haas D. 1999. The ArgR regulatory protein, a helper to the anaerobic regulator ANR during transcriptional activation of the arcD promoter in Pseudomonas aeruginosa. J Bacteriol 181:2459–2464.
98. Leisinger T, Haas D. 1975. N-Acetylglutamate synthetase of Escherichia coli: regulation of synthesis and activity by arginine. J Biol Chem 250:1690–1693.
99. Marvil DK, Leisinger T. 1977. N-Acetylglutamate synthase of Escherichia coli. Purification, characterization, and molecular properties. J Biol Chem 252:3295–3303.
100. Ennis HL, L Gorini. 1961. Control of arginine biosynthesis in strains of Escherichia coli not repressible by arginine. J Mol Biol 3:439–446.
101. Eckhardt T, Leisinger T. 1975. Isolation and characterization of mutants with a feedback resistant N-acetylglutamate synthase in Escherichia coli K12. Mol Gen Genet 258:225–232.
102. Rajagopal BS, DePonte J 3rd, Tuchman M, Malamy MH. 1998. Use of inducible feedback-resistant N-acetylglutamate synthetase (argA) genes for enhanced arginine biosynthesis by genetically engineered Escherichia coli K-12 strains. Appl Environ Microbiol 64:1805–1811.
103. Brown K, Finch PW, Hickson D, Emmerson PT. 1987. Complete nucleotide sequence of the Escherichia coli argA gene. Nucleic Acids Res 15:10586.
104. Martin PR, Mulks MH. 1992. Sequence analysis and complementation studies of the argJ encoding ornithine acetyltransferase from Neisseriagonorrhoeae. J Bacteriol 174:2694–2701.
105. Abadjieva A, Pauwels K, Hilven P, Crabeel M. 2001. A new yeast metabolon involving at least the two first enzymes of arginine biosynthesis: acetylglutamate synthase activity requires complex formation with acetylglutamate kinase. J Biol Chem 276:42869–42880.
106. Horowitz NH. 1945. On the evolution of biochemical synthesis. Proc Natl Acad Sci USA 31:153–157.
107. Glansdorff N, Sand G. 1965. Coordination of enzyme synthesis in the arginine patway of Escherichia coli K12. Biochim Biophys Acta 108:308–311.
108. Vogel HJ, McLellan WL. 1970. N-Acetyl-γ-glutaminokinase (Escherichia coli). Methods Enzymol 17A:251–255.
109. Parsot C, Boyen A, Cohen GN, Glansdorff N. 1988. Nucleotide sequence of Escherichia coli argB and argC genes: comparison of N-acetylglutamate kinase and N-acetylglutamate-γ-semialdehyde dehydrogenase with homologous and analogous enzymes. Gene 68:275–283.
110. Sakanyan V, Legrain C, Charlier D, Kochikyan A, Osina NK, Glansdorff N. 1993. N-Aceylglutamate-5-phosphotransferase of the thermophilic bacterium Bacillus stearothermophilus: nucleotide sequence and enzyme characterisation. Genetika 29:556–570. (In Russian).
111. Boonchird C, Messenguy F, Dubois E. 1991. Characterization of the yeast ARG5,6 gene: determination of its nucleotide sequence, localization of the functional domains and analysis of the control region. Mol Gen Genet 226:154–166.
112. Jacobs P, Jauniaux J-C, Grenson M. 1980. A cis-dominant regulatory mutation linked to the argB-argC gene cluster in Saccharomy cescerevisiae. J Mol Biol 139:691–704.
113. Minet M, Jauniaux J-C, Thuriaux P, Grenson M, Wiame J-M. 1979. Organization and expression of a two-gene cluster in arginine biosynthesis of Saccharomyces cerevisiae. Mol Gen Genet 168:299–308.
114. Wandinger-Ness AU, Weiss RL. 1987. A single precursor protein for two separable mitochondrial enzymes. in Neusrospora crassa. J Biol Chem 262:5823–5830.
115. Gil-Ortiz F, Raimon-Maiques S, Fita I, Rubio V. 2003. The course of phosphorus in the reaction of N-acetyl-L-glutamate kinase, determined from the structures of crystalline complexes, including a complex with an AIF(4)(-) transition state mimic. J Mol Biol 331:231–244.
116. Marco-Marin C, Ramon-Maiquez SR, Tavarez S, Rubio V. 2003. Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartate kinase. J Mol Biol 334:459–476.
117. Ramon-Maiquez S, Marina A, Gil-Ortiz F, Fita I, Rubio V. 2002. Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase family, during catalysis. Structure 10:329–342.
118. Vogel HJ, McLellan WL. 1970. N-Acetylglutamic-γ-semialdehyde dehydrogenase (Escherichia coli). Methods Enzymol 17A:255–260.
119. Baetens M, Legrain C, Boyen A, Glansdorff N. 1998. Genes and enzymes of the acetyl cycle of arginine biosynthesis in the extreme thermophilic bacterium Thermus thermophilus HB27. Microbiol (UK) 144:479–492.
120. Hinde RW, Jacobson JA, Weiss RL, Davis RH. 1986. N-Acetyl-L-glutamate synthetase of Neurospora crassa. Characteristics, localization, regulation, and genetic control. J Biol Chem 261:5848–5852.
121. Kosuge T, Hoshino T. 1996. Analysis of amino acid biosynthetic genes and enzymes of Thermus thermophilus, p 146. In Conference Abstracts, Thermophiles ’96, Athens, Georgia. University of Georgia, Athens.
122. Sanchez R, Roovers M, Glansdorff N. 2000. Organization and expression of a Thermus thermophilus arginine cluster: presence of unidentified open reading frames and absence of a Shine-Dalgarno sequence. J Bacteriol 182:5911–5915.
123. Urm E, Lang HY, Zubay G, Kelker N, Maas WK. 1973. In vitro repression of N-α-acetylornithinase in Escherichia coli. Mol Gen Genet 121:1–7.
124. Billheimer JT, Carnevale HN, Leisinger T, Eckhardt T, Jones EE. 1976. Ornithine δ-transaminase activity in Escherichia coli: its identity with acetylornithine-δ-transaminase. J Bacteriol 127:1315–1323.
125. Miyazaki J, Kobashi N, Fuji T, Nishiyama M, Yamane H. 2002. Characterization of alysK gene as an argE homolog in Thermus thermophilus HB27. FEBS Lett 512:269–274.
126. Miyazaki J, Kobashi N, Nishiyama M, M, Yamane H. 2001. Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through alpha-aminoadipate. J Bacteriol 183:5067–5073.
127. Nishida H, Nishiyama M, Kobashi N, Kosuge T, Hoshino T, Yamane H. 1999. A prokaryotic gene cluster involved in biosynthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis. Genome Res 9:1175–1183.
128. Brinkman AB, Bell SD, Lebbink RJ, de Vos WM, van der Oost J. 2002. The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. J Biol Chem 277:29537–29549.
129. Billheimer JT, Shen MY, Carnevale HN, Horton HR, Jones EE. 1979. Isolation and characterization of acetylornithine-δ-transaminase of wild-type Escherichia coli W. Comparison with arginine-induced acetylornithine-δ-transaminase. Arch Biochem Biophys 105:401–413.
130. Heimberg H, Boyen A, Crabeel M, Glansdorff N. 1990. Escherichia coli and Saccharomy cescerevisiae acetylornithine aminotransferase: evolutionary relationship with ornithine aminotransferase. Gene 90:69–78.
131. Vander Wauven C, Stalon V. 1984. Enzymes of arginine degradation in Pseudomonas cepacia and Klebsiella aerogenes. Arch Int Physiol Biochim 92:B67.
132. Fraley CD, Kim JH, McCann MP, Matin A. 1998. The Escherichia coli starvation gene cstC is involved in amino acid catabolism. J Bacteriol 180:4287–4290.
133. Kiupakis AK, Reitzer L. 2002. ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184:2940–2950.
134. Lu C-D, Abdelal AT. 1999. Role of ArgR in activation of the ast operon, encoding enzymes of the arginine succinyltransferase pathway in Salmonella typhimurium. J Bacteriol 181:1934–1938.
135. Han X, Turnbough CL, Jr. 1998. Regulation of carAB expression in Escherichia coli occurs in part through UTP-sensitive reiterative transcription. J Bacteriol 180:705–713.
136. Jensen RA. 1976. Enzyme recruitment in evolution of new functions. Anu Rev Microbiol 30:409–425.
137. Ycas M. 1974. On earlier states of the biochemical systems. J Theor Biol 44:145–160.
138. Degryze E. 1974. Evidence that yeast acetylornithinase is a carboxypeptidase. FEBS Lett 43:285–288.
139. Vogel HJ, McLellan WL. 1970. Acetylornithinase (Escherichia coli). Methods Enzymol 17A:265–269.
140. Boyen A, Charlier D, Charlier J, Sakanyan V, Mett I, Glansdorff N. 1992. Acetylornithine deacetylase, succinyldiaminopimelate desuccinylase and carboxypeptidase G2 are evolutionarily related. Gene 116:1–6.
141. Meinell T, Schmitt E, Mechulam Y, Blanquet S. 1992. Structural and biochemical characterization of the Escherichia coli argE gene product. J Bacteriol 174:2323–2331.
142. Javid-Majd F, Blanchard JS. 2000. Mechanistic analysis of the argE-encoded N-acetylornithine deacetylase. Biochemistry 39:1285–1293.
143. Sakanyan V, Desmarez L, Legrain C, Charlier D, Mett I, Kochikyan A, Savchenko A, Boyen A, Falmagne P, Piérard A, Glansdorff N. 1993. Gene cloning, sequence analysis, purification, and characterization of a thermostable aminoacylase from Bacillus stearothermophilus. Appl Environ Microbiol 59:3878–3888.
144. Stover CK, Pham XQ, Erwin AL, Mizogushi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle FS, et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964.
145. Baumberg S. 1970. Acetylhistidine as substrate for acetylornithinase: a new system for the selection of arginine regulation mutants in Escherichia coli. Mol Gen Genet 106:162–173.
146. Kelker N, Maas WK. 1974. Selection of genetically repressible (argR+) strains of E. coli K-12 from genetically derepressed (argR) mutants using acetylnorvaline. Mol Gen Genet 132:131–135.
147. Legrain C, Stalon V. 1976. Ornithine carbamoyltransferase from Escherichia coli W: purification, structure and steady-state kinetic analysis. Eur J Biochem 63:289–301.
148. Legrain C, Halleux P, Stalon V, Glansdorff N. 1972. The dual genetic control of ornithine carbamoyltransferase in Escherichia coli: a case of bacterial hybrid enzymes. Eur J Biochem 27:93–102.
149. Jacoby GA. 1971. Mapping the gene determining ornithine transcarbamylase and its operator in Escherichia coli. J Bacteriol 108:645–651.
150. Legrain C, Stalon V, Glansdorff N. 1976. Escherichia coli ornithine carbamoyltransferase isoenzymes: evolutionary significance and the isolation of λ argF and λ argI transducing phages. J Bacteriol 128:35–38.
