1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Regulation of Serine, Glycine, and One-Carbon Biosynthesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Author: George V. Stauffer1
  • Editor: Valley Stewart2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology, The University of Iowa, Iowa City, IA 52242; 2: University of California, Davis, Davis, CA
  • Received 19 November 2003 Accepted 28 January 2004 Published 19 May 2004
  • Address correspondence to George V. Stauffer george-stauffer@uiowa.edu
image of Regulation of Serine, Glycine, and One-Carbon Biosynthesis
    Preview this reference work article:
    Zoom in
    Zoomout

    Regulation of Serine, Glycine, and One-Carbon Biosynthesis, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/1/3_6_1_2_module-1.gif /docserver/preview/fulltext/ecosalplus/1/1/3_6_1_2_module-2.gif
  • Abstract:

    The biosynthesis of serine, glycine, and one-carbon (C) units constitutes a major metabolic pathway in and serovar Typhimurium. C units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNA used to start translation in and serovar Typhimurium. The need for serine, glycine, and C units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: , , and ; gene; operon; ; and ; and genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of cells in GM medium, and isoleucine releases this growth inhibition. The glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.

  • Citation: Stauffer G. 2004. Regulation of Serine, Glycine, and One-Carbon Biosynthesis, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.2

Key Concept Ranking

Gene Expression and Regulation
0.6193315
Transcription Start Site
0.54711545
Amino Acids
0.5213531
Acetyl Coenzyme A
0.50446427
Heat Shock Response
0.3637475
RNA Polymerase
0.33630952
0.6193315

References

1. Pizer LI, Potochny ML. 1964. Nutritional and regulatory aspects of serine metabolism in Escherichia coli. J Bacteriol 88:611–619.[PubMed]
2. Ramotar D, Newman EB. 1986. An estimate of the extent of deamination of L-serine in auxotrophs of Escherichia coli K-12. Can J Microbiol 32:842–846.
3. Blakley RL. 1969. The Biochemistry of Folic Acid and Related Pteridines. Elsevier/North-Holland Publishing Co., Amsterdam, The Netherlands.
4. Jordan PM, Shemin D (ed). 1972. Aminolevulinic Acid Synthetase, vol. 7. Academic Press, Inc., New York, N.Y.
5. Matthews RG (ed). 1996. One-Carbon Metabolism, 2nd ed. ASM Press, Washington, D.C.
6. Jones CE, Brook JM, Buck D, Abell C, Smith AG. 1993. Cloning and sequencing of the Escherichia coli panB gene, which encodes ketopantoate hydroxymethyltransferase, and overexpression of the enzyme. J Bacteriol 175:2125–2130.[PubMed]
7. Mudd SH, Cantoni GL (ed). 1964. Biological Transmethylation, Methyl-Group Neogenesis and Other “One-Carbon” Metabolic Reactions Dependent upon Tetrahydrofolic Acid, vol. 15. Elsevier, Amsterdam, The Netherlands.
8. Marinus MG (ed). 1996. Methylation of DNA, 2nd ed. ASM Press, Washington, D.C.
9. Stock JB, Surette MG (ed). 1996. Chemotaxis, 2nd ed. ASM Press, Washington, D.C.
10. Bjork GR (ed). 1996. Stable RNA Modification, 2nd ed. ASM Press, Washington, D.C.
11. Gage DJ, Neidhardt FC. 1993. Modulation of the heat shock response by one-carbon metabolism in Escherichia coli. J Bacteriol 175:1961–1970.
12. Pizer LI. 1963. The pathway and control of serine biosynthesis in Escherichia coli. J Biol Chem 238:3934–3944.
13. Umbarger HE, Umbarger MA. 1962. The biosynthetic pathway of serine in Salmonella typhimurium. Biochim Biophys Acta 62:193–195. [CrossRef]
14. Umbarger HE, Umbarger MA, Siu PML. 1963. Biosynthesis of serine in Escherichia coli and Salmonella typhimurium. J Bacteriol 85:1431–1439.
15. Sugimoto E, Pizer LI. 1968. The mechanism of end product inhibition of serine biosynthesis. I. Purification and kinetics of phosphoglycerate dehydrogenase. J Biol Chem 243:2081–2089.
16. Sugimoto E, Pizer LI. 1968. The mechanism of end product inhibition of serine biosynthesis. II. Optical studies of phosphoglycerate dehydrogenase. J Biol Chem 243:2090–2098.
17. Tobey KL, Grant GA. 1986. The nucleotide sequence of the serA gene of Escherichia coli and the amino acid sequence of the encoded protein, D-3-phosphoglycerate dehydrogenase. J Biol Chem 261:12179–12183.
