1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biosynthesis of Cysteine

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Author: Nicholas M. Kredich1
  • Editor: Valley Stewart2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710; 2: University of California, Davis, Davis, CA
  • Received 19 May 2005 Accepted 08 August 2005 Published 24 January 2008
  • Address correspondence to Nicholas M. Kredich kredi001@mc.duke.edu
image of Biosynthesis of Cysteine
    Preview this reference work article:
    Zoom in
    Zoomout

    Biosynthesis of Cysteine, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/1/3_6_1_11_module-1.gif /docserver/preview/fulltext/ecosalplus/3/1/3_6_1_11_module-2.gif
  • Abstract:

    The synthesis of L-cysteine from inorganic sulfur is the predominant mechanism by which reduced sulfur is incorporated into organic compounds. L-cysteineis used for protein and glutathione synthesis and serves as the primary source of reduced sulfur in L-methionine, lipoic acid, thiamin, coenzyme A (CoA), molybdopterin, and other organic molecules. Sulfate and thiosulfate uptake in and serovar Typhimurium are achieved through a single periplasmic transport system that utilizes two different but similar periplasmic binding proteins. Kinetic studies indicate that selenate and selenite share a single transporter with sulfate, but molybdate also has a separate transport system. During aerobic growth, the reduction of sulfite to sulfide is catalyzed by NADPH-sulfite reductase (SiR), and serovar Typhimurium mutants lacking this enzyme accumulate sulfite from sulfate, implying that sulfite is a normal intermediate in assimilatory sulfate reduction. L-Cysteine biosynthesis in serovar Typhimurium and ceases almost entirely when cells are grown on L-cysteine or L-cystine, owing to a combination of end product inhibition of serine transacetylase by L-cysteine and a gene regulatory system known as the cysteine regulon, wherein genes for sulfate assimilation and alkanesulfonate utilization are expressed only when sulfur is limiting. In vitro studies with the , , and promoters have confirmed that they are inefficient at forming transcription initiation complexes without CysB and N-acetyl-L-serine. Activation of the and promoters requires Cbl. It has been proposed that the three serovar Typhimurium anaerobic reductases for sulfite, thiosulfate, and tetrathionate may function primarily in anaerobic respiration.

  • Citation: Kredich N. 2008. Biosynthesis of Cysteine, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.11

Key Concept Ranking

Transcription Start Site
0.52027184
Inorganic Compounds
0.4773321
Chemicals
0.4328594
Integral Membrane Proteins
0.39799646
Amino Acids
0.37816077
Sulfate Reduction
0.37269777
0.52027184