151. Syvanen JL, Roth JR. 1972. The structural genes for ornithine transcarbamylase in Salmonella typhimurium and Escherichia coli. J Bacteriol 110:69–76.
152. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P, et al. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256.
153. Abdelal ATH, Kennedy EH, Nainan OV. 1977. Ornithine transcarbamylase from Salmonella typhimurium: purification, subunit composition, kinetic analysis and immunological cross-reactivity. J Bacteriol 129:1387–1396.
154. Porter RW, Modebe MD, Stark GR. 1969. Aspartate transcarbamylase. Kinetic studies of the catalytic subunit. J Biol Chem 244:1846–1859.
155. Vissers S, Dessaux Y, Legrain C, Wiame JM. 1981. Feedback inhibition by arginine on ornithine carbamoyltransferase of Agrobacterium tumefaciens. Arch lnt Physiol Biochim 89:B83–B84.
156. Knight DM, Jones EE. 1977. Regulation of Escherichia coli ornithine transcarbamylase by orotate. J Biol Chem 252:5928–5930.
157. Penninckx M, Gigot D. 1978. Synthesis and interaction with Escherichia coli L-ornithine carbamoyltransferase of two potential transition state analogs. FEBS Lett 88:94–96.
158. Penninckx M. 1980. “Illicit” uplake of antimetabolites: potential use in antimicrobial chemotherapy. Trends Pharmacol Sci 1:271–272.
159. Penninckx M, Gigot D. 1979. Synthesis of a peptide from N-δ-(phosphonoacetyl)-L-ornithine. Its antibacterial effect through the specific inhibition of Escherichia coli carbamoyltransferase. J Biol Chem 254:6392–6396.
160. Shepherdson M, Pardee AB. 1960. Production and crystallization of aspartate transcarbamylase. J Biol Chem 235:3233–3237.
161. Legrain C, Stalon V, Glansdorff N, Gigot D, Piérard A, Crabeel M. 1976. Structural and regulatory mutations allowing utilization of citrulline or carbamoylaspartate as a source of carbamoylphosphate in Escherichia coli. J Bacteriol 128:39–48.
162. Messenguy F. 1976. Regulation of arginine biosynthesis in Saccharomyces cervisiae: isolation of cis-dominant constitutive mutants for ornithine carbamoyltransferase synthesis. J Bacteriol 128:49–55.
163. Kikuchi A, Gorini L. 1975. Similarity of genes argF and argI. Nature (London) 256:621–623.
164. Gigot D, Glansdorff N, Legrain C, Piérard A, Stalon V, Konigsberg W, Caplier I, Strosberg AD, Hervé G. 1977. Comparison of the N-terminal sequences of aspartate and ornithine carbamoyltransferases of Escherichia coli. FEBS Lett 81:28–32.
165. Moore S, Garvin R, James E. 1981. Nucleotide sequence of the argF regulatory region of Escherichia coli K12. Gene 16:119–132.
166. Piette J, Cunin R, Van Vliet F, Charlier D, Crabeel M, Ota Y, Glansdorff N. 1982. Homologous control sites and DNA transcription starts in the related argF and argI genes of Escherichia coli K 12. EMBO J 1:853–857.
167. Bencini DA, Houghton JE, Hoover TA, Folterman KF, Wild JR, O’Donovan GA. 1983. The DNA sequence of argI from Escherichia coli K-12. Nucleic Acids Res 11:8509–8518.
168. Hu M, Deonier RC. 1981. Mapping of IS elements flanking the argF region of the Escherichia coli K-l2 chromosome. Mol Gen Genet 181:222–229.
169. York MK, Stodolsky M. 1981. Characterization of P1 arg derivatives from Escherichia coli K-12 transduction. I. IS1 elements flank the argF gene segment. Mol Gen Genet 181:230–240.
170. Labedan B, Boyen A, Baetens M, Charlier D, Chen P, Cunin R, Durbecq V, Glansdorff N, Herve G, Legrain C, Liang Z, Purcarea C, Roovers M, Sanchez R, Toong TL, Van de Casteele M, Van Vliet F, Xu Y, Zhang YF. 1999. The evolutionary history of carbamoyltransferases: a complex set of paralogous genes was already present in the last universal common ancestor. J Mol Evol 49:461–73.
171. Labedan B, Xu Y, Naumoff DG, Glansdorff N. Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase. Mol Biol Evol 21:364–373.
172. Wild JR, Wales ME. 1990. Molecular evolution and genetic engineering of proteins domains involving aspartate transcarbamoylase. Annu Rev Microbiol 44:193–218.
173. Ha Y, McCann MT, Tuchman M, Allewell NM. 1997. Substrate-induced conformational change in a trimeric ornithine transcarbamoylase. Proc Natl Acad Sci USA 94: 9550–9555.
174. Jin L, Seaton BA, Head J. 1997. Crystal structure at 2.8 Å resolution of anabolic ornithine transcarbamylase from Escherichia coli. Nat Struct Biol 4:622–625.
175. Massant J, Wouters J, Glansdorff N. 2003. Refined structure of Pyrococcus furiosus ornithine carbamoyltransferase at 1.87 Å. Acta Crystallogr D Biol Crystallogr 59:2140–2149.
176. Villeret V, Tricot C, Stalon V, Dideberg O. 1995. Crystal structure of Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase at 3.0 Å resolution: a different oligomeric organization in the transcarbamoylase family. Proc Natl Acad Sci USA 92:10762–10766.
177. Villeret V, Clantin B, Tricot C, Legrain C, Roovers M, Stalon V, Glansdorff N, Van Beeumen J. 1998. The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Proc Natl Acad Sci USA 95:2801–2806.
178. Clantin B, Tricot C, Lonhienne T, Stalon V, Villeret V. 2001. Probing the role of oligomerization in the high thermal stability of Pyrococcus furiosus ornithine carbamoyltransferase by site-specific mutants. Eur J Biochem 268:3937–3942.
179. Legrain C, Villeret V, Roovers M, Tricot C, Clantin B, Van Beeumen J, Stalon V, Glansdorff N. 2001. Ornithine carbamoyltransferase from Pyrococcus furiosus. Methods Enzymol 331:227–235.
180. Xu Y, Feller G, Gerday C, Glansdorff N. 2003. Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J Bacteriol 185:2161–2168.
181. Dashuang S, Gallegos R, DePonte J III, Morizono H, Yu X, Allewell NM, Malamy M, Tuchman M. 2002. Crystal structure of a transcarbamylase-like protein from the anaerobic bacterium Bacteroides fragilis at 2.0 Å resolution. J Mol Biol 320:899–908.
182. Xu Y, Feller G, Gerday C, Glansdorff N. 2003. Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature? J Bacteriol 185:5519–5526.
183. Hilger F, Simon JP, Stalon V. 1979. Yeast argininosuccinate synthetase. Purification, structural and kinetic properties. Eur J Biochem 94:153–163.
184. Ratner S. 1976. Enzymes of arginine and urea synthesis, p 181–220. In Grisolia S, Bagena K, and Mayor F (ed), The Urea Cycle. Academic Press, Inc., New York, N.Y.
185. Nakamura V, Uchida H. 1983. Isolation of conditionally lethal amber mutations affecting synthesis of the nusA protein of Escherichia coli. Mol Gen Genet 190:196–203.
186. Van Vliet F, Crabeel M, Boyen A, Tricot C, Stalon V, Falmagne P, Nakamura Y, Baumberg S, Glansdorff N. 1990. Sequences of the genes encoding argininosuccinate synthase in Escherichia coli and Saccharomyces cerevisiae: comparison with methanogenic archaebacteria and animals. Gene 95:99–104.
187. Goto M, Nakajima Y, Hirotsu K. 2002. Crystal structure of argininosuccinate synthetase from Thermus thermophilus HB8. Structural basis for the catalytic reaction. J Biol Chem 277:15890–15896.
188. Goto M, Omi R, Miyahara L, Sugahara M, Hirotsu K. 2003. Structures of argininosuccinate synthetase in enzyme-ATP substrates and enzyme-AMP product forms: stereochemistry of the catalytic reaction. J Biol Chem 278:22964–22971.
189. Krin E, Laurent-Winter C, Bertin PN, Danchin A, Kolb A. 2003. Transcription regulation of the divergent argG and metY promoters in Escherichia coli. J Bacteriol 185:3139–3146.
190. Troshina O, Hansel A, Lindblad P. 2001. Cloning, characterization, and functional expression in Escherichia coli of argH encoding argininosuccinate lyase in the cyanobacterium Nostoc sp. strain PCC 73102. Curr Microbiol 43:260–264.
191. Blattner FR, Borland V, Plumkett G III, Sofia HJ, Daniels DL. 1983. Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 98.2 to 92.8 minutes. Nucleic Acids Res 21:5408–5417.
192. Miles BW, Thoden JB, Raushel FM. 2002. Inactivation of the amidotransferase activity of carbamoyl phosphate synthetase by the antibiotic acivicin. J Biol Chem 277:4367–4373.
193. Thoden JB, Holden HM, Wesenberg G, Raushel FM, Rayment I. 1997. Structure of carbamoyl phosphate synthetase: a journey of 96 Å from substrate to product. Biochemistry 36:6305–6316.
194. Thoden JB, Raushel FM, Benning MM, Rayment I, Holden HM. 1999. The structure of carbamoyl phosphate synthetase determined to 2.1 Å resolution. Acta Crystallogr D 55:8–24.
195. Thoden JB, Raushel FM, Wesenberg G, Holden HM. 1999. The binding of inosine monophosphate to Escherichia coli carbamoyl phosphate synthetase. J Biol Chem 274:22502–22507.
196. Thoden JB, Wesenberg G, Raushel FM, Holden HM. 1999. Carbamoyl phosphate synthetase: closure of the B-domain as a result of nucleotide binding. Biochemistry 38:2347–2357.
197. Holden HM, Thoden JB, Raushel FM. 1998. Carbamoyl phosphate synthetase: a tunnel runs through it. Curr Opin Struct Biol 8:679–685.
198. Holden HM, Thoden JB, Raushel FM. 1999. Carbamoyl phosphate synthetase: an amazing biochemical odyssey from substrate to product. Cell Mol Life Sci 56:507–522.
199. Meister A. 1989. Mechanism and regulation of the glutamine-dependent carbamoyl phosphate synthetase of Escherichia coli. Adv Enzymol Relat Areas Mol Biol 62:315–374.
200. Raushel FM, Thoden JB, Thoden HM. 1999. The amidotransferase family of enzymes: molecular machines for the production and delivery of ammonia. Biochemistry 38:5891–5899.
201. Raushel FM, Thoden JB, Thoden HM. 2003. Enzymes with molecular tunnels. Acc Chem Res 36:539–548.
202. Anderson PM, Meister A. 1966. Bicarbonate-dependent cleavage of adenosine triphosphate and other reactions catalyzed by Escherichia coli carbamoylphosphate synthetase. Biochemistry 5:3157–3163.