18. Dempsey WB. 1969. 3-Phosphoserine transaminase mutants of Escherichia coli B. J Bacteriol 100:1114–1115.[PubMed]
19. Dempsey WB, Ito H. 1970. Characterization of pyridoxine auxotrophs of Escherichia coli: serine and pdxF mutants. J Bacteriol 104:658–667.
20. Lam HM, Tancula E, Dempsey WB, Winkler ME. 1992. Suppression of insertions in the complex pdxJ operon of Escherichia coli K-12 by lon and other mutations. J Bacteriol 174:1554–1567.
21. Lam HM, Winkler ME. 1992. Characterization of the complex pdxH-tyrS operon of Escherichia coli K-12 and pleiotropic phenotypes caused by pdxH insertion mutations. J Bacteriol 174:6033–6045.[PubMed]
22. Lam HM, Winkler ME. 1990. Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in Escherichia coli K-12. J Bacteriol 172:6518–6528.
23. Man TK, Pease AJ, Winkler ME. 1997. Maximization of transcription of the serC (pdxF)-aroA multifunctional operon by antagonistic effects of the cyclic AMP (cAMP) receptor protein-cAMP complex and Lrp global regulators of Escherichia coli K-12. J Bacteriol 179:3458–3469.
24. Schoenlein PV, Roa BB, Winkler ME. 1989. Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12. J Bacteriol 171:6084–6092.[PubMed]
25. Stauffer LT, Ghrist A, Stauffer GV. 1993. The Escherichia coli gcvT gene encoding the T-protein of the glycine cleavage enzyme system. DNA Seq 3:339–346. [PubMed][CrossRef]
26. Drewke C, Leistner E. 2001. Biosynthesis of vitamin B6 and structurally related derivatives. Vitam Horm 61:121–155. [CrossRef]
27. Zhao G, Winkler ME. 1996. A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J Bacteriol 178:232–239.
28. Scrimgeour KG, Huennekens FM. 1962. Serine hydroxymethylase. Methods Enzymol 5:838–843. [CrossRef]
29. Stauffer GV, Brenchley JE. 1974. Evidence for the involvement of serine transhydroxymethylase in serine and glycine interconversions in Salmonella typhimurium. Genetics 77:185–198.[PubMed]
30. Katayama A, Tsujii A, Wada A, Nishino T, Ishihama A. 2002. Systematic search for zinc-binding proteins in Escherichia coli. Eur J Biochem 269:2403–2413. [PubMed][CrossRef]
31. Meedel TH, Pizer LI. 1974. Regulation of one-carbon biosynthesis and utilization in Escherichia coli. J Bacteriol 118:905–910.[PubMed]
32. Newman EB, Miller B, Kapoor V. 1974. Biosynthesis of single-carbon units in Escherichia coli K12. Biochim Biophys Acta 338:529–539.
33. Okamura-Ikeda K, Ohmura Y, Fujiwara K, Motokawa Y. 1993. Cloning and nucleotide sequence of the gcv operon encoding the Escherichia coli glycine-cleavage system. Eur J Biochem 216:539–548. [CrossRef]
34. Plamann MD, Rapp WD, Stauffer GV. 1983. Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol Gen Genet 192:15–20. [CrossRef]
35. Stauffer GV, Stauffer LT, Plamann MD. 1989. The Salmonella typhimurium glycine cleavage enzyme system. Mol Gen Genet 220:154–156. [CrossRef]
36. Stauffer LT, Plamann MD, Stauffer GV. 1986. Cloning and characterization of the glycine-cleavage enzyme system of Escherichia coli. Gene 44:219–226. [PubMed][CrossRef]
37. Freudenberg W, Andreesen JR. 1989. Purification and partial characterization of the glycine decarboxylase multienzyme complex from Eubacterium acidaminophilum. J Bacteriol 171:2209–2215.[PubMed]
38. Kikuchi G. 1973. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1:169–187. [PubMed][CrossRef]
39. Kochi H, Kikuchi G. 1974. Mechanism of the reversible glycine cleavage reaction in Arthrobacter globiformis. I. Purification and function of protein components required for the reaction. J Biochem (Tokyo) 75:1113–1127.
40. Motokawa Y, Fujiwara K, Okamura-Ikeda K (ed). 1995. Role of Lipoic Acid in the Glycine Cleavage System and Lipolylation of H-Protein. Marcel Dekker, New York, N.Y.
41. Fujiwara K, Motokawa Y. 1983. Mechanism of the glycine cleavage reaction. Steady state kinetic studies of the P-protein-catalyzed reaction. J Biol Chem 258:8156–8162.