References

1. Peck HD, Jr. 1961. Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J Bacteriol 82:933–939.[PubMed]
2. Nakamura T, Iwahashi H, Eguchi Y. 1984. Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium. J Bacteriol 158:1122–1127.[PubMed]
3. Nakamura T, Sato R. 1963. Enzymatic synthesis of S-sulfocysteine from thiosulfate and serine. Nature (London) 198:1198. [CrossRef]
4. Flavin M, Slaughter C. 1967. Enzymatic synthesis of homocysteine or methionine directly from succinylhomoserine. Biochim Biophys Acta 32:400–405.
5. Simon M, Hong JS. 1983. Direct homocysteine biosynthesis from O-succinyl-homoserine in Escherichia coli: an alternative pathway that by-passes cystathionine. J Bacteriol 153:558–561.[PubMed]
6. Cherest H, Surdin-Kerjan Y. 1992. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130:51–58.[PubMed]
7. Soutourina J, Blanquet S, Plateau P. 2001. Role of D-cysteine desulfhydrase in the adaptation of E. coli to D-cysteine. J Biol Chem 276:40864–40872. [PubMed][CrossRef]
8. Kredich NM, Foote LJ, Hulanicka MD. 1975. Studies on the mechanism of inhibition of Salmonella typhimurium by 1,2,4-triazole. J Biol Chem 250:7324–7331.[PubMed]
9. Vogel HJ, Bonner DM. 1956. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106.[PubMed]
10. Kertesz MA. 2000. Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 24:135–75. [PubMed][CrossRef]
11. Uria-Nicklesen MR, Leadbetter ER, Godchaux W III. 1993. Sulphonate utilization by enteric bacteria. J Gen Microbiol 139:203–208.[PubMed]
12. Uria-Nicklesen MR, Leadbetter ER, Godchaux W III. 1994. Comparative aspects of utilization of sulfonate and other sulfur sources by Escherichia coli K12. Arch Microbiol 161:434–438. [PubMed][CrossRef]
13. van der Ploeg JR, Eichhorn E, Leisinger T. 2001. Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol 176:1–8. [PubMed][CrossRef]
14. Henderson ML, Milazzo FH. 1979. Arylsulfatase in Salmonella typhimurium: detection and influence of carbon source and tyramine on its synthesis. J Bacteriol 139:80–87.[PubMed]
15. Clowes RC. 1958. Nutritional studies of cysteineless mutants of Salmonella typhimurium. J Gen Microbiol 118:140–153.
16. Filutowicz M, Waiter A, Hulanicka D. 1982. Delayed inducibility of sulfite reductase in cysM mutants of Salmonella typhimurium under anaerobic conditions. J Gen Microbiol 128:1791–1794.[PubMed]
17. Hulanicka MD, Garrett C, Jagura-Burdzy G, Kredich NM. 1986. Cloning and characterization of the cysAMK region of Salmonella typhimurium. J Bacteriol 168:322–327.[PubMed]
18. Monroe RS, Kredich NM. 1988. Isolation of Salmonella typhimurium cys genes by transduction using a 1ibrary of recombinant plasmids packaged in phage P22HT capsids. J Bacteriol 170:42–47.[PubMed]
19. Sirko A, Hryniewicz M, Hulanicka D, Böck A. 1990. Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172:3351–3357.[PubMed]
20. Jagura-Burdzy G, Kredich NM. 1983. Cloning and physical mapping of the cysB region of Salmonella typhimurium. J Bacteriol 155:578–585.[PubMed]
21. Ostrowski J, Jagura-Burdzy G, Kredich NM. 1987. DNA sequences of the cysB regions of Salmonella typhimurium and Escherichia coli. J Biol Chem 262:5999–6005.[PubMed]
22. Leyh TS, Taylor J, Markham GD. 1988. The sulfate activation locus of Escherichia coli K12: cloning, genetic and enzymatic characterization. J Biol Chem 263:2409–2416.[PubMed]
23. Leyh TS, Vogt TF, Suo Y. 1992. The DNA sequences of the sulfate activation locus from Escherichia coli K12. J Biol Chem 267:10405–10410.[PubMed]
24. Sivaprasad AV, Kuczek ES, Bawden CS, Rogers GE. 1992. Coexpression of the cysE and cysM genes of Salmonella typhimurium in mammalian cells: a step towards establishing cysteine biosynthesis in sheep by transgenesis. Transgenic Res 1:79–92. [PubMed][CrossRef]
25. Denk D, Böck A. 1987. L-Cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and a cysteine-excreting mutant. J Gen Microbiol 133:515–525.[PubMed]
26. Wu J-Y, Siegel LM, Kredich NM. 1991. High-level expression of Escherichia coli NADPH-sulfite reductase: requirement for a cloned cysG plasmid to overcome limiting siroheme cofactor. J Bacteriol 173:325–333.[PubMed]
27. Macdonald H, Cole J. 1985. Molecular cloning and functional analysis of the cysG and nirB genes of Escherichia coli K12, two closely-linked genes required for NADH-dependent nitrite reductase activity. Mol Gen Genet 200:320–334. [CrossRef]
28. Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan S, Harborne N, Woottou J, Nicolson R, Cole J. 1990. Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K12 chromosome. Eur J Biochem 191:315–323. [PubMed][CrossRef]
29. Ostrowski J, Wu J-Y, Rueger DC, Miller BE, Siegel LM, Kredich NM. 1989. Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B: DNA sequences of cysI and cysH and a model for the siroheme-Fe4S4 active center of sulfite reductase hemoprotein based on amino acid homology with spinach nitrite reductase. J Biol Chem 264:15726–15737.[PubMed]
30. Ostrowski J, Barber MJ, Rueger DC, Miller BE, Siegel LM, Kredich NM. 1989. Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli: physicochemical and catalytic properties, amino acid sequence deduced from the DNA sequence of cysJ and comparison with NADPH-cytochrome P-450 reductase. J Biol Chem 264:15796–15808.[PubMed]
31. Byrne CR, Monroe RS, Ward KA, Kredich NM. 1988. DNA sequences of the cysK regions of Salmonella typhimurium and Escherichia coli and linkage of the cysK regions to ptsH. J Bacteriol 190:3150–3157.
32. Cook PF, Wedding RT. 1977. Overall mechanism and rate equation for O-acetylserine sulfhydrylase. J Biol Chem 252:3479.
33. Hulanicka D, Klopotowski T. 1972. Mutants of Salmonella typhimurium resistant to triazole. Acta Biochim Pol 19:251–260.[PubMed]
34. Hryniewicz M, Sirko A, Palucha A, Bock; A Hulanicka D. 1990. Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol 172:3358–3366.[PubMed]
35. Neuwald AF, Krishnan BR, Brikun L, Kulakauskas S, Suziedelis K, Tomcsanyi T, Leyh TS, Berg DE. 1992. cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J Bacteriol 174:415–425[PubMed]
36. Peng Z, Verma DP. 1995. A rice HAL2-like gene encodes a Ca(2+)-sensitive 3′(2′),5′-diphosphonucleoside 3′(2′)-phosphohydrolase and complements yeast met22 and Escherichia coli cysQ mutations. J Biol Chem 270:29105–29110. [PubMed][CrossRef]
37. Avalos J, Corrochano LM, Brenner S. 1991. Cysteinyl-tRNA synthetase is a direct descendent of the first aminoacyl-tRNA synthetase. FEBS Lett 286:176–180. [PubMed][CrossRef]
38. Bohman K, Isaksson LA. 1979. Temperature-sensitive mutants in cysteinyl-tRNA ligase of E. coli K-12. Mol Gen Genet 176:53–55. [PubMed][CrossRef]
39. Eriani G, Dirheimer G, Gangloff J. 1991. Cysteinyl-tRNA synthetase: determination of the last E. coli aminoacyl-tRNA synthetase primary structure. Nucleic Acids Res 19:265–269. [PubMed][CrossRef]
40. Hou Y-M, Shiba K, Mottes C, Schimmel P. 1991. Sequence determination and modeling of structural motifs for the smallest monomer aminoacyl-tRNA synthetase. Proc Natl Acad Sci USA 88:976–980. [PubMed][CrossRef]
41. Fournier MJ, Ozeki H. 1985. Structure and organization of the transfer ribonucleic acid genes of Escherichia coli K-12. Microbiol Rev 49:379–397.[PubMed]
42. Jourdan AD, Stauffer GV. 1998. Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. J Bacteriol 180:4865–4871.[PubMed]
43. Komine Y, Adachi T, Inokuchi H, Ozeki H. 1990. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K-12. J Mol Biol 212:579–598. [PubMed][CrossRef]
44. Tei H, Murata K, Kimura A. 1990. Structure and expression of cysX, the second gene in the Escherichia coli K12 cysE locus. Biochem Biophys Res Commun 167:948–955. [PubMed][CrossRef]
45. Ikebe T, Iyoda S, K Kutsukake. 1999. Structure and expression of the fliA operon of Salmonella typhimurium. Microbiology 145:1389–1396. [PubMed][CrossRef]
46. Hellinga HW, Evans PR. 1985. Nucleotide sequence and high-level expression of the major Escherichia coli phosphofructokinase. Eur J Biochem 149:363–373. [PubMed][CrossRef]
47. Parry J, Clark DP. 2002. Identification of a CysB-regulated gene involved in glutathione transport in Escherichia coli. FEMS Microbiol Lett. 209:81–85. [PubMed][CrossRef]
48. Iwanicka-Nowicka R, Hryniewicz MM. 1995. A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. Gene 166:11–17. [PubMed][CrossRef]
49. Eichhorn E, van der Ploeg JR, Lesinger T. 2000. Deletion analysis of the Escherichia coli taurine and alkane sulfonate transport systems. J Bacteriol 182:2687–2695. [PubMed][CrossRef]
50. van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertsz MA, Leisinger T. 1996. Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 178:5438–5446.[PubMed]
51. Eichhorn E, van der Ploeg JR, Kertesz MA, Lesinger T. 1997. Characterization of an α-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem 37:23031–23036. [CrossRef]
52. van der Ploeg JR, Iwanicka-Nowicka R, Bykowski T, Hryniewicz MM, Leisinger T. 1999. The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl. J Biol Chem 274:29358–29365. [PubMed][CrossRef]
53. Eichhorn E, van der Ploeg JR, Lesinger T. 1999. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J Biol Chem 274:26639–26646. [PubMed][CrossRef]
54. Hallenbeck PC, Clark MA, Barrett EL. 1989. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase. J Bacteriol 171:3008–3015.[PubMed]
55. Huang CJ, Barrett EL. 1990. Identification and cloning of genes involved in anaerobic sulfite reduction by Salmonella typhimurium. J Bacteriol 172:4100–4102.[PubMed]
56. Huang CJ, Barrett EL. 1991. Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J Bacteriol 173:1544–1553.[PubMed]
57. Barrett EL, Chang GW. 1979. Cysteine auxotrophs of Salmonella typhimurium which grow without cysteine in a hydrogen/carbon dioxide atmosphere. Gen Microbiol 115:513–516.