203. Kothe M, Eroglu B, Mazza H, Samudera H, Powers-Lee S. 1997. Novel mechanism for carbamoyl-phosphate synthetase: a nucleotide switch for functionally equivalent domains. Proc Natl Acad Sci USA 94:12348–12353.
204. Raushel FM, Mullins LS, Gibson GE. 1998. A stringent test for the nucleotide switch mechanism of carbamoyl phosphate synthetase. Biochemistry 37:10272–10278.
205. Rubio V, Llorente P, Britton HG. 1998. Mechanism of carbamoylphosphate synthetase from Escherichia coli. Binding of the ATP molecules is used in the reaction and sequestration by the enzyme of the ATP molecules that yields carbamoylphosphate. Eur J Biochem 255:262–270.
206. Abdelal A, Ingraham JL. 1975. Carbamoylphosphate synthetase from Salmonella typhimurium. Regulation, subunit composition and function of the subunits. J Biol Chem 250:4410–4417.
207. Trotta P, Burt ME, Haschemeyer RH, Meister A. 1971. Reversible dissociation of carbamoylphosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization. Proc Natl Acad Sci USA 68:2599–2603.
208. Kalman SM, Duffield PH, Brzozowski T. 1965. Identity in Escherichia coli of carbamoylphosphokinase and an activity which catalyzes amino group transfer from glutamine to ornithine in citrulline biosynthesis. Biochem Biophys Res Commun 18:530–537.
209. Gigot D, Crabeel M, Feller A, Charlier D, Lissens W, Glansdorff N, Piérard A. 1980. Patterns of polarity in the Escherichia coli carAB gene cluster. J Bacteriol 143:914–920.
210. Mergeay M, Gigot D, Beckman J, Glansdorff N, Piérard A. 1974. Phsysiology and genetics of carbamoylphosphate synthetase in Escherichia coli K-12. Mol Gen Genet 133:299–316.
211. Rubino SD, Nyunoya H, Lusty CJ. 1987. In vivo synthesis of carbamyl phosphate from NH3 by the large subunit of Escherichia coli carbamyl phosphate synthetase. J Biol Chem 262:4382–4386.
212. Crabeel M, Charlier D, Weyens G, Feller A, Piérard A, Glansdorff N. 1980. Use of gene cloning to determine polarity of an operon : genes carAB of Escherichia coli. J Bacteriol 143:921–925.
213. Nyunoya H, Lusty CJ. 1983. The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoylphosphate synthethase. Proc Natl Acad Sci USA 80:4629–4633.
214. Kilstrup M, Lu C-D, Abdelal A, Neuhard J. 1988. Nucleotide sequence of the carA gene and regulation of the carAB operon in Salmonella typhimurium. J Biol Chem 176:421–429.
215. Huang, X, Raushel FM. 2000. Restricted passage of reaction intermediates through the ammonia tunnel of carbamoyl phosphate synthetase. J Biol Chem 275:26233–26240.
216. Huang, X, Raushel FM. 2000. An engineered blockage within the ammonia tunnel of carbamoyl phosphate synthetase prevents the use of glutamine as a substrate but not ammonia. Biochemistry 39:3240–3247.
217. Kim J, Howell S, Huang X, Raushel FM. 2002. Structural defects within the carbamate tunnel of carbamoyl phosphate synthetase. Biochemistry 41:12575–12581.
218. Miles BW, Banzon JA, Raushel FM. 1998. Regulatory control of the amidotransferase domain of carbamoyl phosphate synthetase. Biochemistry 37:16773–16779.
219. Miles BW, Raushel FM. 2000. Synchronization of the three reaction centers within carbamoyl phosphate synthetase. Biochemistry 39:5051–5056.
220. Hartman SC. 1973. Relationship between glutamine amidotransferase and glutaminase, p 319–330. In Prusiner S and Stadman ER (ed), The Enzymes of Glutamine Metabolism. Academic Press, Inc., New York, N.Y.
221. Piérard A. 1983. Evolution des systèmes de synthèse et d’utilisation du carbamoylphosphate, p 55–61. In Hervé G (ed), L’évolution des protéines. Masson, Paris, France.
222. Zalkin H, Smith JL. 1998. Enzymes using glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol 72: 87–144.
223. Thoden JB, Miran SG, Phillips JC, Howard AJ, Raushel FM, Holden HM. 1998. Carbamoyl phosphate synthetase: caught in the act of glutamine hydrolysis. Biochemistry 37:8825–8831.
224. Kaseman DS. 1980. Selective inactivation of the glutamine-utilizing activity of carbamoyl phosphate synthetase by hydroxylamine and methylhydrazine. Fed Proc 39:2032.
225. Miran SG, Chang SH, Raushel FM. 1991. Role of four conserved histidine residues in the amidotransferase domain of carbamoyl phosphate synthetase. Biochemistry 30:7901–7907.
226. Mullins LS, Lusty CJ, Raushel FM. 1991. Alterations in the energetics of the carbamoyl phosphate synthetase reaction by site-directed modification of the essential sulphydryl group. J Biol Chem 266:8236–8240.
227. Rubino SD, Nyunoya H, Lusty CJ. 1986. Catalytic domains of carbamoyl phosphate synthetase: glutamine-hydrolyzing site of Escherichia coli carbamoyl phosphate synthetase. J Biol Chem 261:11320–11327.
228. Boettcher BR, Meister A. 1980. Covalent modification of the active site of carbamoylphosphate synthetase by 5′-fluorosulfonylbenzoyladenosine. Direct evidence for two functionally different ATP-binding sites. J Biol Chem 255:7129–7133.
229. Powers SG, Meister A. 1978. Mechanism of the reaction catalyzed by carbamoylphosphate synthetase. Binding of ATP to the two functionally different ATP sites. J Biol Chem 253:800–803.
230. Guillou P, Liao M, Garcia-Espana A, Lusty CJ. 1992. Mutational analysis of carbamylphosphate synthetase. Substitution of Glu841 leads to loss of functional coupling between the two catalytic domains of the synthetase subunit. Biochemistry 31:1656–1664.
231. Guillou F, Rubino SR, Markovitz RS, Kinney DM, Lusty CJ. 1989. Escherichia coli carbamoylphosphate synthetase: domains of glutaminase and synthase subunit interaction. Proc Natl Acad Sci USA 86:8304–8308.
232. Guy HI, Bouvier A, Evans DR. 1997. The smallest carbamoyl-phosphate synthetase. J Biol Chem 272:29255–29262.
233. Guy HI, Evans DR. 1996. Function of the major synthetase subdomains of carbamyl-phosphate synthetase. J Biol Chem 271:13762–13769.
234. Guy HI, Schmidt B, Hervé G, Evans DR. 1998. Pressure-induced dissociation of carbamoyl-phosphate synthetase domains. J Biol Chem 273:14172–14178.
235. Miles BW, Mareay SM, Post LE, Post DJ, Chang SH, Raushel FM. 1993. Differential roles for three conserved histidine residues within the large subunit of carbamoylphosphate synthetase. Biochemistry 32:232–240.
236. Raushel FM, Miles BW, Post LE, Post DJ. 1992. Mutational analysis of two putative domains within the large subunit of carbamoyl phosphate synthetase from Escherichia coli. Bioorg Med Chem Lett 2:319–322.
237. Post LE, Post DJ, Raushel FM. 1990. Dissection of the functional domains of Escherichia coli carbamoyl phosphate synthetase by site-directed mutagenesis. J Biol Chem 265:7742–7747.
238. Lusty CJ, Liao M. 1993. Substitution of Glu841 by lysine in the carbamate domain of carbamoyl phosphate synthetase alters the catalytic properties of the glutamine subunits. Biochemistry 32:1278–1284.
239. Javid-Majd F, Stapleton MA, Harmon MF, Hanks BA, Mullins LS, Raushel FM. 1996. Comparison of the functional differences for the homologous residues within the carboxy phosphate and carbamate domains of carbamoyl phosphate synthetase. Biochemistry 35:14362–14369.
240. Stapleton MA, Javid-Majd F,Harmon MF, Hanks BA, Grahmann JL, Mullins LS, Raushel FM. 1996. Role of conserved residues within the carboxy phosphate domain of carbamoyl phosphate synthetase. Biochemistry 35:14352–14361.
241. Galperin MY, Koonin EV. 1997. A diverse superfamily of enzymes with ATP-dependent carboxylate-amide/thiol ligase activity. Prot Sci 6:2639–2643.
242. Waldrop GL, Rayment I, Holden HM. 1994. Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry 33:10249–10256.
243. Devroede N, Thia-Toong T-L, Gigot D, Maes D, Charlier D. 2004. Purine and pyrimidine-specific repression of the Escherichia colicarAB operon are functionally and structurally coupled. J Mol Biol 336:25–42.
244. Lu C-D, Katzif S, Abdelal AT. 1995. Participation of the purine repressor in the control of the carbamoylphosphate synthetase operon in Salmonella typhimurium. Mol Microbiol 17:981–988.
245. Braxton BL, Mullins LS, Raushel FM, Reinhart GD. 1992. Quantifying the allosteric properties of Escherichia coli carbamoylphosphate synthetase: determination of thermodynamic linked-function parameters in an ordered kinetic mechanism. Biochemistry 31: 2309–2316.
246. Braxton BL, Mullins LS, Raushel FM, Reinhart GD. 1999. Allosteric dominance in carbamoyl phosphate synthetase. Biochemistry 38:1394–1401.
247. Bueso J, Cervera J, Fresquet V, Marina A, Lusty CJ, Rubio V. 1999. Photoaffinity labeling of the activator IMP and site-directed mutagenesis of histidine 995 of carbamoyl phosphate synthetase from Escherichia coli demonstrate that the binding site for IMP overlaps with that for the inhibitor UMP. Biochemistry 38:39103917.
248. Cervera J, Bendela E, Britton HG, Bueso J, Nassif Z, Lusty CJ, Rubio V. 1996. Photoaffinity-labeling with UMP of lysine 992 of carbamoylphosphate synthetase from Escherichia coli allows identification of the binding site for the pyrimidine inhibitor. Biochemistry 35:7247–7255.
249. Cervera J, Conejerolara F, Ruizsanz J, Galisteo ML, Mateo PL, Lusty CJ, Rubio V. 1993. The influence of effectors and subunit interactions on Escherichia coli carbamoylphosphate synthetase studied by differential scanning calorimetry. J Biol Chem 268:12504–12511.
250. Czerwinski RM, Mayera SM, Raushel FM. 1995. Regulatory changes in the control of carbamoylphosphate synthetase induced by truncation and mutagenesis of the allosteric binding domain. Biochemistry 34:13920–13927.
251. Delannay S, Charlier D, Tricot C, Villeret V, Piérard A, Stalon V. 1999. Serine 948 and threonine 1042 are crucial residues for allosteric regulation of Escherichia coli carbamoylphosphate synthetase and illustrate coupling effects of activation and inhibition pathways. J Mol Biol 286:1217–1228.