42. Hiraga K, Kikuchi G. 1980. The mitochondrial glycine cleavage system. Functional association of glycine decarboxylase and aminomethyl carrier protein. J Biol Chem 255:11671–11676.
43. Fujiwara K, Okamura K, Motokawa Y. 1979. Hydrogen carrier protein from chicken liver: purification, characterization, and role of its prosthetic group, lipolic acid, in the glycine cleavage reaction. Arch Biochem Biophys 197:454–462. [PubMed][CrossRef]
44. Okamura-Ikeda K, Kameoka N, Fujiwara K, Motokawa Y. 2003. Probing the H-protein-induced conformational change and the function of the N-terminal region of Escherichia coli T-protein of the glycine cleavage system by limited proteolysis. J Biol Chem 278:10067–10072. [CrossRef]
45. van Keulen G, Girbal L, van den Bergh ER, Dijkhuizen L, Meijer WG. 1998. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor. J Bacteriol 180:1411–1417.
46. Fujiwara K, Okamura-Ikeda K, Motokawa Y. 1984. Mechanism of the glycine cleavage reaction. Further characterization of the intermediate attached to H-protein and of the reaction catalyzed by T-protein. J Biol Chem 259:10664–10668.
47. Okamura-Ikeda K, Fujiwara K, Motokawa Y. 1999. The amino-terminal region of the Escherichia coli T-protein of the glycine cleavage system is essential for proper association with H-protein. Eur J Biochem 264:446–453.
48. Okamura-Ikeda K, Fujiwara K, Motokawa Y. 1999. Identification of the folate binding sites on the Escherichia coli T-protein of the glycine cleavage system. J Biol Chem 274:17471–17477. [CrossRef]
49. Motokawa Y, Kikuchi G. 1974. Glycine metabolism by rat liver mitochondria. Reconstruction of the reversible glycine cleavage system with partially purified protein components. Arch Biochem Biophys 164:624–633. [PubMed][CrossRef]
50. Stauffer LT, Fogarty SJ, Stauffer GV. 1994. Characterization of the Escherichia coli gcv operon. Gene 142:17–22. [PubMed][CrossRef]
51. Steiert PS, Stauffer LT, Stauffer GV. 1990. The lpd gene product functions as the L protein in the Escherichia coli glycine cleavage enzyme system. J Bacteriol 172:6142–6144.
52. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474. [PubMed][CrossRef]
53. Guest JR. 1974. Gene-protein relationships of the alpha-keto acid dehydrogenase complexes of Escherichia coli K12: chromosomal location of the lipoamide dehydrogenase gene. J Gen Microbiol 80:523–532.[PubMed]
54. Stephens PE, Lewis HM, Darlison MG, Guest JR. 1983. Nucleotide sequence of the lipoamide dehydrogenase gene of Escherichia coli K12. Eur J Biochem 135:519–527. [CrossRef]
55. Pizer LI. 1965. Glycine synthesis and metabolism in Escherichia coli. J Bacteriol 89:1145–1150.[PubMed]
56. Ghrist AC, Stauffer GV. 1995. The Escherichia coli glycine transport system and its role in the regulation of the glycine cleavage enzyme system. Microbiology 141:133–140. [CrossRef]
57. Ghrist AC, Stauffer GV. 1995. Characterization of the Escherichia coli gcvR gene encoding a negative regulator of gcv expression. J Bacteriol 177:4980–4984.
58. Heil G, Stauffer LT, Stauffer GV. 2002. Glycine binds the transcriptional accessory protein GcvR to disrupt a GcvA/GcvR interaction and allow GcvA-mediated activation of the Escherichia coli gcvTHP operon. Microbiology 148:2203–2214.
59. Fraser J, Newman EB. 1975. Derivation of glycine from threonine in Escherichia coli K-12 mutants. J Bacteriol 122:810–817.[PubMed]
60. Landgraf JR, Levinthal M, Danchin A. 1994. The role of H-NS in one carbon metabolism. Biochimie 76:1063–1070. [PubMed][CrossRef]
61. Potter R, Kapoor V, Newman EB. 1977. Role of threonine dehydrogenase in Escherichia coli threonine degradation. J Bacteriol 132:385–391.[PubMed]
62. Ravnikar PD, Somerville RL. 1987. Genetic characterization of a highly efficient alternate pathway of serine biosynthesis in Escherichia coli. J Bacteriol 169:2611–2617.[PubMed]
63. Ravnikar PD, Somerville RL. 1986. Localization of the structural gene for threonine dehydrogenase in Escherichia coli. J Bacteriol 168:434–436.[PubMed]
64. Ernsting BR, Atkinson MR, Ninfa AJ, Matthews RG. 1992. Characterization of the regulon controlled by the leucine-responsive regulatory protein in Escherichia coli. J Bacteriol 174:1109–1118.