58. Clark MA, Barrett EL. 1987. The phs gene and hydrogen sulfide production by Salmonella typhimurium. J Bacteriol 169:2391–2397.[PubMed]
59. Hinsley AP, Berks BC. 2002. Specificity of respiratory pathways involved in the reduction of sulfur compounds by Salmonella enterica. Microbiology 148:3631–3638.[PubMed]
60. Riggs DL, Tang JS, Barrett EL. 1987. Thiosulfate reductase as a chlorate reductase in Salmonella typhimurium. FEMS Microbiol Lett 44:427–430. [CrossRef]
61. Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. 1999. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 32:275–287. [PubMed][CrossRef]
62. Baptist EW, Kredich NM. 1977. Regulation of L-cystine transport in Salmonella typhimurium. J Bacteriol 131:111–118.[PubMed]
63. Pardee AB, Prestidge LS, Whipple MB, Dreyfuss J. 1966. A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium. J Biol Chem 241:3962–3969.[PubMed]
64. Hulanicka MD, Hallquist SG, Kredich NM, Mojica TA. 1979. Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium. J Bacteriol 140:141–146.
65. Mukai F, Margolin P. 1963. Analysis of unlinked suppressors of an Oc mutation in Salmonella typhimurium. Proc. Natl Acad Sci USA 50:140–148. [PubMed][CrossRef]
66. Hulanicka D, Klopotowski T, Smith DA. 1972. The effect of triazole on cysteine biosynthesis in Salmonella typhimurium. J Gen Microbiol 72:291–301.[PubMed]
67. Hulanicka MD, Kredich NM. 1976. A mutation affecting expression of the gene coding for serine transacetylase in Salmonella typhimurium. Mol Gen Genet 148:143–148. [PubMed][CrossRef]
68. Sledziewska E, Hulanicka D. 1978. Method of isolation of cysteine constitutive mutants of the cysteine regulon in Salmonella typhimurium. Mol Gen Genet. 165:289–293. [PubMed][CrossRef]
69. Fimme1, AL, Loughlin RE. 1977. Isolation and characterization of cysK mutants of Escherichia coli K12. J Gen Microbiol 103:37–43.[PubMed]
70. Hryniewicz M, Palucha A, Hulanicka MD. 1988. Construction of cys:lac gene fusions in Escherichia coli and their use in the isolation of constitutive cysBc mutants. J Gen Microbiol 134:763–769.[PubMed]
71. Oppezzo OJ, Anton DN. 1995. Involvement of cysB and cysE genes in the sensitivity of Salmonella typhimurium to mecillinam. J Bacteriol 177:4524–4527.[PubMed]
72. Dreyfuss J. 1964. Characterization of a sulfate and thiosulfate-transporting system from Salmonella typhimurium. J Biol Chem 239:2292–2297.[PubMed]
73. Karbonowska H, Wiater A, Hulanicka MD. 1977. Sulfate permease of Escherichia coli K12. Acta Biochim Pol 24:329–334.[PubMed]
74. Sirko A, Zatyka M, Sadowy EE, Hulanicka D. 1995. Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. J Bacteriol 177:4134–4136.[PubMed]
75. Lindblow-Kull C, KuIl FJ, Shrift A. 1985. Single transporter for sulfate, selenate, and selenite in Escherichia coli K-12. J Bacteriol 163:1267–1269.[PubMed]
76. Grunden, AM, Shanmugam KT. 1997. Molybdate transport and regulation in bacteria. Arch Microbiol 168:345–354. [PubMed][CrossRef]
77. Lee JH, Wendt JC, Shanmugam KT. 1990. Identification of a new gene, molR, essential for utilization of molybdate by Escherichia coli. J Bacteriol 172:2079–2087.[PubMed]
78. Rosentel JK, Healy F, Maupin-Furlow JA, Lee JH, Shanmugam KT. 1995. Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli. J Bacteriol 177:4857–4864.[PubMed]
79. Scott D, Amy NK. 1989. Molybdenum accumulation in chID mutants of Escherichia coli. J Bacteriol 171:1284–1287.[PubMed]
80. Pardee AB. 1966. Purification and properties of a sulfate-binding protein from Salmonella typhimurium. J Biol Chem 241:5886–5892.[PubMed]
81. Mazzara GP, McLain WH. 1977. Cysteine transfer RNA of Escherichia coli: nucleotide sequence and unusual metabolic properties of the 3′ C-C-A terminus. J Mol Biol 117:1061–1079. [PubMed][CrossRef]
82. Parra F, Britton P, Castle C, Jones-Mortimer MC, Kornberg HL. 1983. Two separate genes involved in sulfate transport in Escherichia coli K12. J Gen Microbiol 129:357–358.[PubMed]
83. Cook PF, Wedding RT. 1977. Initial kinetic characterization of the multi-functional complex, cysteine synthetase. Arch Biochem Biophys 178:293–302. [PubMed][CrossRef]
84. Ames GF-L. 1986. Bacterial periplasmic transport systems: structure, mechanism and evolution. Annu Rev Biochem 55:397–425. [PubMed][CrossRef]
85. Mizobuchi K, Demerec M, Gillespie DH. 1962. Cysteine mutants of Salmonella typhimurium. Genetics 47:1617–1527.[PubMed]
86. Isihara H, Hogg RW. 1980. Amino acid sequence of sulfate binding protein from Salmonella typhimurium LT2. J Biol Chem 255:4614–4618.[PubMed]
87. Pflugrath JW, Quiocho FA. 1988. The 2 Å resolution structure of the sulfate-binding protein involved in active transport in Salmonella typhimurium. J Mol Biol 200:163–180. [PubMed][CrossRef]
88. Delany JM, Ang D, Georgopoulos C. 1992. Isolation and characterization of the Escherichia coli htrD gene, whose product is required for growth at high temperatures. J Bacteriol 174:1240–1247.[PubMed]
89. Berger EA, Heppel LA. 1972. A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli. J Biol Chem 247:7684–7694.[PubMed]
90. Butler JD, Levin SW, Facchiano A, Miele L, Mukherjee AB. 1993. Amino acid composition and N-terminal sequence of purified cystine binding protein of Escherichia coli. Life Sci 52:1209–1215. [PubMed][CrossRef]
91. Mytelka DS, Chamberlin MJ. 1996. Escherichia coli fliAZY operon. J Bacteriol 178:224–234.
92. Datta P. 1967. Regulation of homoserine biosynthesis by L-cysteine, a terminal metabolite of a linked pathway. Proc Natl Acad Sci USA 58:635–641. [PubMed][CrossRef]
93. Harris CL. 1981. Cysteine and growth inhibition of Escherichia coli: threonine deaminase as the target enzyme. J Bacteriol 145:1031–1035.[PubMed]
94. Robbins,PW, Upmann F. 1958. Enzymatic synthesis of adenosine-5′-phospho-sulfate. J Biol Chem 233:686–690.
95. Robbins PW, Lipmann F. 1956. The enzymatic sequence in the biosynthesis of active sulfate. J. Am. Chem. Soc. 78:6409–6410. [CrossRef]
96. Liu C, Martin E, Leyh TS. 1994. GTPase activation of ATP sulfurylase: the mechanism. Biochemistry 33:2042–2047. [PubMed][CrossRef]
97. Leyh TS, Suo Y. 1992. GTPase mediated activation of ATP sulfurylase. J Biol Chem 267:542–545.[PubMed]
98. Leyh TS. 1993. The physical biochemistry and molecular genetics of sulfate activation. Crit. Rev. Biochem. Mol. Biol. 28:515–542. [PubMed][CrossRef]
99. Liu C, Wang R, Varlamova O, Leyh TS. 1998. Regulating energy transfer in the ATP sulfurylase-GTPase system. Biochemistry 37:3886–3892. [PubMed][CrossRef]
100. Pilloff, Leyh D E, TS. 2003. Allosteric and catalytic functions of the PPi-binding motif in the ATP sulfurylase-GTPase system. J Biol Chem 278:50435–50441. [PubMed][CrossRef]
101. Sukal S, Leyh TS. 2001. Product release during the first turnover of the ATP sulfurylase-GTPase. Biochemistry 40:15009–15016. [PubMed][CrossRef]
102. Wei J, Liu C, Leyh TS. 2000. The role of enzyme isomerization in the native catalytic cycle of the ATP sulfurylase-GTPase system. Biochemistry 39:4704–4710. [PubMed][CrossRef]
103. Satishchandran C, Markham GD. 1989. Adenosine-5′-phosphosulfate kinase from Escherichia coli KI2. J Biol Chem 264:15012–15021.[PubMed]
104. Schriek U, Schwenn JD. 1986. Properties of the purified APS-kinase from Escherichia coli and Saccharomyces cerevisiae. Arch Microbiol 145:32–38. [PubMed][CrossRef]
105. Satishchandran C, Markham GD. 2000. Mechanistic studies of Escherichia coli adenosine-5′-phosphosulfate kinase. Arch Biochem Biophys 378:210-215. [PubMed][CrossRef]
106. Satishchandran C, Hickman YN, Markham GD. 1992. Characterization of the phosphorylated enzyme intermediate formed in the adenosine 5′-phosphosulfate kinase reaction. Biochemistry 31:11684–11688. [PubMed][CrossRef]
107. Cooper JL. 1983. Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52:187–222. [PubMed][CrossRef]
108. Diewiatkowski DD. 1954. Utilization of sulfate sulfur in the rat for the synthesis of cystine. J Biol Chem 207:181–186.[PubMed]
109. Krone FA, Westphal G, Schwenn JD. 1991. Characterisation of the gene cysH and of its product phospho-adenylylsulphate reductase from Escherichia coli. Mol Gen Genet 225:314–319. [PubMed][CrossRef]
110. Dreyfuss J, Monty KJ. 1963. The biochemical characterization of cysteine-requiring mutants of Salmonella typhimurium. J Biol Chem 238:1019–1024.
111. Krone FA, Westphal G, Meyer HE, Schwenn JD. 1990. PAPS-reductase of Escherichia coli. Correlating the N-terminal amino acid sequence with the DNA of gene cysH. FEBS Lett 260:6–9. [PubMed][CrossRef]
112. Tsang ML-S. 1981. Assimilatory sulfate reduction in Escherichia coli: identification of the alternate cofactor for 3′-phosphoadenosine 5′-phosphosulfate reductase as glutaredoxin. J Bacteriol 146:1059–1066.[PubMed]
113. Tsang ML-S. 1983. Function of thioredoxin in the reduction of 3′-phosphoadenosine 5′-phosphosulfate in E. coli, p 103–110. In Gadal P (ed), Thioredoxins-Structure and Functions. Centre National de la Recherche Scientifique, Paris, France.
114. Tsang ML-S, Schiff JA. 1978. Assimilatory sulfate reduction in an Escherichia coli mutant lacking thioredoxin activity. J Bacteriol 134:131–138.[PubMed]
115. Russel M, Model P, Holgrem A. 1990. Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis. J Bacteriol 172:1923–1929.[PubMed]
116. Gillespie D, Demerec M, ltikawa H. 1968. Appearance of double mutants in aged cultures of Salmonella typhimurium cysteine-requiring strains. Genetics 59:433–442.[PubMed]
117. York JD, Ponder JW, Majerus PW. 1995. Definition of a metal-dependent/Li+-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc Natl Acad Sci USA 92:5149–5153. [PubMed][CrossRef]
118. Schiff JA. 1980. Pathways of assimilatory sulphate reduction in plants and microorganisms. Ciba Found Symp 72:49–64.
119. Tsang ML-S, Schiff JA. 1976. Sulfate-reducing pathway in Escherichia coli involving bound intermediates. J Bacteriol 125:923–933.[PubMed]