252. Mora P, Rubio V, Fresquet V, Cervera J. 1999. Localization of the site for nucleotide effectors of Escherichia coli carbamoyl phosphate synthetase using site-directed mutagenesis. FEBS Lett 446:133–136.
253. Pierrat OA, Javid-Majd F, Raushel FM. 2002. Dissection of the conduit for allosteric control of carbamoyl phosphate synthetase by ornithine. Arch Biochem Biophys 400:26–33.
254. Pierrat OA, Raushel FM. 2002. A functional analysis of the allosteric nucleotide monophosphate binding site of carbamoyl phosphate synthetase. Arch Biochem Biophys 400:34–42.
255. Rochera L, Fresquet V, Rubio V, Cervera J. 2002. Mechanism of allosteric modulation of Escherichia coli carbamoyl phosphate synthetase probed by site-directed mutagenesis of ornithine site residues. FEBS Lett 514:323–328.
256. Rubio V, Cervera J, Lusty CJ, Bendala E, Britton HG. 1991. Domain structure of the large subunit of Escherichia coli carbamoyl phosphate synthase. Location of the binding site for the allosteric inhibitor UMP in the COOH-terminal domain. Biochemistry 30:1068–1075.
257. Anderson PM. 1977. Binding of allosteric effectors to carbamoylphosphate synthetase from Escherichia coli. Biochemistry 16:587–592.
258. Anderson PM, Marvin SV. 1970. Effect of allosteric effectors and adenosine triphosphate on the aggregation and rate of inhibition by N-ethyl-maleimide on carbamoylphosphate synthetase of Escherichia coli. Biochemistry 9:171–178.
259. Bossi L, Kohono T, Roth JR. 1983. Genetic characterization of the SupJ frameshift suppressor in Salmonella typhimurium. Genetics 103:31–42.
260. Abdelal ATH, Griego E, Ingraham JL. 1978. Arginine auxotrophic phenotype of mutation in pyrA of Salmonella typhimurium: role of N-acetylornithine in the maturation of mutant carbamoylphosphate synthetase. J Bacteriol 134:528–536.
261. Han BD, Nolan WG, Hopkins HP, Jones RT, Ingraham JL, Abdelal AT. 1990. Effect of growth temperature on folding of carbamoylphosphate synthetase of Salmonella typhimurium and a cold-sensitive derivative. J Bacteriol 172:5089–5096.
262. Anderson PM. 1986. Carbamoyl-phosphate synthetase: an example of effects on enzyme properties of shifting an equilibrium between active monomer and active oligomer. Biochemistry 25:5576–5582.
263. Powers SG, Meister A, Haschenmeyer RH. 1980. Linkage between self-association and catalytic activity of Escherichia coli carbamoyl phosphate synthetase. J Biol Chem 255:1554–1558.
264. Kim J, Raushel FM. 2001. Allosteric control of the oligomerization of carbamoyl phosphate synthetase from Escherichia coli. Biochemistry 40:11030–11036.
265. Mora PV, Rubio V, Cervera J. 2002. Mechanism of oligomerization of Escherichia coli carbamoyl phosphate synthetase and modulation by the allosteric effectors. A site-directed mutagenesis study. FEBS Lett 511:6–10.
266. Gigot D. 1990. Recruitment of an alternative carbamoylphosphate synthetase in a carB deletion mutant of Escherichia coli. Arch Int Physiol Biochim 98:B128.
267. Guilloton M, Karat F. 1987. Cyanate specifically inhibits arginine biosynthesis in Escherichia coli K12: a case of by-product inhibition. J Gen Microbiol 133:655–665.
268. Bach ML, Lacroute F. 1972. Direct selection techniques for the isolation of pyrimidine auxotrophs in yeast. Mol Gen Genet 115:126–130.
269. Motta R. 1967. Méthodes de sélection de mutants uracile exigeants au locus ur1 de Coprinus radiatus. C R Acad Sci (Paris) 204:654–657.
270. Turnbough CL Jr, Bochner BR. 1985. Toxicity of the pyrimidine biosynthetic pathway intermediate carbamoylaspartate in Salmonella typhimurium. J Bacteriol 163:500–505.
271. Panchal CJ, Baghee SN, Guha A. 1974. Divergent orientation of transcription from the argECBH operon of Escherichia coli. J Bacteriol 117:675–680.
272. Pouwels P, Cunin R, Glansdorff N. 1974. Divergent transcription of the argECBH cluster of genes in Escherichia coli K-12. J Mol Biol 83:421–424.
273. Piette J, Cunin R, Boyen A, Charlier D, Crabeel M, Van Vliet F, Glansdorff N, Squires C, Squires CL. 1982. The regulatory region of the divergent argECBH operon in Escherichia coli K12. Nucleic Acids Res 10:8031–8048.
274. Piette J, Cunin R, Crabeel M, Boyen A, Glansdorff N, Squires C, Squires CL. 1981. Nucleotide sequence of the control region of the argECBH bipolar operon in Escherichia coli. Arch Int Physiol Biochim 88:B242–B243.
275. Tian G, Maas WK. 1994. Mutational analysis of the arginine repressor of Escherichia coli. Mol Microbiol 13:599–608.
276. Peyru GM, Maas WK. 1967. Inhibition of Escherichia coli B by homoarginine. J Bacteriol 94:712–718.
277. Ben-Ishai R, Lahav M, Zamir A. 1964. Control of uracil synthesis in Escherichia coli. J Bacteriol 87:1436–1442.
278. Stirling C, Stewart G, Sherratt D. 1988. Multicopy plasmid stability in Escherichia coli requires host-encoded functions that lead to plamid site-specific recombination. Mol Gen Genet 214:80–84.
279. Stirling CJ, Szatmari G, Stewart G, Smith CH, Sherratt DJ. 1988. The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7:4389–4395.
280. Flinn H, Burke M, Stirling CJ, Sherratt DJ. 1989. Use of gene replacement to construct Escherichia coli strains carrying mutations in two genes required for stability of multicopy plasmids. J Bacteriol 171:2241–2243.
281. Jacoby GA, Gorini L. 1969. A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. I. The genetic evidence. J Mol Biol 39:73–87.
282. Hong J, Ames BN. 1979. Localized mutagenesis of any specific small region of the bacterial chromosome. Proc Natl Acad Sci USA 68:3158–3162.
283. Boyen A, Charlier D, Crabeel M, Cunin R, Palchaudhuri S, Glansdorff N. 1978. Studies on the control region of the bipolar argECBH operon of Escherichia coli. I. Effects of regulatory mutations and IS2 insertions. Mol Gen Genet 161:185–196.
284. Bretscher AP, Baumberg S. 1976. Divergent transcription of the argECBH cluster of Escherichia coli K-12. Mutations which alter the control of enzyme synthesis. J Mol Biol 102:205–220.
285. Crabeel M, Charlier D, Boyen A, Cunin R, Glansdorff N. 1974. Mutant selection in the control region of the argECBH bipolar operon of Escherichia coli. Arch Intern Physiol Biochim 82:973–974.
286. Boyen A, Piette J, Cunin R, Glansdorff N. 1982. Enhancement of translation efficiency in Escherichia coli by mutations in a proximal domain of messenger RNA. J Mol Biol 162:715–720.
287. Glansdorff N, Charlier D, Zafarullah M. 1981. Activation of gene expression by IS2 and IS3. Cold Spring Harbor Symp Quant Biol 45:153–156.
288. Casadaban M, Cohen SN. 1979. Lactose genes fused to exogenous promoters in one step using Mu-lac bacteriophage as in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4520–4533.
289. Bény G, Boyen A, Charlier D, Lissens W, Feller A, Glansdorff N. 1982. Promoter mapping and selection of operator mutants by using insertion of bacteriophage Mu in the argECBH divergent operon of Escherichia coli K-12. J Bacteriol 151:62–67.
290. Charlier D, Kholti A, Huysveld N, Gigot D, Maes D, Thia-Toong T-L, Glansdorff N. 2000. Mutational analysis of Escherichia coli PepA, a multifunctional DNA-binding aminopeptidase. J Mol Biol 302:411–426.
291. Kholti A, Charlier D, Gigot D, Huysveld N, Roovers M, Glansdorff N. 1998. pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. J Mol Biol 280:571–582.
292. Roovers M, Charlier D, Feller A, Gigot D, Holemans F, Lissens W, Piérard A, Glansdorff N. 1988. carP, a novel gene regulating the transcription of the carbamoylphosphate synthase operon of Escherichia coli. J Mol Biol 204:857–865.
293. Glansdorff N, Dambly C, Palchaudhuri S, Crabeel M, Piérard A, Halleux P. 1976. Isolation and heteroduplex mapping of a λ transducing phage carrying the structural gene for Escherichia coli K-12 carbamoylphosphate synthetase: regulation of enzyme synthesis in lysogens. J Bacteriol 127:302–308.
294. Kikuchi A, Elseviers D, Gorini L. 1975. The isolation and characterization of λ transducing phages for argF, argI, and adjacent genes. J Bacteriol 122:727–742.
295. Mazaitis A, Palchaudhuri S, Glansdorff N, Maas WK. 1976. lsolation and characterization of dargECBH transducing phages and heteroduplex analysis of the argECBH cluster. Mol Gen Genet 143:185–196.
296. Press R, Glansdorff N, Miner P, De Vries J, Kadner R, Maas WK. 1971. Isolation of transducing particles of bacteriophage that carry different regions of the Escherichia coli genome. Proc Natl Acad Sci USA 68:795–798.
297. McLellan W, Vogel HJ. 1970. Translation repression in the arginine system of Escherichia coli. Proc Natl Acad Sci USA 67:1703–1707.
298. Vogel HJ. 1961. Aspects of repression in the regulation of enzynse synthesis: pathway-wide control and enzyme-specific response. Cold Spring Harbor Symp Quant Biol 26:163–171.
299. Vogel HJ, Vogel RH. 1974. Enzymes of arginine biosynthesis and their respective controls. Adv Enzymol 40:65–90.
300. Rogers P, Krzyzek R, Kaden TM, Arfman E. 1971. Effect of arginine and canavanine on arginine messenger RNA synthesis. Biochem Biophys Res Commun 44:1220–1226.
301. Cunin R, Glansdorff N. 1971. Messenger RNA from arginine and phosphoenolpyruvate carboxylase genes in argR+ and argR strains of Escherichia coli K12. FEBS Lett 18:135–137.
302. Natter W, Sens D, James E. 1977. Metabolism of arginine-specific messenger ribonucleic acids in Escherichia coli K-12. J Bacteriol 131:214–223.
303. Piérard A, Lissens W, Halleux P, Cunin R, Glansdorff N. 1980. Role of transcriptional regulation and enzyme inactivation in the synthesis of Escherichia coli carbamoylphosphate synthetase. J Bacteriol 141:382–385.