65. Tuan LR, D’Ari R, Newman EB. 1990. The leucine regulon of Escherichia coli K-12: a mutation in rblA alters expression of L-leucine-dependent metabolic operons. J Bacteriol 172:4529–4535.
66. Rex JH, Aronson BD, Somerville RL. 1991. The tdh and serA operons of Escherichia coli: mutational analysis of the regulatory elements of leucine-responsive genes. J Bacteriol 173:5944–5953.
67. Aronson BD, Levinthal M, Somerville RL. 1989. Activation of a cryptic pathway for threonine metabolism via specific IS3-mediated alteration of promoter structure in Escherichia coli. J Bacteriol 171:5503–5511.
68. Newman EB, Kapoor V, Potter R. 1976. Role of L-threonine dehydrogenase in the catabolism of threonine and synthesis of glycine by Escherichia coli. J Bacteriol 126:1245–1249.[PubMed]
69. Roberts RB, Abelson PH, Cowie DB, Bolton ET, Britten RJ. 1955. Studies of Biosynthesis of Escherichia coli, publication 612. Carnegie Institute of Washington, Washington, D.C.
70. McKitrick JC, Pizer LI. 1980. Regulation of phosphoglycerate dehydrogenase levels and effect on serine synthesis in Escherichia coli K-12. J Bacteriol 141:235–245.
71. Lin R, D’Ari R, Newman EB. 1992. Lambda placMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 174:1948–1955.[PubMed]
72. Cosloy SD, McFall E. 1970. L-Serine-sensitive mutants of Escherichia coli K-12. J Bacteriol 103:840–841.
73. Ogawa W, Kayahara T, Tsuda M, Mizushima T, Tsuchiya T. 1997. Isolation and characterization of an Escherichia coli mutant lacking the major serine transporter, and cloning of a serine transporter gene. J Biochem (Tokyo) 122:1241–1245.
74. Uzan M, Danchin A. 1978. Correlation between the serine sensitivity and the derepressibility of the ilv genes in Escherichia coli relA mutants. Mol Gen Genet 165:21–30. [CrossRef]
75. Uzan M, Danchin A. 1976. A rapid test for the relA mutation in E. coli. Biochem Biophys Res Commun 69:751–758. [CrossRef]
76. Danchin A, Dondon L. 1980. Serine sensitivity of Escherichia coli K 12: partial characterization of a serine resistant mutant that is extremely sensitive to 2-ketobutyrate. Mol Gen Genet 178:155–164. [CrossRef]
77. Hama H, Sumita Y, Kakutani Y, Tsuda M, Tsuchiya T. 1990. Target of serine inhibition in Escherichia coli. Biochem Biophys Res Commun 168:1211–1216. [CrossRef]
78. Isenberg S, Newman EB. 1974. Studies on L-serine deaminase in Escherichia coli K-12. J Bacteriol 118:53–58.
79. Matthews RG, Neidhardt FC. 1988. Abnormal induction of heat shock proteins in an Escherichia coli mutant deficient in adenosylmethionine synthetase activity. J Bacteriol 170:1582–1588.[PubMed]
80. Matthews RG, Neidhardt FC. 1989. Elevated serine catabolism is associated with the heat shock response in Escherichia coli. J Bacteriol 171:2619–2625.
81. Barak Z, Chipman DM, Gollop N. 1987. Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. J Bacteriol 169:3750–3756.[PubMed]
82. De Felice M, Levinthal M. 1977. The acetohydroxy acid synthase III isoenzyme of Escherichia coli K-12: regulation of synthesis by leucine. Biochem Biophys Res Commun 79:82–87. [CrossRef]
83. Hama H, Kayahara T, Tsuda M, Tsuchiya T. 1991. Inhibition of homoserine dehydrogenase I by L-serine in Escherichia coli. J Biochem (Tokyo) 109:604–608.
84. Dubrow R, Pizer LI. 1977. Transient kinetic and deuterium isotope effect studies on the catalytic mechanism of phosphoglycerate dehydrogenase. J Biol Chem 252:1539–1551.
85. Dubrow R, Pizer LI. 1977. Transient kinetic studies on the allosteric transition of phosphoglycerate dehydrogenase. J Biol Chem 252:1527–1538.