120. Siegel LM, Murphy MJ, Kamin H. 1973. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: molecular parameters and prosthetic groups. J Biol Chem 248:251–261.[PubMed]
121. Siegel LM, Davis PS. 1974. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem 249:1587–1598.[PubMed]
122. Zeghouf M, Fontecave M, Coves J. 2000. A simplified functional version of the Escherichia coli sulfite reductase. J Biol Chem 275:37651–37656. [PubMed][CrossRef]
123. Eschenbrenner M, Coves J, Fontecave M. 1995. NADPH-sulfite reductase flavoprotein from Escherichia coli: contribution to the flavin content and subunit interaction. FEBS Lett 374:82–84. [PubMed][CrossRef]
124. Siegel LM, Kamin H, Rueger DC, Gibson R R Presswood QH. 1971. An iron-free sulfite reductase flavoprotein from mutants of Salmonella typhimurium, p 523–553. In Kamin H (ed), Flavins and Flavoproteins. University Park Press, Baltimore, MD.
125. Siegel LM, Davis PS, Kamin H. 1974. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. III. The Escherichia coli hemoflavoprotein: catalytic parameters and the sequence of electron flow. J Biol Chem 249:1572–1586.[PubMed]
126. Porter TD, Kasper CB. 1985. Coding nucleotide sequence of rat NADPH-cytochrome P-450 oxidoreductase cDNA and identification of flavin-binding domains. Proc Natl Acad Sci USA 82:973–977. [PubMed][CrossRef]
127. Iyanagi T, Mason HS. 1973. Some properties of hepatic reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase. Biochemistry 12:2297–2308. [PubMed][CrossRef]
128. Zeghouf M, Defaye G, Fontecave H, Coves J. 1998. The flavoprotein component of the Escherichia coli sulfite reductase can act as a cytochrome P450c17 reductase. Biochem Biophys Res Commun 246:602–605. [PubMed][CrossRef]
129. Zeghouf M, Fontecave M, Macherel D, Coves J. 1998. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors. Biochemistry 37:6114–6123. [PubMed][CrossRef]
130. Gruez A, Pignol D, Zeghouf M, Coves J, Fontecave M, Ferrer JL, Fontecilla-Camps JC. 2000. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. J Mol Biol 299:199–212. [PubMed][CrossRef]
131. Champier L, Sibille N, Bersch B, Brutscher B, Blackledge M, Coves J. 2002. Reactivity, secondary structure, and molecular topology of the Escherichia coli sulfite reductase flavodoxin-like domain. Biochemistry 41:3770–3780. [PubMed][CrossRef]
132. Cole JA, Newman BM, White P. 1989. Biochemical and genetic characterization of nirB mutants of Escherichia coli K12 pleiotropically defective in nitrite and sulfite reduction. J Gen Microbiol 120:475–483.
133. Murphy MJ, Siegel LM. 1973. Siroheme and sirohydrochlorin. J Biol Chem 248:6911–6919.[PubMed]
134. Murphy MJ, Siegel LM, Kamin H. 1973. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. J Biol Chem 248:2801–2814.[PubMed]
135. Vega JM, Kamin H. 1977. Spinach nitrite reductase: purification and properties of a siroheme-containing iron-sulfur enzyme. J Biol Chem 252:255–270.
136. Crane BR, Siegel LM, Getzoff ED. 1995. Sulfite reductase structure at 1.6 Å: evolution and catalysis for reduction of inorganic anions. Science 270:59–67. [PubMed][CrossRef]
137. McRee DE, Richardson DC, Richardson JS, Siegel LM. 1986. The heme and F4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase. J Biol Chem 261:10277–10281.[PubMed]
138. Christner JA, Munck E, Janick PA, Siegel LM. 1981. Mossbauer spectroscopic studies of Escherichia coli sulfite reductase. Evidence for coupling between the siroheme and F4S4 cluster prosthetic groups. J Biol Chem 256:2098–2101.[PubMed]
139. Cline JF, Janick PA, Siegel LM, Hoffman BM. 1985. Electron-nuclear double resonance studies of oxidized Escherichia coli sulfite reductase: IH, I4N, and 57Fe measurements. Biochemistry 24:7942–7947. [PubMed][CrossRef]
140. Kaufman J, Siegel LM, Spicer LD. 1993. Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit with added ligands. Biochemistry 32:8782–8791. [PubMed][CrossRef]
141. Kaufman J, Spicer LD, L Siegel M. 1993. Proton NMR of Escherichia coli sulfite reductase: the unligated hemoprotein subunit. Biochemistry 32:2853–2867. [PubMed][CrossRef]
142. Tan J, Helms LR, Swenson RP, Cowan JA. 1991. Primary structure of the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough): cloning and nucleotide sequence of the reductase gene. Biochemistry 30:9000–9007.
143. Back E, Burkhart W, Moyer M, Privalle L, Rothstein S. 1988. Isolation of cDNA clones coding for spinach nitrate reductase: complete sequence and nitrate induction. Mol Gen Genet 212:20–26. [PubMed][CrossRef]
144. Kinghorn JR, Campbell EI. 1989. Amino acid sequence relationships between bacterial, fungal, and plant nitrate and nitrite reductase proteins, p 385–403. In Wray JL and Kinghorn JR (ed), Molecular and Genetic Aspects of Nitrate Assimilation. Oxford Science Publications, Oxford, United Kingdom.
145. Dahl C, Kredich NM, Deutzmann R, Tröper HD. 1993. Dissimilatory sulfite reductase from Archaeoglobus fulgidus: physicochemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. J Gen Microbiol 139:1817–1828.[PubMed]
146. Crane BR, Siegel LM, Getzoff ED. 1997 Probing the catalytic mechanism of sulfite reductase by X-ray crystallography: structures of the Escherichia coli hemoprotein in complex with substrates, inhibitors, intermediates, and products. Biochemistry 36:12120–12137. [CrossRef]
147. Crane BR, Siegel LM, Getzoff ED. 1997. Structures of the siroheme- and Fe4S4-containing active center of sulfite reductase in different states of oxidation: heme activation via reduction-gated exogenous ligand exchange. Biochemistry 36:12101–12119. [PubMed][CrossRef]
148. Spencer JB, Stolowich NJ, Roessner CA, Scott AI. 1993. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett. 335:57–60. [PubMed][CrossRef]
149. Warren MJ, Roessner CA, Santander PJ, Scott AL. 1990. The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J 265:725–729.[PubMed]
150. Warren MJ, Bolt EL, Roessner CA, Scott AI, Spencer JB, Woodcock SC. 1994. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J 302:837–844.[PubMed]
151. Woodcock SC, Raux E, Levillayer F, Thermes C, Rambach A, Warren MJ. 1998. Effect of mutations in the transmethylase and dehydrogenase/chelatase domains of sirohaem synthase (CysG) on sirohaem and cobalamin biosynthesis. Biochem J 330:121–129.[PubMed]
152. Raux E, Heathcote C, Rambach A, Warren WJ. 1997. A role for Salmonella typhimurium cbiK in cobalamin (vitamin B12) and siroheme biosynthesis. J Bacteriol 179:3202–3212.[PubMed]
153. Jeter RM, Olivera BM, Roth JR. 1984. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol 159:206–213.[PubMed]
154. Eichhorn E, Davey CA, Sargent DF, Leisinger T, Richmond TJ. 2002. Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD. J Mol Biol 324:457–468. [PubMed][CrossRef]
155. Uria-Nickelsen MR, Leadbetter ER, Godchaux W III. 1994. Sulfonate-sulfur utilization involves a portion of the assimilatory sulfate reduction pathway in Escherichia coli. FEMS Microbiol. Lett. 123:43–48. [PubMed][CrossRef]
156. Kredich NM, Becker MA, Tomkins GM. 1969. Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. J Biol Chem 244:2428–2439.[PubMed]
157. Kredich NM, Tomkins GM. 1966. The enzymatic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 241:4955–4965.[PubMed]
158. Becker MA, Kredich NM, Tomkins GM. 1969. The purification and characterization of O-acetylserine sulfhydrylase A from Salmonella typhimurium. J Biol Chem 244:2418–2427.[PubMed]
159. Hulanicka MD, Kredich NM, Treiman DM. 1974. The structural gene for O-acetylserine sulfhydrylase A in Salmonella typhimurium. J Biol Chem 249:867–872.[PubMed]
160. Jones-Mortimer MC. 1968. Positive control of sulfate reduction in Escherichia coli: isolation, characterization and mapping of cysteineless mutants of E. coli K12. Biochem J 110:589–595.[PubMed]
161. Levy S, Danchin A. 1988. Phylogeny of metabolic pathways: O-acetylserine sulfhydrylase-A is homologous to the tryptophan synthase beta subunit. Mol Microbiol 2:777–783. [PubMed][CrossRef]
162. Cook PF, Wedding RT. 1978. Cysteine synthetase from Salmonella typhimurium. Aggregation, kinetic behavior and effect of modifiers. J Biol Chem 253:7874–7879.[PubMed]
163. Hindson VJ, Moody PC, Rowe AJ, Shaw WV. 2000. Serine acetyltransferase from Escherichia coli is a dimer of trimers. J Biol Chem 275:461–466. [PubMed][CrossRef]
164. Olsen LR, Huang B, Vetting MW, Roderick SL. 2004. Structure of serine acetyltransferase in complexes with CoA and its cysteine feedback inhibitor. Biochemistry 43:6013–6019 [PubMed][CrossRef]
165. Pye VE, Tingey AP, Robson RL, Moody PC. 2004. The structure and mechanism of serine acetyltransferase from Escherichia coli. J Biol Chem 279:40729–40736. [CrossRef]
166. Leu LS, Cook PF. 1994. Kinetic mechanism of serine transacetylase from Salmonella typhimurium. Biochemistry 33:2667–2671. [PubMed][CrossRef]
167. Droux M, Martin J, Sajus P, Douce R. 1992. Purification and characterization of O-acetylserine (thiol) lyase from spinach chloroplasts. Arch Biochem Biophys 295:379–390. [PubMed][CrossRef]
168. Mino K, Yamanoue T, Sakiyama T, Eisaki N, Matsuyama A, Nakanishi K. 2000. Effects of bienzyme complex formation of cysteine synthetase from Escherichia coli on some properties and kinetics. Biosci Biotech Biochem 64:1628–1640. [PubMed][CrossRef]
169. Hindson VJ, Shaw WY. 2003. Random-order ternary complex reaction mechanism of serine acetyltransferase from Escherichia coli. Biochemistry 42:3113–3119. [PubMed][CrossRef]
170. Hindson VJ. 2003. Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine. Biochem J 375:745–752. [PubMed][CrossRef]
171. Takagi H, Kobayashi C, Kobayashi S, Nakamori S. 1999. PCR random mutagenesis into Escherichia coli serine acetyltransferase: isolation of the mutant enzymes that cause overproduction of L-cysteine and L-cystine due to the desensitization to feedback inhibition. FEBS Lett 452:323–327. [PubMed][CrossRef]