304. Cunin R, Kelker N, Boyen A, Lang-Yang H, Zubay G, Glansdorff N, Maas WK. 1976. Involvement of arginine in in vitro repression of transcription of arginine genes C, B and H in Escherichia coli K-12. Biochem Biophys Res Commun 69:377–382.
305. Dohi M, Kikuchi A, Gorini L. 1978. Some regulation profiles of ornithine transcarbamylase synthesis in vitro. J Biochem 84:1401–1409.
306. Sens D, Natter W, Garvin RT, James E. 1977. Transcription of the argF and argI genes of the arginine biosynthetic regulon of E. coli K-12 performed in vitro. Mol Gen Genet 155:7–18.
307. Sens D, Natter W, Garvin RT, James E. 1977. In vitro transcription of the Escherichia coli K-12 argA, argE, and argCBH operons. J Bacteriol 130:642–655.
308. Lavallé, R. 1970. Regulation at the level of translation in the arginine pathway of Escherichia coli K-12. J Mol Biol 51:449–451.
309. Lavallé, R, De Hauwer G. 1970. Tryptophan messenger translation in Escherichia coli. J Mol Biol 51:435–437.
310. Boy E, Thèze I, Patte J-C. 1973. Transient regulation of enzyme synthesis in Escherichia coli. Mol Gen Genet 121:77–78.
311. Cunin R, Boyen A, Pouwels P, Glansdorff N, Crabeel M. 1975. Parameters of gene expression in the bipolar argECBH operon of E. coli K12 The question of translational control. Mol Gen Genet 140:51–60.
312. Zidwick MJ, Keller G, Rogers P. 1984. Regulation and coupling of argECBH mRNA and enzyme synthesis in cell extracts of Escherichia coli. J Bacteriol 159:640–646.
313. Bény G, Cunin R, Glansdorff N, Boyen A, Charlier J, Kelker N. 1982. Transcription of regions within the divergent argECBH operon of Escherichia coli: evidence for lack of an attenuation mechanism. J Bacteriol 151:58–61.
314. McLellan W, Vogel HJ. 1973. Stability of argECBH messenger RNA under arginine excess or restriction. Biochem Biophys Res Commun 55:1385–1389.
315. Krzyzek RA, Rogers P. 1976. Effect of arginine on the stability and size of argECBH messenger ribonucleic acid in Escherichia coli. J Bacteriol 126:365–376.
316. Hall BG, Gallant JA. 1973. On the rate of messenger decay during amino acid starvation. J Mol Biol 73:121–124.
317. Zidwick MJ, Korshus J, Rogers P. 1984. Positive control of expression of the argECBH gene cluster in vitro by guanosine 5′-diphosphate 3′-diphosphate. J Bacteriol 159:647–651.
318. Hirschfield IN, De Deken RH, Horn PC, Hopwood DA, Maas WK. 1968. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. III. Repression of enzymes of arginine biosynthesis in arginyl-tRNA synthetase mutants. J Mol Biol 35:83–93.
319. Leisinger T, Vogel HJ. 1969. Repression by arginine in Escherichia coli a comparison of arginyl transfer RNA profiles. Biochim Biophys Acta 182:572–578.
320. Celis R, Maas WK. 1971. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. IV. Further studies of repression on the role of arginine transfer RNA in repression of the enzymes of arginine biosynthesis. J Mol Biol 62:179–188.
321. Brenchley JE, Williams LS. 1975. Transfer RNA involvement in the regulation of enzyme synthesis. Annu Rev Microbiol 29:251–274.
322. Pannekoek H, Cunin R, Boyen A, Glansdorff N. 1975. In vitro transcription of the bipolar argECBH operon in Escherichia coli K12. FEBS Lett 51:143–145.
323. Lissens W, Cunin R, Kelker N, Glansdorff N, Piérard A. 1980. In vitro synthesis of Escherichia coli carbamoylphosphate synthetase: evidence for participation of the arginine repressor in cumulative repression. J Bacteriol 141: 58–66.
324. Charlier D, Weyens G, Roovers M, Piette J, Bocquet C, Piérard A, Glansdorff N. 1988. Molecular interactions in the control region of the carAB operon encoding Escherichia coli carbamoylphosphate synthase. J Mol Biol 204:867–877.
325. Lu C-D, Houghton JE, Abdelal AT. 1992. Characterization of the arginine repressor from Salmonella typhimurium and its interaction with the carAB operator. J Mol Biol 225:11–24.
326. Tian G, Lim D, Carey J, Maas WK. 1992. Binding of the arginine repressor of Escherichia coli K 12 to its operator sites. J Mol Biol 226:387–397.
327. Van Duyne GD, Ghosh G, Maas WK, Sigler PB. 1996. Structure of the oligomerization and L-arginine binding domain of the arginine repressor of Escherichia coli. J Mol Biol 256:377–391.
328. Gorini L. 1960. Antagonism between substrate and repressor controlling the formation of a biosynthetic enzyme. Proc Natl Acad Sci USA 46:682–690.
329. Niersbach H, Lin R, Van Duyne GD, Maas WK. 1998. A supperrepressor mutant of the arginine repressor with a correctly predicted alteration of ligand binding specificity. J Mol Biol 279:753–760.
330. Turnbough CL, Jr. 1983. Regulation of Escherichia coli aspartate transcarbamylase synthesis by guanosine tetraphosphate and pyrimidine ribonucleoside triphosphate. J Bacteriol 153:998–1007.
331. Yamanaka K, Ogura T, Niki H, Higara S. 1992. Identification and characterization of the smbA gene, a suppressor of the mukB null mutant of Escherichia coli. J Bacteriol 174:7517–7526.
332. Gallant JA. 1979. Stringent control in E. coli. Annu Rev Genet 13:393–415.
333. Kelker N, Eckhardt T. 1977. Regulation of argA operon expression in Escherichia coli K-12: cell-free synthesis of β-galactosidase under argA control. J Bacteriol 132:67–72.
334. Wang H, Glansdorff N, Charlier D. 1998. The arginine repressor of Escherichia coli K-12 makes direct contacts to minor and major groove determinants of the operators. J Mol Biol 277:805–824.
335. Chen S-H, Merican AF, Sherratt DJ. 1997. DNA binding of Escherichia coli arginine repressor mutants altered in oligomeric state. Mol Microbiol 24:1143–1156.
336. Szwajkajzer D, Dai I, Fukayama JW, Abramczyk B, Fairman R, Carey J. 2001. Quantitative analysis of DNA binding by the Escherichia coli arginine repressor. J Mol Biol 312:949–962.
337. Xu Y, Sun Y, Huysveld N, Gigot D, Glansdorff N, Charlier D. 2003. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing. J Mol Biol 326:353–369.
338. Tian G, Lim D, Oppenheim JD, Maas WK. 1994. Explanation for different types of regulation of arginine biosynthesis in Escherichia coli B and Escherichia coli K12 caused by a difference between their arginine repressors. J Mol Biol 235:221–230.
339. Song H, Wang H, Gigot D, Dimova D, Sakanyan V, Glansdorff N, Charlier D. 2001. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions. J Mol Biol 315:255–274.
340. Makarova KS, Mironov AA, Gelfand MS. 2001. Conservation of the arginine repressor DNA-binding signal in all bacterial lineages. Genome Biol 2(4):Research 0013.
341. Taylor K, Hradecna Z, Szybalski W. 1967. Asymmetric distribution of transcribing regions on the complementary strands of coliphage lambda DNA. Proc Natl Acad Sci USA 57:1618–1625.
342. Guha A, Saturen Y, Szybalski W. 1971. Divergent orientation of transcription from the biotin locus of Escherichia coli. J Mol Biol 56:53–62.
343. Otsuka A, Abelson J. 1978. The regulatory region of the biotin operon in Escherichia coli. Nature (London) 276:689–694.
344. Beck CF, Warren RAJ. 1988. Divergent promoters, a common form of gene organization. Microbiol Rev 52:318–326.
345. Reznikoff WS, Miller JH, Scaife JG, Beckwith JR. 1969. A mechanism for repressor action. J Mol Biol 43:201–213.
346. Rhee KY, Opel M, Ito E, Hung S-P, Arfin SM, Hatfield GW. 1999. Transcriptional coupling between the divergent promoters of a prototypic LysR-type regulatory system, the ilvYC operon of Escherichia coli. Proc Natl Acad Sci USA 96:14294–14299.
347. Scherer GF, Walkinshaw MD, Arnott S, Morré DJ. 1980. E. coli ribosomes have regions wiih signal character in both the leader and protein coding segments. Nucleic Acids Res 8:3895–3907.
348. Gardan R, Papoport G, Débarbouillé M. 1995. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. J Mol Biol 249:843–856.
349. Kelker N, Maas WK, Yang HL, Zubay G. 1976. In vitro synthesis and repression of argininosuccinase in Escherichia coli K-12: partial purification of the arginine repressor. Mol Gen Genet 144:17–20.
350. Udaka S. 1970. Isolation of the arginine repressor in Escherichia coli. Nature (London) 228:336–338.
351. Burke M, Merican F, Sherrat DJ. 1994. Mutant Escherichia coli arginine repressor proteins that fail to bind L-arginine yet retain ability to bind their normal DNA binding sites. Mol Microbiol 13:609–618.
352. Grandori R, Lavoie TA, Pflumm M, Tian G, Niersbach H, Maas WK, Fairman R, Carey J. 1995. The DNA binding domain of the hexameric arginine repressor. J Mol Biol 254:150–162.
353. Dimova D, Weigel P, Takahashi M, Marc F, Van Duyne GD, Sakanyan V. 2000. Thermostability, oligomerization and DNA-binding properties of the regulatory protein ArgR from the hyperthermophilic bacterium Thermotoga neapolitana. Mol Gen Genet 263:119–130.
354. Morin A, Huysveld N, Braun F, Dimova D, Sakanyan V, Charlier D. 2003. Hyperthermophilic Thermotoga arginine repressor binding to full-length cognate and heterologous arginine operators and to half-site targets. J Mol Biol 332:537–553.
355. Sunnerhagen M, Nilges M, Otting G, Carey J. 1997. Solution structure of the DNA-binding domain and model for the complex of multifunctional hexameric arginine repressor with DNA. Nat Struct Biol 4:819–826.
356. Brennan RG. 1993. The winged-helix DNA-binding motif: another helix-turn-helix takeoff. Cell 74:773–776.
357. Lai E, Clark K, Burley S, Darnell E. 1993. Hepatocyte nuclear factor 3/fork head or “winged helix” proteins: a family of transcription factors of diverse biological function. Proc Natl Acad Sci USA 90:10421–10423.
358. Ni J, Sakanyan V, Charlier D, Glansdorff N, Van Duyne GD. 1999. Structure of the arginine repressor from Bacillus stearothermophilus. Nat Struct Biol 6:427–432.
359. Miltcheva Karaivanova I, Weigel P, Takahashi M, Fort C, Versavaud A, Van Duyne G, Charlier D, Hallet J-N, Glansdorff N, Sakanyan V. 1999. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties. J Mol Biol 291:843–855.