86. Grant GA, Hu Z, Xu XL. 2003. Hybrid tetramers reveal elements of cooperativity in Escherichia coli D-3-phosphoglycerate dehydrogenase. J Biol Chem 278:18170–18176. [CrossRef]
87. Grant GA, Schuller DJ, Banaszak LJ. 1996. A model for the regulation of D-3-phosphoglycerate dehydrogenase, a Vmax-type allosteric enzyme. Protein Sci 5:34–41. [CrossRef]
88. Schuller DJ, Grant GA, Banaszak LJ. 1995. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat Struct Biol 2:69–76. [CrossRef]
89. Al-Rabiee R, Lee EJ, Grant GA. 1996. The mechanism of velocity modulated allosteric regulation in D-3-phosphoglycerate dehydrogenase. Cross-linking adjacent regulatory domains with engineered disulfides mimics effector binding. J Biol Chem 271:13013–13017. [CrossRef]
90. Al-Rabiee R, Zhang Y, Grant GA. 1996. The mechanism of velocity modulated allosteric regulation in D-3-phosphoglycerate dehydrogenase. Site-directed mutagenesis of effector binding site residues. J Biol Chem 271:23235–23238. [PubMed][CrossRef]
91. Bell JK, Pease PJ, Bell JE, Grant GA, Banaszak LJ. 2002. De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal. Eur J Biochem 269:4176–4184. [CrossRef]
92. Grant GA, Hu Z, Xu XL. 2001. Specific interactions at the regulatory domain-substrate binding domain interface influence the cooperativity of inhibition and effector binding in Escherichia coli D-3-phosphoglycerate dehydrogenase. J Biol Chem 276:1078–1083. [PubMed][CrossRef]
93. Tosa T, Pizer LI. 1971. Biochemical bases for the antimetabolite action of L-serine hydroxamate. J Bacteriol 106:972–982.
94. Mansouri A, Decter JB, Silber R. 1972. Studies on the regulation of one-carbon metabolism. II. Repression-derepression of serine hydroxymethyltransferase by methionine in Escherichia coli 113-3. J Biol Chem 247:348–352.[PubMed]
95. Silber R, Mansouri A. 1971. Regulation of folate-dependent enzymes. Ann N Y Acad Sci 186:55–69. [PubMed][CrossRef]
96. Stauffer GV. 1976. Characterization of Salmonella typhimurium Mutants with Altered Regulation of the Methionine and Glycine Biosynthetic Enzymes. Ph.D. thesis. Pennsylvania State University, University Park.
97. Scarsdale JN, Radaev S, Kazanina G, Schirch V, Wright HT. 2000. Crystal structure at 2.4 Å resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate. J Mol Biol 296:155–168. [CrossRef]
98. Pizer LI, McKitrick J, Tosa T. 1972. Characterization of a mutant of E. coli with elevated levels of seryl-tRNA synthetase. Biochem Biophys Res Commun 49:1351–1357. [CrossRef]
99. Yang L, Lin RT, Newman EB. 2002. Structure of the Lrp-regulated serA promoter of Escherichia coli K-12. Mol Microbiol 43:323–333. [CrossRef]
100. Chen C, Newman EB. 1998. Comparison of the sensitivities of two Escherichia coli genes to in vivo variation of Lrp concentration. J Bacteriol 180:655–659.
101. Hung SP, Baldi P, Hatfield GW. 2002. Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. J Biol Chem 277:40309–40323. [CrossRef]
102. Chen CF, Lan J, Korovine M, Shao ZQ, Tao L, Zhang J, Newman EB. 1997. Metabolic regulation of lrp gene expression in Escherichia coli K-12. Microbiology 143:2079–2084. [PubMed][CrossRef]
103. Calvo JM, Matthews RG. 1994. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58:466–490.[PubMed]
104. Newman EB, Lin R. 1995. Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. Annu Rev Microbiol 49:747–775. [CrossRef]
105. Ambartsoumian G, D’Ari R, Lin RT, Newman EB. 1994. Altered amino acid metabolism in lrp mutants of Escherichia coli K12 and their derivatives. Microbiology 140:1737–1744. [PubMed][CrossRef]
106. Duncan K, Coggins JR. 1986. The serC-aroA operon of Escherichia coli. A mixed function operon encoding enzymes from two different amino acid biosynthetic pathways. Biochem J 234:49–57.
107. Hoiseth SK, Stocker BA. 1985. Genes aroA and serC of Salmonella typhimurium constitute an operon. J Bacteriol 163:355–361.[PubMed]
108. Pittard AJ (ed). 1996. Biosynthesis of the Aromatic Amino Acids, 2nd ed. ASM Press, Washington, D.C.
109. Lim CJ, Hwang W, Park EH, Fuchs JA. 1994. Cyclic AMP-dependent expression of the Escherichia coli serC-aroA operon. Biochim Biophys Acta 1218:250–253.