172. Mino K, Yamanoue T, Sakiyama T, Eisaki N, Matsuyama A, Nakanishi K. 1999. Purification and characterization of serine acetyltransferase from Escherichia coli partially truncated at the C-terminal region. Biosci Biotech Biochem 63:168–179. [PubMed][CrossRef]
173. Mino K, Hiraoka K, Imamura K, Sakiyama T, Eisaki N, Matsuyama A, Nakanishi K. 2000. Characteristics of serine acetyltransferase from Escherichia coli deleting different lengths of amino acid residues from the C-terminus. Biosci Biotech Biochem 64:1874–1880. [PubMed][CrossRef]
174. Sirko AE, Malgorzata M, Hulanicka MD. 1987. Identification of the Escherichia coli cysM gene encoding O-acetylserine sulfhydrylase by cloning with min-Mu-lac containing a plasmid replicon. J Gen Microbiol 133:2719–2725.[PubMed]
175. Kredich NM. 1971. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth on varying sulfur sources and O-acetyl-L-serine on gene expression. J Biol Chem 246:3474–3484.[PubMed]
176. Tai CH, Nalabolu SR, Jacobson TM, Minter DE, Cook PF. 1993. Kinetic mechanisms of the A and B isozymes of O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2 using the natural and alternative reactants. Biochemistry 32:6433–6442. [PubMed][CrossRef]
177. Castric PA, Conn EE. 1971. Formation of β-cyanoalanine by O-acetylserine sulfhydrylase-A from Salmonella typhimurium. J Bacteriol 108:132–136.[PubMed]
178. Ciesla Z, Filutowicz M, Klopotowski T. 1980. Involvement of the L-cysteine biosynthetic pathway in azide-induced mutagenesis in Salmonella typhimurium. Mutat Res 70:261–268.[PubMed]
179. Owais WM, Rosichan JL, Arnold RC, Kleinhofs A, Nilan RA. 1983. A mutagenic metabolite synthesized by Salmonella typhimurium grown in the presence of azide is azidoalanine. Mutat Res 118:229–239. [PubMed][CrossRef]
180. Rabeh WM, Cook PF. 2004. Structure and mechanism of O-acetylserine sulfhydrylase. J Biol Chem 279:26803–26806. [PubMed][CrossRef]
181. Rege VD, Kredich NM, Tai CH, Karsten WE, Schnackerz KD, Cook PF. 1996. A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst. Biochemistry 335:13485–13493. [CrossRef]
182. Cook PF, Wedding RT. 1976. A reaction mechanism from steady state kinetic studies for O-acetylserine sulfhydrylase from Salmonella typhimurium. J Biol Chem 251:2023–4029.[PubMed]
183. Burkhard P, Rao GS, Hohenester E, Schnackerz KD, Cook PF, Jansonius JN. 1998. Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 283:121–133. [PubMed][CrossRef]
184. Mozzarelli A, Bettati S, Pucci AM, Burkhard P, Cook PF. 1998. Catalytic competence of O-acetylserine sulfhydrylase in the crystal probed by polarized absorption microspectrophotometry. J Mol Biol 283:135–146. [PubMed][CrossRef]
185. Burkhard P, Tai CH, Jansonius JN, Cook PF. 2000. Identification of an allosteric anion-binding site on O-acetylserine sulfhydrylase: structure of the enzyme with chloride bound. J Mol Biol 303:279–286. [PubMed][CrossRef]
186. Tai CH, Burkhard P, Gani D, Jenn T, Johnson C, Cook PF. 2001. Characterization of the allosteric anion-binding site of O-acetylserine sulfhydrylase. Biochemistry 40:7446–7452. [PubMed][CrossRef]
187. Becker MA, Tomkins GM. 1969. Pleiotropy in a cysteine-requiring mutant of Salmonella typhimurium resulting from an altered protein-protein interaction. J Biol Chem 244:6023–6030.[PubMed]
188. Woodin TS, Segal IH. 1968. Glutathione reductase-dependent metabolism of cysteine-S-sulfate by Penicillium chrysogenum. Biochim Biophys Acta 167:78–88.[PubMed]
189. Nakamura T, Kon Y, Iwahashi H, Eguchi Y. 1983. Evidence that thiosulfate assimilation by Salmonella typhimuriumis catalyzed by cysteine synthase B. J Bacteriol 156:656–662.[PubMed]
190. Wheldrake JF. 1967. Intracellular concentration of cysteine in Escherichia coli and its relation to repression of the sulphate-activating enzymes. Biochem J 105:697–699.[PubMed]
191. Ellis RJ, Humphries SK, Pasternak CA. 1964. Repressors of sulfate activation in Escherichia coli. Biochem J 92:167–172.[PubMed]
192. Borum PR, Monty KJ. 1976. Regulatory mutants and control of cysteine biosynthetic enzymes in Salmonella typhimurium. J Bacteriol 125:94–101.[PubMed]
193. Henikoff S, Haughn GW, Calvo JM, Wallace JC. 1988. A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85:6602–6606. [PubMed][CrossRef]
194. Schell MA. 1993. Molecular biology of the LysR family of transcriptional activators. Annu Rev Microbiol 47:597–626. [PubMed][CrossRef]
195. van der Ploeg JR, Iwanicka-Nowicka R, Kertesz MA, Leisinger T, Hryniewicz MM. 1997. Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. J Bacteriol 179:7671–7678.[PubMed]
196. Bielinska A, Hulanicka D. 1986. Regulation of the cysB gene expression in Escherichia coli. Acta Biochim Pol 33:133–137.[PubMed]
197. Jagura-Burdzy G, Hulanicka D. 1981. Use of gene fusions to study expression of cysB, the regulatory gene of the cysteine regulon. J Bacteriol 147:744–751.[PubMed]
198. Ostrowski J, Kredich NM. 1991. Negative autoregulation of cysB in Salmonella typhimurium: in vitro interactions of cysB protein with the cysB promoter. J Bacteriol 173:2212–2218.[PubMed]
199. Jones-Mortimer MC. 1968. Positive control of sulfate reduction in Escherichia coli: the nature of the pleiotropic cysteineless mutants of E. coli K12. Biochem J 110:597–602.[PubMed]
200. Ostrowski J, Kredich NM. 1989. Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-L-serine. J Bacteriol 171:130–140.[PubMed]
201. Jones-Mortimer MC, Wheldrake JR, Pasternak CA. 1968. The control of sulphate reduction in Escherichia coli by O-acetyl-L-serine. Biochem J 107:51–53.[PubMed]
202. Hryniewicz MM, Kredich NM. 1991. The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. J Bacteriol 173:5876–5886.[PubMed]
203. Ostrowski J, Kredich NM. 1990. In vitro interactions of CysB protein with the cysJIH promoter of Salmonella typhimurium: inhibitory effects of sulfide. J Bacteriol 172:779–785.[PubMed]
204. Kredich NM, Keenan BS, Foote LJ. 1972. The purification and subunit structure of cysteine desulfhydrase from Salmonella typhimurium. J Biol Chem 247:7157–7162.[PubMed]
205. Pasternak CA, Ellis RJ, Jones-Mortimer MC, Crichton CE. 1965. The control of sulfate reduction in bacteria. Biochem J 96:270–275.[PubMed]
206. Wheldrake JF, Pasternak CA. 1965. The control of sulfate activation in bacteria. Biochem J 96:276–280.[PubMed]
207. Peakman T, Busby S, Cole J. 1990. Transcriptional control of the cysG gene of Escherichia coli K-12 during aerobic and anaerobic growth. Eur J Biochem 191:325–331. [PubMed][CrossRef]
208. Harborne NR, Griffiths L, Busby SJ, Cole JA. 1992. Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon. Mol Microbiol 6:2805–2813. [PubMed][CrossRef]
209. Monroe RS, Ostrowski J, Hryniewicz MM, Kredich NM. 1990. In vitro interactions of CysB protein with the cysK and cysJIH promoter regions of Salmonella typhimurium. J Bacteriol 172:6919–6929.[PubMed]
210. Malo MS, Loughlin RE. 1990. Promoter elements and regulation of expression of the cysD gene of Escherichia coli K-12. Gene 87:127–131. [PubMed][CrossRef]
211. Loudon JA, Loughlin RE. 1992. Mutagenesis and regulation of the cysJ promoter of Escherichia coli K-12. Gene 122:17–25. [PubMed][CrossRef]
212. Loughlin RE. 1975. Polarity of the cysJIH operon of Salmonella typhimurium. J Gen Microbiol 86:275–282.[PubMed]
213. Ostrowski J, Hulanicka D. 1981. Effect of DNA gyrase inhibition on gene expression of the cysteine regulon. Mol Gen Genet 181:363–366. [PubMed][CrossRef]
214. Hunt CL, Colless Y, Smith MT, Molasky DO, Malo MS, Loughlin RE. 1987. Lambda transducing phage and clones carrying genes of the cysJIHDC gene cluster of Escherichia coli KI2. J Gen Microbiol 133:2707–2717.[PubMed]
215. Ishino Y, Shinagawa H, Makiuno K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli and identification of the gene product. J Bacteriol 169:5429–5433.[PubMed]
216. Itikawa H, Demerec M. 1967. Ditto deletions in the cysC region of the Salmonella chromosome. Genetics 55:63–68.[PubMed]
217. Demerec M, Gillespie DH, Mizobuchi K. 1963. Genetic structure of the cysC region of the Salmonella genome. Genetics 48:997–1009.[PubMed]
218. Jones-Mortimer MC. 1973. Mapping of structural genes for enzymes of cysteine biosynthesis in Escherichia coli K12 and Salmonella typhimurium LT2. Heredity 31:213–221. [PubMed][CrossRef]
219. Blattner FR, Plunkett G III, Bloch CA., Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474. [PubMed][CrossRef]
220. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856. [PubMed][CrossRef]
221. Ino, L, Demerec M. 1968. Enteric hybrids. II. S. typhimurium-E. coli hybrids for the trp-cysB-purF region. Genetics 59:167–176.[PubMed]
222. Miller BE, Kredich NM. 1987. Purification of the cysB protein from Salmonella typhimurium. J Biol Chem 262:6006–6009.[PubMed]
223. Raibaud O, Schwartz M. 1984. Positive control of transcription initiation in bacteria. Annu Rev Genet 18:173–206. [PubMed][CrossRef]
224. Brennan RG, Matthews BW. 1989. The helix-turn-helix DNA binding motif. J Biol Chem 264:1903–1906.[PubMed]
225. Hryniewicz MM, Kredich NM. 1994. Stoichiometry of binding of CysB to the cysJIH, cysK and cysP promoter regions of Salmonella typhimurium. J Bacteriol 176:3673–3682.[PubMed]
226. Lynch AS, Tyrrell R, Smerdon SJ, Briggs GS, Wilkinson AJ. 1994. Characterization of the CysB protein of Klebsiella aerogenes: direct evidence that N-acetylserine rather than O-acetylserine serves as the inducer of the cysteine regulon. Biochem J 299:129–136.[PubMed]
227. Oppezzo OJ. 1998. In vivo effects of anti-inducers of the cysteine regulon in Salmonella typhimurium. FEMS Microbiol Lett 163:143–148. [PubMed][CrossRef]
228. Hryniewicz MM, Kredich NM. 1995. Hydroxyl radical footprints and half-site arrangements of binding sites for the CysB transcriptional activator of Salmonella typhimurium. J Bacteriol 177:2343–2353.[PubMed]