360. Dennis CA, Glykos NM, Parsons MP, Phillips SEV. 2002. The structure of AhrC, the arginine repressor/activator protein from Bacillus subtilis. Acta Crystallog Sect D 58:421–430.
361. Maghnouj A, De Sousa Cabral TF, Stalon V, Vander Wauven C. 1998. The arcABCD gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by the arginine repressor ArgR. J Bacteriol 180:6468–6475.
362. Rodriguez-Garcia A, Ludovice M, Martin JF, Liras P. 1997. Arginine boxes and the argR gene of Streptomyces clavuligerus: evidence for a clear regulation of the arginine pathway. Mol Microbiol 25:219–228.
363. Czaplewski L, North A, Smith M, Baumberg S, Stockley P. 1992. Purification and initial characterization of AhrC, the regulator of arginine metabolism genes in Bacillus subtilis. Mol Microbiol 6:267–275.
364. Park S-M, Lu C-D, Abdelal AT. 1997. Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa. J Bacteriol 179:5300–5308.
365. Park S-M, Lu C-D, Abdelal AT. 1997. Purification and characterization of an arginine regulatory protein, argR, from Pseudomonas aeruginosa and its interaction with the control regions for the car, argF, and aru operons. J Bacteriol 179:5309–5317.
366. Dion M, Charlier D, Wang H, Gigot D, Savchenko A, Hallet J-N, Glansdorff N, Sakanyan V. 1997. The highly thermostable arginine repressor of Bacillus stearothermophilus: gene cloning and repressor-operator interactions. Mol Microbiol 25:385–398.
367. Holtham CAM, Jumel K, Miller CM, Hardling SE, Baumberg S, Stockley PG. 1999. Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins. J Mol Biol 289:707–727.
368. Piette J, Cunin R, Crabeel M, Glansdorff N. 1981. The regulatory region of the argF gene of Escherichia coli. Arch Int Physiol Biochim 89:B127–B128.
369. Schneider T. 2001. Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation. Nucleic Acids Res 29:4881–4891.
370. Kim J, Zwieb C, Wu C, Adhya S. 1989. Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene 85:15–23.
371. Thompson JF, Landy A. 1988. Empirical estimation of protein-induced DNA-bending angles: application to lambda site-specific recombination complexes. Nucleic Acids Res 20:9687–9705.
372. Tabor CW, Tabor H. 1983. Putrescine aminopropyl transferase. Methods Enzymol 94:265–269.
373. Kelley RL, Yanofsky C. 1982. trp aporepressor production is controlled by autogenous regulation and inefficient translation. Proc Natl Acad Sci USA 79:3120–3124.
374. Berg O. 1988. Selection of DNA binding sites by regulatory proteins. The LexA protein and the arginine repressor use different strategies for functional specificity. Nucleic Acids Res 16:5089–5105.
375. Jacoby GA, Gorini L. 1967. Genetics of control of the arginine pathway in Escherichia coli. J Mol Biol 24:41–50.
376. Karlstöm D, Gorini L. 1969. A unitary account of the repression mechanisms of arginine biosynthesis in Escherichia coli. II. Application to the physiological evidence. J Mol Biol 3:89–94.
377. Kadner R, Maas WK. 1971. Regulatory gene mutations affecting arginine biosynthesis in Escherichia coli. Mol Gen Genet 111:1–14.
378. Suiter AM, Banziger O, Dean AM. 2003. Fitness consequences of a regulatory polymorphism in a seasonal environment. Proc Natl Acad Sci USA 100:2782–2786.
379. Roof WD, Folterman KF, Wild JR. 1983. The organization and regulation of the pyrBI operon in E. coli includes a rho-dependent attenuator sequence. Mol Gen Genet 187:391–400.
380. Turnbough CL Jr, Hicks KL, Donahue JP. 1983. Attenuation control of pyrBI operon expression in Escherichia coli K12. Proc Natl Acad Sci USA 80:368–372.
381. Charlier D, Hassanzadeh G, Kholti A, Gigot D, Piérard A, Glansdorff N. 1995. carP, involved in pyrimidine regulation of the Escherichia coli carbamoylphosphate synthetase operon, encodes a sequence-specific DNA-binding protein identical to XerB and PepA, also required for resolution of ColEl multimers. J Mol Biol 250:392–406.
382. Charlier D, Roovers M, Gigot D, Huysveld N, Piérard A, Glansdorff N. 1993. Integration host factor (IHF) modulates the expression of the pyrimidine-specific promoter of the carAB operons of Escherichia coli K12 and Salmonella typhimurium LT2. Mol Gen Genet 237:273–286.
383. Charlier D, Crabeel M, Palchaudhuri S, Cunin, Boyen A, Glansdorff N. 1978. Heteroduplex analysis of regulatory mutations and of insertions (IS1, IS2, IS5) in the bipolar argECBH operon of Escherichia coli. Mol Gen Genet 161:175–184.
384. Stirling CJ, Colloms SD, Collins JF, Szatmari G, Sherratt DJ. 1989. xerB, an Escherichia coli gene required for plasmid ColEl site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J 8:1623–1627.
385. Colloms S, McCulloch R, Grant K, Neilson L, Sherratt D. 1996. Xer-mediated site-specific recombination in vitro. EMBO J 15:1172–1181.
386. Guathakurta A, Viney I, Summers D. 1996. Accessory proteins impose site selectivity during ColE1 dimer resolution. Mol Microbiol 20:613–620.
387. Sträter N, Sherratt D, Colloms S. 1999. X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination. EMBO J 18:4513–4522.
388. McCulloch R, Burke M, Sherratt D. 1994. Peptidase activity of Escherichia coli aminopeptidase A is not required for its role in Xer site-specific recombination. Mol Microbiol 12:241–251.
389. Alèn C, Sherratt D, Colloms S. 1997. Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination. EMBO J 16:5188–5197.
390. Charlier D, Gigot D, Huysveld N, Roovers M, Piérard A, Glansdorff N. 1995. Pyrimidine regulation of the Escherichia coli carAB operon: carP and integration host factor (IHF) modulate the methylation status of a GATC site present in the control region. J Mol Biol 250:383–391.
391. Serina L, Blondin C, Krin E, Sismeiro O, Danchin A, Sakamoto H, Gilles A-M, Bârzu O. 1995. Escherichia coli UMP-kinase, a member of the aspartokinase family, is a hexamer regulated by guanine nucleotides and UTP. Biochemistry 34:5066–5074.
392. Labesse G, Bucurenci N, Douguet D, Sakamoto H, Landais S, Gagyi C, Gilles A-M, Bârzu O. 2002. Comparative modelling and immunochemical reactivity of Escherichia coli UMP-kinase. Biochem Biophys Res Commun 294:173–179.
393. Bucurenci N, Serina L, Zaharia C, Landais S, Danchin A, Bârzu O. 1998. Mutational analysis of UMP-kinase from Escherichia coli. J Bacteriol 180:473–477.
394. Fricke J, Neuhard J, Kelln RA, Pedersen S. 1995. The cmk gene encoding cytidine monophosphate kinase is located in the rpsA operon and is required for normal replication in Escherichia coli. J Bacteriol 177:517–523.
395. Yamanaka K, Ogura T, Koonin EV, Niki H, Higara S. 1994. Multicopy suppressors, mssA and mssB, of an smbA mutation of Escherichia coli. Mol Gen Genet 243:9–16.
396. Zhou YN, Jin DJ. 1998. The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like “stringent” RNA polymerases in Escherichia coli. Proc Natl Acad Sci 95:2908–2913.
397. Jensen KF, Neuhardt J, Schack L. 1982. RNA polymerase involvement in the regulation of expression of Salmonella typhimuriumpyr genes. Isolation and characterization of a fluorouracil-resistant mutant with high, constitutive expression of the pyrB and pyrE genes due to a mutation in rpoBC. EMBO J 1:69–74.
398. Neuhard J, Jensen KF, Stauning E. 1982. Salmonella typhimurium mutants with altered expression of the pyrA gene due to changes in RNA polymerase. EMBO J 1:1141–1149.
399. Bussey LB, Ingraham JL. 1982. A regulatory gene (use) affecting the expression of pyrA and certain other pyrimidine genes. J Bacteriol 151:144–152.
400. Lu C-D, Abdelal AT. 1993. The Salmonella typhimurium uracil-sensitive mutation use is in argU and encodes a minor arginine-tRNA. J Bacteriol 175:3897–3899.
401. Charlier D, Huysveld N, Glansdorff N. 1994. On the role of the Escherichia coli integration host factor (IHF) in repression at a distance of the pyrimidine specific promoter P1 of the carAB operon. Biochimie 76:1041–1051.
402. Lu C-D, Kilstrup M, Neuhard J, Abdelal A. 1989. Pyrimidine regulation of tandem promoters for carAB in Salmonella typhimurium. J Bacteriol 171:5436–5442.
403. Weyens G, Rose K, Falmagne P, Glansdorff N, Piérard A. 1985. Synthesis of Escherichia coli carbamoylphosphate synthase initiates at a UUG codon. Eur J Biochem 150:111–115.
404. Glansdorff N. 1999. On the origin of operons and their possible role in evolution toward thermophily. J Mol Evol 49:461–473.
405. Pauwels K, Abadjieva A, Hilven P, Stankiewicz A, Crabeel M. 2003. The N-acetylglutamate synthetase/N-acetylglutamate kinase metabolon of Saccharomyces cerevisiae allows coordinated feedback regulation of the first two steps in arginine biosynthesis. Eur J Biochem 270:1014–1024.
406. Parra-Gessert L, Koo K, Fajardo J, Weiss RL. 1998. Processing and function of a polyprotein precursor of two mitochondrial proteins in Neurospora crassa. J Biol Chem 273:7972–7980.
407. Legrain C, Demarez M, Glansdorff N, Piérard A. 1995. Ammonium-dependent synthesis and metabolic channeling of carbamoyl phosphate in the hyperthermophilic archaeon Pyrococcus furiosus. Microbiology 141:1093–1099.
408. Massant J, Glansdorff N. Metabolic channeling of carbamoyl phosphate in the hyperthermophilic archaeon Pyrococcus furiosus: dynamic enzyme-enzyme interactions involved in the formation of the channeling complex. Biochem Soc Trans 32:306–309.
409. Massant J, Verstreken P, Durbecq V, Kholti A, Legrain C, Beeckmans S, Cornelis P, Glansdorff N. 2002. Metabolic channeling of carbamoyl phosphate, a thermolabile intermediate: evidence for physical interaction between carbamate kinase-like carbamoyl-phosphate synthetase and ornithine carbamoyltransferase from the hyperthermophile Pyrococcus furiosus. J Biol Chem 277:18517–18522.
410. Purcarea C, Evans DR, Hervé G. 1999. Channeling of carbamoyl phosphate to the pyrimidine and arginine biosynthetic pathways in the deep sea hyperthermophilic archaeon Pyrococcus abyssi. J Biol Chem 274:6122–6129.