110. Landgraf JR, Wu J, Calvo JM. 1996. Effects of nutrition and growth rate on Lrp levels in Escherichia coli. J Bacteriol 178:6930–6936.[PubMed]
111. Kolb A, Busby S, Buc H, Garges S, Adhya S. 1993. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795. [PubMed][CrossRef]
112. Pastan I, Adhya S. 1976. Cyclic adenosine 5′-monophosphate in Escherichia coli. Bacteriol Rev 40:527–551.[PubMed]
113. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856. [PubMed][CrossRef]
114. Neuwald AF, Berg DE, Stauffer GV. 1992. Mutational analysis of the Escherichia coli serB promoter region reveals transcriptional linkage to a downstream gene. Gene 120:1–9. [CrossRef]
115. Neuwald AF, Stauffer GV. 1989. An Escherichia coli membrane protein with a unique signal sequence. Gene 82:219–228. [CrossRef]
116. Song Y, Sargentini NJ. 1996. Escherichia coli DNA repair genes radA and sms are the same gene. J Bacteriol 178:5045–5048.
117. Beam CE, Saveson CJ, Lovett ST. 2002. Role for radA/sms in recombination intermediate processing in Escherichia coli. J Bacteriol 184:6836–6844. [CrossRef]
118. Folk WR, Berg P. 1970. Isolation and partial characterization of Escherichia coli mutants with altered glycyl transfer ribonucleic acid synthetases. J Bacteriol 102:193–203.
119. Miller BA, Newman EB. 1974. Control of serine transhydroxymethylase synthesis in Escherichia coli K12. Can J Microbiol 20:41–47.
120. Stauffer GV, Brenchley JE. 1978. Selection of Salmonella typhimurium mutants with altered serine transhydroxymethylase regulation. Genetics 88:221–233.[PubMed]
121. Dev IK, Harvey RJ. 1984. Regulation of synthesis of serine hydroxymethyltransferase in chemostat cultures of Escherichia coli. J Biol Chem 259:8394–8401.[PubMed]
122. Stauffer GV, Baker CA, Brenchley JE. 1974. Regulation of serine transhydroxymethylase activity in Salmonella typhimurium. J Bacteriol 120:1017–1025.
123. Stauffer GV, Plamann MD, Stauffer LT. 1981. Construction and expression of hybrid plasmids containing the Escherichia coli glyA genes. Gene 14:63–72. [CrossRef]
124. Kilstrup M, Meng LM, Neuhard J, Nygaard P. 1989. Genetic evidence for a repressor of synthesis of cytosine deaminase and purine biosynthesis enzymes in Escherichia coli. J Bacteriol 171:2124–2127.
125. Rolfes RJ, Zalkin H. 1988. Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. Cloning, nucleotide sequence, and interaction with the purF operator. J Biol Chem 263:19653–19661.
126. Steiert JG, Rolfes RJ, Zalkin H, Stauffer GV. 1990. Regulation of the Escherichia coli glyA gene by the purR gene product. J Bacteriol 172:3799–3803.[PubMed]
127. Steiert JG, Kubu C, Stauffer GV. 1992. The PurR binding site in the glyA promoter region of Escherichia coli. FEMS Microbiol Lett 78:299–304. [CrossRef]
128. Steiert JG, Urbanowski ML, Stauffer LT, Plamann MD, Stauffer GV. 1990. Nucleotide sequence of the Salmonella typhimurium glyA gene. DNA Seq 1:107–113. [CrossRef]
129. Lorenz E, Stauffer GV. 1996. RNA polymerase, PurR and MetR interactions at the glyA promoter of Escherichia coli. Microbiology 142:1819–1824. [PubMed][CrossRef]
130. Meng LM, Kilstrup M, Nygaard P. 1990. Autoregulation of PurR repressor synthesis and involvement of purR in the regulation of purB, purC, purL, purMN and guaBA expression in Escherichia coli. Eur J Biochem 187:373–379. [PubMed][CrossRef]
131. Rolfes RJ, Zalkin H. 1990. Autoregulation of Escherichia coli purR requires two control sites downstream of the promoter. J Bacteriol 172:5758–5766.
132. Schell MA. 1993. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626. [PubMed][CrossRef]
133. Cowan JM, Urbanowski ML, Talmi M, Stauffer GV. 1993. Regulation of the Salmonella typhimurium metF gene by the MetR protein. J Bacteriol 175:5862–5866.