229. Schwacha, Bender ARA. 1993. The nac (nitrogen assimilation control) gene from Klebsiella aerogenes. J. Bacteriol. 175:2107–2115.[PubMed]
230. Stec E, Witkowska M, Hryniewicz MM, Brzozowski AM, Wilkinson AJ, Bujacz. 2004. Crystallization and preliminary crystallographic studies of the cofactor-binding domain of the LysR-type transcriptional regulator Cbl from Escherichia coli. Acta Crystallogr Sect D Biol Crystalliogr 60:1654–1647. [PubMed][CrossRef]
231. Bykowski T, van der Ploeg JR, Iwanicka-Nowicka R, Hryniewicz MM. 2002. The switch from inorganic to organic sulphur assimilation in Escherichia coli: adenosine 5′-phosphosulphate (APS) as a signalling molecule for sulphate excess. Mol Microbiol 43:1347–1358. [PubMed][CrossRef]
232. Colyer TE, Kredich NM. 1994. Residue T149 of the Salmonella typhimurium CysB transcription activator: mutations causing constitutive expression of positively regulated genes of the cysteine regulon. Mol Microbiol 13:797–805. [PubMed][CrossRef]
233. Colyer TE, Kredich NM. 1996. In vitro characterization of constitutive CysB proteins from Salmonella typhimurium. Mol Microbiol 21:247–256. [PubMed][CrossRef]
234. Seiflein TA, Lawrence JG. 2001. Methionine-to-cysteine recycling in Klebsiella aerogenes. J Bacteriol 183:336–346. [PubMed][CrossRef]
235. Lochowska A, Iwanicka-Nowicka R, Plochocka D, Hryniewicz MM. 2001. Functional dissection of the LysR-type cysB transcriptional regulator. Regions important for DNA binding, inducer response, oligomerization, and positive control. J Biol Chem 276:2098–2107. [PubMed][CrossRef]
236. Bartowski E, Normark S. 1991. Purification and mutant analysis of Citrobacter freundii AmpR, the regulator for chromosomal AmpC β-lactamase. Mol Microbiol 5:1715–1725. [PubMed][CrossRef]
237. Schell MA, Brown PH, Raju S. 1990. Use of saturation mutagenesis to localize probable functional domains in the NahR protein, a LysR-type transcriptional activator. J Biol Chem 265:3844–3850.[PubMed]
238. Kullik I, Stevens J, Toledano MB, Storz G. 1995. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for DNA binding and multimerization. J Bacteriol 177:1285–1291.[PubMed]
239. Lochowska A, Iwanicka-Nowicka R, Zaim J, Witkowska-Zimny M, Bolewska KK, Hryniewicz MM. 2004. Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter. Mol Microbiol 53:791–806. [PubMed][CrossRef]
240. Cebolla A, Sousa C, de Lorenzo YV. 1997. Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. J Biol Chem 272:3986–3992. [PubMed][CrossRef]
241. Kullik I, Toledano MB, Tartaglia LA, Storz G. 1995. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J Bacteriol 177:1275–1284.[PubMed]
242. McIver J, Djordjevic MA, Weinman JJ, Bender GL, Rolfe BG. 1989. Extension of host range of Rhizobium leguminosarum caused by point mutations in nodD that result in alterations in regulatory function and recognition of inducer molecules. Mol Plant-Microbe Interact 2:97–106.[PubMed]
243. Tyrrell R, Verschueren KH, Dodson EJ, Murshudov GN, Addy C, Wilkinson AJ. 1997. The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. Structure 5:1017–1032. [PubMed][CrossRef]
244. Quiocho FA, Ledvina PS. 1996. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis-variation of common themes. Mol Mol Biol 20:17–25. [CrossRef]
245. Choi H-J, Kim S-J, P Mukhopadhyay, Cho S, Woo J-R, Storz G, Ryu S-E. 2001. Structural basis of the redox switch on the OxyR transcription factor. Cell 105:103–113. [PubMed][CrossRef]
246. Muraoka S, Okumura R, Ogawa N, Nonaka T, Miyashita K, Toshiya S. 2003. Crystal structure of a full-length LysR-type transcriptional regulator: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. J Mol Biol 328:555–566. [PubMed][CrossRef]
247. Neidhardt FC, Ingraham JL, Schaechter M. 1990. Physiology of the Bacterial Cell: a Molecular Approach. Sinauer Associates, Sunderland, MA.
248. Ishihama A. 1992. Role of the RNA polymerase α subunit in transcription activation. Mol Microbiol 6:3283–3288. [PubMed][CrossRef]
249. Ishihama A. 1993. Protein-protein communication within the transcription apparatus. J Bacteriol 175:2483–2489.[PubMed]
250. Zou C, Fujita N, Igarashi K, Ishihama A. 1992. Mapping the cAMP receptor protein contact site on the α subunit of Escherichia coli RNA polymerase. Mol Microbiol 6:2599–2605. [PubMed][CrossRef]
251. Giffard PM, Booth IR. 1988. The rpoA341 allele of Escherichia coli specifically impairs the transcription of a group of positively regulated operons. Mol Gen Genet 214:148–152. [PubMed][CrossRef]
252. Lombardo MJ, Bagga D, Miller CG. 1991. Mutations in rpoA affect expression of anaerobically regulated genes in Salmonella typhimurium. J Bacteriol 173:7511–7518.[PubMed]
253. Lin J, Smith MP, Chapin KC, Baik HS, Bennett GN, Foster JW. 1996. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. App Environ Microbiol 62:3094–3000.
254. Shi X, Bennett GN. 1994. Effects of rpoA and cysB mutations on acid induction of biodegradative arginine decarboxylase in Escherichia coli. J Bacteriol 176:7017–7023.[PubMed]
255. Benoff B, Yang H, Lawson CL, Parkinson G, Liu J, Blatter E, Ebright YW, Berman HM, Ebright RH. 2002. Structural basis of transcription activation: the CAP-αCTD-DNA complex. Science 297:1562–1566. [PubMed][CrossRef]
256. Gaal T, Blatter EE, Tang H, Jia X, Krishnan VV, Assa-Munt N, Ebright RH, Gourse RL. 1996. DNA-binding domains of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. Genes Dev 10:16–26. [PubMed][CrossRef]
257. Murakami K, Fujita N, Ishihama A. 1996. Transcription factor recognition surface on the RNA polymerase α subunit is involved in contact with the DNA determinant element. EMBO J 15:4358–4367.[PubMed]
258. Savery N, Lloyd GS, Kainz M, Gaal T, Ross W, Ebright RH, Gourse RL, Busby SJW. 1998. Transcription activation at Class II CRP-dependent promoters: identification of determinants in the C-terminal domain of the RNA polymerase α subunit. EMBO J 17:3439–3447. [PubMed][CrossRef]
259. Dmitrova M, Younes-Cauet G, Oertel-Buchheit P, Porte D, Schnarr M, Granger-Schnarr M. 1998. A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Mol Gen Genet 257:205–212. [PubMed][CrossRef]
260. Aiyar S, McLeod SM, Ross W, Hirvonen CA, Thomaas MS, Johnson RC, Gourse RL. 2002. Architecture of Fis-activated transcription complexes at the Escherichia coli rrnB P1 and rrnE P1 promoters. J Mol Biol 316:501–516. [PubMed][CrossRef]
261. Sanzey B. 1979. Modulation of gene expression by drugs affecting deoxyribonucleic acid gyrase. J Bacteriol 138:40–47.[PubMed]
262. Matijsevic Z, Hajec LI, Volkert MR. 1992. Anaerobic induction of the alkylation-inducible Escherichia coli aidB gene involves genes of the cysteine biosynthetic pathway. J Bacteriol 174:2043–2046.[PubMed]
263. Quan JA, Schneider BL, Paulsen IT, Yamada M, Kredich NM, Saier MH, Jr. 2002. Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium. Microbiology 148:123–131.[PubMed]
264. Rakonjac J, Milic M, Savic DJ. 1991. cysB and cysE mutants of Escherichia coli K12 show increased resistance to novobiocin. Mol Gen Genet 228:307–311. [PubMed][CrossRef]
265. Lilic M, Jovanovic M, Jovanovic G, Savic DJ. 2003. Identification of the cysB-regulated gene, hslJ, related to the Escherichia coli novobiocin resistance phenotype. FEMS Microbiol Lett 224:239–246. [PubMed][CrossRef]
266. Jovanovic M, Lilic M, Savic DJ, Jovanovic G. 2003. The LysR-type transcriptional regulator CysB controls the repression of hslJ transcription in Escherichia coli. Microbiol 149:3449–3459. [CrossRef]
267. Fong C-LW, Heinzinger NK, Tongklan S, Barrett EL. 1993. Cloning of the phs locus from Salmonella typhimurium and a role for a phs product in its own induction. J Bacteriol 175:6368–6371.[PubMed]
268. Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL. 1995. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J Bacteriol 177:2813–2820.[PubMed]
269. Sasahara KC, Heinzinger NK, Barrett EL. 1997. Hydrogen sulfide production and fermentative gas production by Salmonella typhimurium require F0F1 ATP synthase activity. J Bacteriol 179:6736–6740.[PubMed]
270. Hinojosa-Leon M, Dubourdieu M, Sanchez-Crispin JA, Chippaux M. 1986. Tetrathionate reductase of Salmonella typhimurium: a molybdenum containing enzyme. Biochem Biophys Res Commun 136:577–581. [PubMed][CrossRef]
271. Fersht AR, Dingwall C. 1979. Cysteinyl-tRNA synthetase from Escherichia coli does not need an editing mechanism to reject serine and alanine. High binding energy of small groups in specific molecular interactions. Biochemistry 18:1245–1249. [PubMed][CrossRef]
272. Newberry KJ, Hou YM, Perona JJ. 2002. Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase. EMBO J 21:2778–2787. [PubMed][CrossRef]
273. Jakubowski H. 1994. Editing function of Escherichia coli cysteinyl-tRNA synthetase: cyclization of cysteine to cysteine thiolactone. Nucleic Acids Res 22:1155–1160. [PubMed][CrossRef]
274. Komatsoulis GA, Abelson J. 1993. Recognition of tRNACYS by Escherichia coli cysteinyl-tRNA synthetase. Biochemistry 32:7435–7444. [PubMed][CrossRef]
275. Igarashi K, Ishihama A. 1991. Bipartite functional map of the E. coli polymerase α subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell 65:1015–1022. [PubMed][CrossRef]
276. Ostrowski J, Hulanicka D. 1979. Constitutive mutation of cysJIHoperon in a cysB deletion strain of Salmonella typhimurium. Mol Gen Genet 175:145–149. [PubMed][CrossRef]
277. Zhang CM, Christian T, Newberry KJ, Perona JJ, Hou YM. 2003. Zinc-mediated amino acid discrimination in cysteinyl-tRNA synthetase. J Mol Biol 327:911–917. Biochemistry 18:1245–1249. [CrossRef]
ecosalplus.3.6.1.11.citations
ecosalplus/3/1
content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.11
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.11
2008-01-24
2017-09-25