411. Van de Casteele M, Legrain C, Desmares L, Chen PG, Piérard A, Glansdorff N. 1997. Molecular physiology and carbamoylation under extreme conditions: what can we learn from extreme thermophylic microorganisms? Comp Physiol Biochem 118A:463–473.
412. Delarue M, Moras D. 1993. The aminoacyl-tRNA synthetase family: modules at work. Bioessays 15:675–687.
413. Mehler AH, Mitra SK. 1967. The activation of arginyl transfer ribonucleic acid synthetase by transfer ribonucleic acid. J Biol Chem 242:5495–5499.
414. Gerlo E, Freist W, Charlier J. 1982. Arginyl-tRNA synthetase from Escherichia coli K12: specificity with regard to ATP analogs and their magnesium complexes. Hoppe-Seyler’s Z Physiol Chem 363:S165–S173.
415. Craine J, Peterkovsky A. 1975. Evidence that arginyladenylate is not an intermediate in the arginyl-tRNA synthetase reaction. Arch Biochem Biophys 168: 343–350.
416. Loftfield RB, Elgner EA. 1969. Mechanism of action of amino acid transfer ribonucleic acid ligases. J Biol Chem 244:1746–1754.
417. Bottu, G. 1983. The role of cations and of the tRNA 3′-terminal end in the activity of Escherichia coli arginyl-tRNA synthase. Arch Int Physiol Biochim 91:B6.
418. Charlier J, Gerlo E. 1979. Arginyl-tRNA synthetase from Escherichia coli K12. Purification, properties and sequence of substrate addition. Biochemistry 18:3171–3178.
419. Lin SX, Shi JP, Cheng XD, Wang YL. 1988. Arginyl-tRNA synthetase from Escherichia coli, purification by affinity chromatography, properties, and steady state kinetics. Biochemistry 27:6343–6348.
420. Eriani G, Dirheimer G, Gangloff J. 1989. Isolation and characterization of the gene coding for Escherichia coli arginyl-tRNA synthetase. Nucleic Acids Res 17:5725–5735.
421. Charlier J, Gerlo E. 1976. Arginyl-tRNA synthase from Escherichia coli. Influence of arginine biosynthetic precursors on the charging of arginine-acceptor tRNA with [14C] arginine. Eur J Biochem 70:137–145.
422. Lin SX, Wang Q, Wang YL. 1988. lnteractions between Escherichia coli arginyl-tRNA synthase and its substrates. Biochemistry 27:6348–6353.
423. Papas TS, Peterkofsky A. 1972. A random sequential mechanism for arginyl transfer ribonucleic acid synthetase of Escherichia coli. Biochemistry 11:4602–4608.
424. Mitra SK, Mehler AH. 1967. The arginyl transfer ribonucleic acid synthetase of Escherichia coli. J Biol Chem 242:5490–5494.
425. Hirschfield IN, Bloemers HPJ. 1969. The biochemical characterization of two mutant arginyl transfer ribonucleic acid synthetases from Escherichia coli K12. J Biol Chem 244:2911–2916.
426. Eriani G, Dirheimer G, Gangloff J. 1990. Structure-function relationship of arginyl-tRNA synthetase from isolation and characterization of the argS mutation MA5002. Nucleic Acids Res 18:1475–1479.
427. Morgan SD, Soll D. 1978. Regulation of the biosynthesis of amino acids: tRNA ligases and tRNA. Prog Nucleic Acid Res Mol Biol 21:181–207.
428. Neidhardt FC, Parker J, McKeever WG. 1975. Function and regulation of aminoacyl-tRNA synthetase in prokaryotic and eukaryotic cells. Annu Rev Microbiol 29:215–250.
429. Trudel M, Springer M, Graffe M, Fayat G, Blanquet S, Grunberg-Manago M. 1984. Regulation of E. coli phenylalanyl-tRNA synthetase operon in vivo. Biochim Biophys Acta 782:10–17.
430. Neidhardt FC, Bloch PL, Pedersen S, Reeh S. 1977. Chemical measurements of steady-state levels of aminoacyl transfer ribonucleic acid synthetase in Escherichia coli. J Bacteriol 129:378–387.
431. Wilson DH, Holden JT. 1969. Stimulation of arginine transport in osmotically shocked Escherichia coli W cells by purified arginine-binding protein fractions. J Biol Chem 244:2743–2749.
432. Celis R, Rosenfeld HJ, Maas WK. 1973. Mutants of Escherichia coli K-I 2 defective in the transport of basic amino acids. J Bacteriol 116:619–626.
433. Rosen BP. 1971. Basic amino acid transport in Escherichia coli. J Biol Chem 246:3653–3662.
434. Rosen BP. 1973. Basic amino acid transport in Escherichia coli: properties of canavanine-resistant mutants. J Bacteriol 116:627–635.
435. Wissenbach U, Keck B, Unden G. 1993. Physical map location of the new artPIQMJ genes of Escherichia coli, encoding a periplasmic arginine transport system. J Bacteriol 175:3687–3688.
436. Celis R. 1981. Chain-terminating mutants affecting a periplasmic binding protein involved in the active transport of arginine and ornithine in Escherichia coli. J Biol Chem 256:773–779.
437. Hallshall DM. 1975. Overproduction of lysine by mutant strains of Escherichia coli with defective transport systems. Biochem Genet 13:109–124.
438. Vogel HJ. 1960. Repression of an acetylornithine permeation system. Proc Natl Acad Sci USA 46:488–494.
439. Wilson DH, Holden JT. 1969. Arginine transport and metabolism in osmotically shocked and unshocked cells of Escherichia coli W. J Biol Chem 244:2737–2742.
440. Celis R. 1977. Independent regulation of transport and biosynthesis in Escherichia coli K-12. J Bacteriol 130:1244–1252.
441. Celis R. 1982. Mapping of two loci affecting the synthesis and structure of a periplasmic protein involved in arginine and ornithine transport in Escherichia coli. J Bacteriol 151:1314–1319.
442. Celis R. 1984. Phosphorylation in vivo and in vitro of the arginine-ornithine periplasmic transport protein of Escherichia coli. Eur J Biochem 143:403–411.
443. Celis R. 1990. Mutant of Escherichia coli K-12 with defective phosphorylation of two periplasmic transport proteins. J Biol Chem 265:1787–1793.
444. Urban C, Celis RTF. 1990. Purification and properties of a kinase from Escherichia coli K-12 that phosphorylates two periplasmic transport proteins. J Biol Chem 265:1783–1786.
445. Celis R. 1977. Properties of an Escherichia coli K-12 mutant defective in the transport of arginine and ornithine. J Bacteriol 130:1234–1243.
446. Celis R, Leadlay PF, Roy I, Hansen A. 1998. Phosphorylation of the periplasmic binding protein in two transport systems for arginine incorporation in Escherichia coli K-12 is unrelated to the function of the transport system. J Bacteriol 180:4828–4833.
447. Maas WK. 1965. Genetic defects affecting an arginine permease and repression of arginine synthesis in Escherichia coli. Fed Proc 24:1239–1242.
448. Maas WK. 1972. Mapping of genes involved in the synthesis of spermidine in Escherichia coli. Mol Gen Genet 119:1–9.
449. Schwartz JH, Maas WK, Simon FJ. 1959. An impaired concentrating mechanism for amino acids in mutants of Escherichia coli resistant to L-canavanine and D-serine. Biochim Biophys Acta 32:582–583.
450. Celis R. 1999. Repression and activation of arginine transport genes in Escherichia coli K-12 by the ArgP protein. J Mol Biol 294:1087–1095.
451. Quay S, Christensen HN. 1974. Basis of transport discrimination of arginine from other basic amino acids in Salmonella typhimurium. J Biol Chem 249:7011–7017.
452. Kustu SG, Ames GF. 1973. The hisP protein, a known histidine transport component in Salmonella typhimurium is also an arginine transport component. J Bacteriol 116:107–113.
453. Higgins PC, Ames GFL. 1981. Two periplasmic transport proteins which interact with a common membrane receptor show extensive homology: complete nucleotide sequence. Proc Natl Acad Sci USA 78:6038–6042.
454. Kraft R, Leinwand LA. 1987. Sequence of the complete P protein gene and part of the M protein gene from the histidine transport operon of Escherichia coli and Salmonella typhimurium. Nucleic Acids Res 15:8568.
455. Nonet ML, Marvel CC, Tolan DR. 1987. The hisT-purF region of the Escherichia coli K-12 chromosome. J Biol Chem 262:12209–12217.
456. Nikaido K, Ames GF-L. 1992. Purification and characterization of the periplasmic lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium. J Biol Chem 267:20706–20712.
457. Kang CH, Gokcen S, Ames GF-L. 1992. Crystallization and preliminary X-ray studies of the liganded lysine, arginine, ornithine-binding protein from Salmonella typhimurium. J Mol Biol 225:1123–1125.
458. Oh BH, Kang CH, De Bondt H, Kim SH, Nikaido K, Joski A, Ames G. 1994. The bacterial periplasmic histidine-binding protein. Structure/function analysis of the ligand-binding site and comparison with related proteins. J Biol Chem 269:4135–4143.
459. Boyle SM, Markham GD, Hafner EW, Wright JM, Tabor H, Tabor CW. 1984. Expression of the cloned genes encoding the putrescine biosynthetic enzymes and methionine adenosyltransferase of Escherichia coli (speA, speB, speC, and metK). Gene 30:129–136.
460. Cohen S. 1998. A Guide to the Polyamines. Oxford University Press, Oxford, United Kingdom.
461. Kröger H, Wahl R, Rice P. 1993. Compilation of DNA sequence of Escherichia coli (update 1993). Nucleic Acids Res 21:2973–3000.
462. Tabor CW, Tabor H, Hafner FW, Markham GD, Boyle SM. 1983. Cloning of the Escherichia coli genes for the biosynthetic enzymes for polyamines. Methods Enzymol 94:117–124.
463. Xie QW, Tabor CW, Tabor H. 1989. Spermidine biosynthesis in Escherichia coli: promoter and termination regions of the speED operon. J Bacteriol 171:4457–4465.
464. Tabor CW, Tabor H. 1985. Polyamines in microorganisms. Microbiol Rev 49:81–99.
465. Davis RH, Morris DR, Coffino P. 1992. Sequestered end products and enzyme regulation: the case of ornithine decarboxylase. Microbiol Rev 56:280–290.
466. Panagiotidis CA, Huang SC, Canellakis ES. 1994. Post-translational and transcriptional regulation of polyamine biosynthesis in Escherichia coli. Int J Biochem 26:991–1001.
467. Casalino, Latella MMC, Prosseda G, Colonna B. 2003. CadC is the preferential target of a convergent evolution driving enteroinvasive Escherichia coli toward a lysine decarboxylase-defective phenotype. Infect Immun 71:5472–5479.