134. Mares R, Urbanowski ML, Stauffer GV. 1992. Regulation of the Salmonella typhimurium metA gene by the metR protein and homocysteine. J Bacteriol 174:390–397.[PubMed]
135. Urbanowski ML, Stauffer GV. 1989. Role of homocysteine in metR-mediated activation of the metE and metH genes in Salmonella typhimurium and Escherichia coli. J Bacteriol 171:3277–3281.
136. Urbanowski ML, Stauffer LT, Plamann LS, Stauffer GV. 1987. A new methionine locus, metR, that encodes a trans-acting protein required for activation of metE and metH in Escherichia coli and Salmonella typhimurium. J Bacteriol 169:1391–1397.
137. Plamann MD, Stauffer GV. 1989. Regulation of the Escherichia coli glyA gene by the metR gene product and homocysteine. J Bacteriol 171:4958–4962.[PubMed]
138. Lorenz E, Stauffer GV. 1995. Characterization of the MetR binding sites for the glyA gene of Escherichia coli. J Bacteriol 177:4113–4120.
139. Plamann MD, Stauffer GV. 1983. Characterization of the Escherichia coli gene for serine hydroxymethyltransferase. Gene 22:9–18. [CrossRef]
140. Plamann MD, Stauffer LT, Urbanowski ML, Stauffer GV. 1983. Complete nucleotide sequence of the E. coli glyA gene. Nucleic Acids Res 11:2065–2075. [CrossRef]
141. Urbanowski ML, Stauffer GV. 1988. The control region of the metH gene of Salmonella typhimurium LT2: an atypical met promoter. Gene 73:193–200. [CrossRef]
142. Lorenz E, Stauffer GV. 1996. Cooperative MetR binding in the Escherichia coli glyA control region. FEMS Microbiol Lett 137:147–152. [PubMed][CrossRef]
143. Lorenz E, Stauffer GV. 1996. MetR-mediated repression of the glyA gene in Escherichia coli. FEMS Microbiol Lett 144:229–233. [CrossRef]
144. Urbanowski ML, Stauffer GV. 1987. Regulation of the metR gene of Salmonella typhimurium. J Bacteriol 169:5841–5844.
145. Byerly KA, Urbanowski ML, Stauffer GV. 1991. The metR binding site in the Salmonella typhimurium metH gene: DNA sequence constraints on activation. J Bacteriol 173:3547–3553.
146. Urbanowski ML, Stauffer GV. 1989. Genetic and biochemical analysis of the MetR activator-binding site in the metE metR control region of Salmonella typhimurium. J Bacteriol 171:5620–5629.
147. Fritsch PS, Urbanowski ML, Stauffer GV. 2000. Role of the RNA polymerase alpha subunits in MetR-dependent activation of metE and metH: important residues in the C-terminal domain and orientation requirements within RNA polymerase. J Bacteriol 182:5539–5550. [CrossRef]
148. Jafri S, Urbanowski ML, Stauffer GV. 1996. The glutamic acid residue at amino acid 261 of the alpha subunit is a determinant of the intrinsic efficiency of RNA polymerase at the metE core promoter in Escherichia coli. J Bacteriol 178:6810–6816.
149. Jafri S, Urbanowski ML, Stauffer GV. 1995. A mutation in the rpoA gene encoding the alpha subunit of RNA polymerase that affects metE-metR transcription in Escherichia coli. J Bacteriol 177:524–529.[PubMed]
150. Greene RC, Radovich C. 1975. Role of methionine in the regulation of serine hydroxymethyltransferase in Escherichia coli. J Bacteriol 124:269–278.
151. Stauffer GV, Brenchley JE. 1977. Influence of methionine biosynthesis on serine transhydroxymethylase regulation in Salmonella typhimurium LT2. J Bacteriol 129:740–749.[PubMed]
152. Greene RC (ed). 1996. Biosynthesis of methionine, 2nd ed. ASM Press, Washington, D.C.
153. Dev IK, Harvey RJ. 1984. Role of methionine in the regulation of the synthesis of serine hydroxymethyltransferase in Escherichia coli. J Biol Chem 259:8402–8406.
154. Duerre JA, Walker RD (ed). 1977. Metabolism of Adenosylhomocysteine. Columbia University Press, New York, N.Y.
155. Berberich MA, Kovach JS, Goldberger RF. 1967. Chain initiation in a polycistronic message: sequential versus simultaneous derepression of the enzymes for histidine biosynthesis in Salmonella typhimurium. Proc Natl Acad Sci USA 57:1857–1864. [PubMed][CrossRef]
156. Green JM, Nichols BP, Matthews RG (ed). 1996. Folate Biosynthesis, Reduction, and Polyglutamylation, 2nd ed. ASM Press, Washington, D.C.