Abstract:

The synthesis of L-cysteine from inorganic sulfur is the predominant mechanism by which reduced sulfur is incorporated into organic compounds. L-cysteineis used for protein and glutathione synthesis and serves as the primary source of reduced sulfur in L-methionine, lipoic acid, thiamin, coenzyme A (CoA), molybdopterin, and other organic molecules. Sulfate and thiosulfate uptake in and serovar Typhimurium are achieved through a single periplasmic transport system that utilizes two different but similar periplasmic binding proteins. Kinetic studies indicate that selenate and selenite share a single transporter with sulfate, but molybdate also has a separate transport system. During aerobic growth, the reduction of sulfite to sulfide is catalyzed by NADPH-sulfite reductase (SiR), and serovar Typhimurium mutants lacking this enzyme accumulate sulfite from sulfate, implying that sulfite is a normal intermediate in assimilatory sulfate reduction. L-Cysteine biosynthesis in serovar Typhimurium and ceases almost entirely when cells are grown on L-cysteine or L-cystine, owing to a combination of end product inhibition of serine transacetylase by L-cysteine and a gene regulatory system known as the cysteine regulon, wherein genes for sulfate assimilation and alkanesulfonate utilization are expressed only when sulfur is limiting. In vitro studies with the , , and promoters have confirmed that they are inefficient at forming transcription initiation complexes without CysB and N-acetyl-L-serine. Activation of the and promoters requires Cbl. It has been proposed that the three serovar Typhimurium anaerobic reductases for sulfite, thiosulfate, and tetrathionate may function primarily in anaerobic respiration.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1A
Figure 1A