468. Kohler H, Rodrigues SP, Maurelli AT, McCormick BA. 2002. Inhibition of Salmonella typhimurium enteropathogenicity by piperidine, a metabolite of the polyamine cadaverine. J Infect Dis 186:1122–1130.
469. Chattophadyay MK, Tabor CW, Tabor H. 2003. Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci USA 100:2261–2265.
470. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA. 1998. The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95:11140–11145.
471. Khan AU, Di Mascio P, Medeiros MH, Wilson T. 1992. Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc Natl Acad Sci USA 89:11428–11430.
472. Samartzidou H, Delcour AH. 1999. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J Bacteriol 181:791–798.
473. Samartzidou H, Mehrazin M, Xu Z, Benedik MJ, Delcour AH. 2003. Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J Bacteriol 185:13–19.
474. Fukuchi J-I, Kachiwagi K, Yamagishi M, Ishihama A, Igarashi K. 1995. Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli. J Biol Chem 269:22581–22585.
475. Kwon DS, Chen C-Lin S, Coward JK, Walsh CT, Bollinger JM, Jr. 1997. Dissection of glutathionylspermidine synthetase/amidase from Escherichia coli into autonomously folding and functional synthetase and amidase domains. J Biol Chem 272:2429–2436.
476. Tabor CW, Tabor H, Hafner EW. 1983. Mass screening for mutants in the biosynthetic pathway for polyamines in Escherichia coli: a general method for mutants in enzymatic reactions producing CO2. Methods Enzymol 94:83–90.
477. Graham DE, Xu H, White RH. 2002. Methanococcus jannaschii uses a pyruvoyl-dependent arginine decarboxylase in polyamine biosynthesis. J Biol Chem 277:23500–23507.
478. Gale EF. 1946. The bacterial amino acid decarboxylases. Adv Enzymol 6:1–32.
479. Boeker EA, Snell EE. 1972. Aminoacid decarboxylase, p 217–253. In Buyer PD (ed), The Enzymes, 3rd ed., vol. 6. Academic Press, Inc., New York, N.Y.
480. Morris DR, Boeker FA. 1983. Biosynthetic and biodegradative ornithine and arginine decarboxylases from Escherichia coli. Methods Enzymol 94:125–134.
481. Stim KP, Bennett GN. 1993. Nucleotide sequence of the adi gene, which encodes the biodegradative acid-induced arginine decarboxylase of Escherichia coli. J Bacteriol 175:1221–1234.
482. Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW. 1995. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigellaflexneri, and Escherichia coli. J Bacteriol 177:4097–4104.
483. Masuda N, Church GM. 2003. Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48:699–712.
484. Stim-Herndon KP, Flores TM, Bennett GN. 1996. Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli. Microbiology (UK) 142:1311–1320.
485. Dell CL, Neely MN, Olson ER. 1994. Altered pH and lysine signalling mutants of cadC, a gene encoding a membrane-bound transciptional activator of the Escherichia cadBA operon. Mol Microbiol 14:7–16.
486. Neely MN, Dell CL, Olson ER. 1994. Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia colicad operon. J Bacteriol 176:3278–3285.
487. Wu WH, Morris DR. 1973. Biosynthetic arginine decarboxylase from Escherichia coli. Purification and properties. J Biol Chem 248:1687–1695.
488. Buch JK, Boyle SM. 1985. Biosynthetic arginine decarboxylase in Escherichia coli is synthesized as a precursor and located in the cell envelope. J Bacteriol 163:522–527.
489. Tabor H, Tabor CW. 1969. Partial separation of two pools of arginine in Escherichia coli: preferential use of exogenous rather than endogenous arginine for the biosynthesis of 1,4-diaminobutane. J Biol Chem 244:6386–6387.
490. Kallo A, McCann PP, Berg P. 1981. DL-α-(Difluoromethyl)-arginine: a potent enzyme-activated irreversible inhibitor of bacterial arginine decarboxylase. Biochemistry 20:3163–3166.
491. Canellakis ES, Paterakis AA, Huang S-C, Panagiotidis CA, Kyriakidis DA. 1993. Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli. Proc Natl Acad Sci USA 90:7129–7133.
492. Panagiotidis CA, Huang SC, Canellakis ES. 1995. Relationship of the expression of the S20 and L34 ribosomal proteins to polyamine biosynthesis in Escherichia coli. Int J Biochem Cell Biol 27:157–168.
493. Chen CY, Hogarth LA, Shanley MS. 1991. Regulatory sequences controlling short chain fatty acid metabolism in Escherichia coli. SAAS Bull Biochem Biotechnol 4:22–26.
494. Jenkins LS, Nunn WD. 1987. Regulation of the ato operon by the atoC gene in Escherichia coli. J Bacteriol 169:2096–2102.
495. Satishchandran C, Boyle SM. 1986. Purification and properties of agmatine ureohydrohase, a putrescine biosynthetic enzyme in Escherichia coli. J Bacteriol 165:843–848.
496. Morris DR, Jorstad CM. 1970. Isolation of conditionally putrescine-deficient mutants of Escherichia coli. J Bacteriol 101:731–737.
497. Hirschfield IN, Rosenfeld HJ, Leifer Z, Maas WK. 1970. Isolation and characterization of a mutant of Escherichia coli blocked in the synthesis of putrescine. J Bacteriol 101:725–730.
498. Maas WK, Leifer Z, Pointdexter J. 1970. Studies with mutants blocked in the synthesis of polyamines. Ann N Y Acad Sci 171:957–967.
499. Szumanski MB, Boyle SM. 1992. Influence of cyclic AMP, agmatine, and a novel protein encoded by a flanking gene on speB (agmatine ureohydrolase) in Escherichia coli. J Bacteriol 174:758–764.
500. Appelbaum DM, Sabo DI, Fischer EH, Morris DR. 1975. Biodegradative ornithine decarboxylase of Escherichia coli. Purification, properties and pyridoxal 5′-phosphate binding site. Biochemistry 14:3675–3681.
501. Anagnostopoulos CG, Kyriakidis DA. 1996. Regulation of the Escherichia coli biosynthetic ornithine decarboxylase activity by phosphorylation and nucleotides. Biochim Biophys Acta 1297:228–234.
502. Heller JS, Fong WF, Canellakis ES. 1976. Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862.
503. Heller JS, Rostomily R, Kyriadis DA, Canellakis ES. 1983. Regulation of polyamine biosynthesis in Escherichia coli by basic proteins. Proc Natl Acad Sci USA 80:5181–5184.
504. Kyriakidis DA, Heller JS, Canellakis ES. 1978. Modulation of ornithine decarboxylase in Escherichia coli by positive and negative effectors. Proc Natl Acad Sci USA 75:4699–4703.
505. Kashiwagi K, Igarashi K. 1988. Adjustment of polyamine contents in Escherichia coli. J Bacteriol 170:3131–3135.
506. Igarashi K, Kashiwagi K, Hamasaki H, Miura A, Kakegawa T, Hirose S, Matsuzaki S. 1986. Formation of compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. J Bacteriol 166:128–134.
507. Cunningham-Rundles S, Maas WK. 1975. Isolation, characterization, and mapping of Escherichia coli mutants blocked in the synthesis of ornithine decarboxylase. J Bacteriol 124:791–799.
508. Markham GD, Tabor CW, Tabor H. 1983. S-Adenosylmethionine decarboxylase (Escherichia coli). Methods Enzymol 94:228–230.
509. Wickner RB, Tabor CW, Tabor H. 1970. Purification of adenosylmethionine decarboxylase from Escherichia coli W: evidence for covalently bound pyruvate. J Biol Chem 245:2132–2139.
510. Tabor H, Tabor CW, Hafner EW. 1978. Escherichia coli mutants completely deficient in adenosylmethionine decarboxylase and in spermidine biosynthesis. J Biol Chem 253:3671–3676.
511. Xie QW, Tabor CW, Tabor H. 1993. Deletion mutations in the speED operon: spermidine is not essential for the growth of Escherichia coli. Gene 126:115–117.
512. Bowan WH, Tabor CW, Tabor H. 1973. Spermidine biosynthesis. Purification and properties of polyamine transferase from Escherichia coli. J Biol Chem 248:2480–2486.
513. Hafner EW, Tabor CW, Tabor H. 1979. Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. J Biol Chem 254:12419–12426.
514. Pegg AF, Bitoni AJ, McCann PP, Coward JK. 1983. Inhibition of bacterial aminopropyltransferase by S-adenosyl-1,8-diamino-3-thiooctane and by dicyclohexamine. FEBS Lett 155:192–196.
515. Tabor H, Tabor CW, Cohn MS, Hafner EW. 1981. Streptomycine resistance (rpsL) produces an absolute requirement for polyamines for growth of an Escherichia coli strain unable to synthesize putrescine and spermidine [Δ(speAspeBspeC]. J Bacteriol 147:702–704.
516. Tabor CW, Tabor H. 1976. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem 45:285–306.
517. Dion AS, Cohen SS. 1972. Polyamine stimulation of nucleic acid synthesis in an uninfected and phage-infected polyamine auxotroph of Escherichia coli K-12. Proc Natl Acad Sci USA 69:213–217.
518. Goldenberg SH. 1980. Lysine decarboxylase mutants of Escherichia coli: evidence for two enzyme forms. J Bacteriol 141:1428–1431.
519. Sabo DL, Boeker EA, Bryers B, Waron H, Fischer EH. 1974. Purification and physical properties of inducible Escherichia coli lysine decarboxylase. Biochemistry 13:662–670.
520. Boeker EA, Fischer EH. 1983. Lysine decarboxylase (Escherichia coli B). Methods Enzymol 94:180–184.
521. Lemonnier M, Lane D. 1998. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology (UK) 144:751–760.
522. Nagano T, Kikuchi Y, Kamio Y. 2000. High expression of the second lysine decarboxylase gene, Idc, in Escherichia coli WC196 due to the recognition of the stop codon (TAG), at a position which corresponds to th 33th amino acid residue of sigma38, as a serine residue by the amber suppressor, supD. Biosci Biotechnol Biochem 64:2012–2027.
523. Tabor CW, Hafner EW, Tabor H. 1980. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase. J Bacteriol 144:952–956.
524. Satishchandran C, Boyle SM. 1984. Antagonistic transcriptional regulation of the putrescine biosynthetic enzyme agmatine ureohydrolase by cyclic AMP and agmatine in Escherichia coli. J Bacteriol 154:552–559.
525. Wright JM, Boyle SM. 1982. Negative control of ornithine decarboxylase and arginine decarboxylase by adenosine-3′,5′-cyclic monophosphate in Escherichia coli. Mol Gen Genet 186:482–487.
526. Halpern SY, Metzer E. 1989. Utilization of L-arginine, L-ornithine, agmatine and putrescine as the major source of nitrogen and its control in Escherichia coli K12, p 85–95. In Bachrach U and Meiner YM (ed), The Physiology of Polyamines, vol. II. CRC Press, Inc., Boca Raton, Fla.
527. Shaibe F, Metzer F, Halpern YS. 1985. Control of utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol 163:938–942.