(A) Sulfate uptake and reduction to sulfide; uptake of taurine and other alkanesulfonates and their reduction to sulfite.

Citation: Kredich N. 2008. Biosynthesis of Cysteine, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1B
Figure 1B

(B) Activation of -serine to -acetylserine and conversion to -cysteine either directly through reaction with sulfide or indirectly by reacting with thiosulfate to give -sulfocysteine, which is then converted to -cysteine.

Citation: Kredich N. 2008. Biosynthesis of Cysteine, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

-Cysteine feedback inhibits synthesis of acetyl--serine, which is the precursor for the inducer acetyl--serine. Sulfide and thiosulfate also exert end product inhibition in their capacities as anti-inducers and by their abilities to react with and deplete acetyl--serine.

Citation: Kredich N. 2008. Biosynthesis of Cysteine, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

CBS-J1, CBS-K1, and CBS-P1 are activation sites and are required for transcription activation by CysB. CBS-B is a repressor site for negative autoregulation, and the other sites are termed accessory sites. The inducer acetyl--serine stimulates CysB binding to the shaded sites and inhibits binding to the other sites. The upstream portion of CBS-J3 has not been characterized. Arrows indicate transcription start sites and promoter –35 positions.

Citation: Kredich N. 2008. Biosynthesis of Cysteine, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Half-sites are designated a, b, and, in one case, c, and are oriented as indicated. Half-site pairs, i.e., binding sites, with increased affinities in the presence of acetyl--serine are shaded. Bend points induced by CysB binding that are sensitive to acetyl--serine are indicated on the and promoters by vertical arrows.

Citation: Kredich N. 2008. Biosynthesis of Cysteine, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.11
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Genes of cysteine biosynthesis and metabolism and of anaerobic sulfur metabolism

Citation: Kredich N. 2008. Biosynthesis of Cysteine, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.11
Generic image for table
Table 2

Nutritional characteristics of cysteine auxotrophs

Citation: Kredich N. 2008. Biosynthesis of Cysteine, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.11
Generic image for table
Table 3

Transcription units of the cysteine regulon

Citation: Kredich N. 2008. Biosynthesis of Cysteine, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.11

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error