157. Gerstel U, Park C, Romling U. 2003. Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49:639–654. [CrossRef]
158. Chirwa NT, Herrington MB. 2003. CsgD, a regulator of curli and cellulose synthesis, also regulates serine hydroxymethyltransferase synthesis in Escherichia coli K-12. Microbiology 149:525–535. [PubMed][CrossRef]
159. Crawford MJ, Goldberg DE. 1998. Role for the Salmonella flavohemoglobin in protection from nitric oxide. J Biol Chem 273:12543–12547. [CrossRef]
160. Vasudevan SG, Armarego WL, Shaw DC, Lilley PE, Dixon NE, Poole RK. 1991. Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Mol Gen Genet 226:49–58. [CrossRef]
161. Membrillo-Hernandez J, Coopamah MD, Anjum MF, Stevanin TM, Kelly A, Hughes MN, Poole RK. 1999. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a “Nitric oxide releaser,” and paraquat and is essential for transcriptional responses to oxidative stress. J Biol Chem 274:748–754. [CrossRef]
162. Poole RK, Hughes MN. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36:775–783. [PubMed][CrossRef]
163. Membrillo-Hernandez J, Coopamah MD, Channa A, Hughes MN, Poole RK. 1998. A novel mechanism for upregulation of the Escherichia coli K-12 hmp (flavohaemoglobin) gene by the ‘NO releaser’, S-nitrosoglutathione: nitrosation of homocysteine and modulation of MetR binding to the glyA-hmp intergenic region. Mol Microbiol 29:1101–1112. [PubMed][CrossRef]
164. Higgins CF, McLaren RS, Newbury SF. 1988. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene 72:3–14. [PubMed][CrossRef]
165. Plamann MD, Stauffer GV. 1985. Characterization of a cis-acting regulatory mutation that maps at the distal end of the Escherichia coli glyA gene. J Bacteriol 161:650–654.
166. Plamann MD, Stauffer GV. 1990. Escherichia coli glyA mRNA decay: the role of 3′ secondary structure and the effects of the pnp and rnb mutations. Mol Gen Genet 220:301–306. [PubMed][CrossRef]
167. Lorenz E, Plamann MD, Stauffer GV. 1996. Escherichia coli cis- and trans-acting mutations that increase glyA gene expression. Mol Gen Genet 250:81–88. [PubMed][CrossRef]
168. Newman EB, Magasanik B. 1963. The relation of serine-glycine metabolism to the formation of single-carbon units. Biochim Biophys Acta 78:437–448. [CrossRef]
169. Wilson RL, Stauffer GV. 1994. DNA sequence and characterization of GcvA, a LysR family regulatory protein for the Escherichia coli glycine cleavage enzyme system. J Bacteriol 176:2862–2868.
170. Stauffer LT, Stauffer GV. 1994. Characterization of the gcv control region from Escherichia coli. J Bacteriol 176:6159–6164.
171. Wilson RL, Stauffer LT, Stauffer GV. 1993. Roles of the GcvA and PurR proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175:5129–5134.
172. Wilson RL, Steiert PS, Stauffer GV. 1993. Positive regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175:902–904.
173. Wonderling LD, Urbanowski ML, Stauffer GV. 2000. GcvA binding site 1 in the gcvTHP promoter of Escherichia coli is required for GcvA-mediated repression but not for GcvA-mediated activation. Microbiology 146:2909–2918.
174. Wilson RL, Urbanowski ML, Stauffer GV. 1995. DNA binding sites of the LysR-type regulator GcvA in the gcv and gcvA control regions of Escherichia coli. J Bacteriol 177:4940–4946.
175. Jourdan AD, Stauffer GV. 1998. Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. J Bacteriol 180:4865–4871.[PubMed]
176. Gao J, Gussin GN. 1991. Mutations in TrpI binding site II that differentially affect activation of the trpBA promoter of Pseudomonas aeruginosa. EMBO J 10:4137–4144.
177. Hryniewicz MM, Kredich NM. 1994. Stoichiometry of binding of CysB to the cysJIH, cysK, and cysP promoter regions of Salmonella typhimurium. J Bacteriol 176:3673–3682.[PubMed]
178. Ogawa N, McFall SM, Klem TJ, Miyashita K, Chakrabarty AM. 1999. Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. J Bacteriol 181:6697–6705.
179. Rhee KY, Senear DF, Hatfield GW. 1998. Activation of gene expression by a ligand-induced conformational change of a protein-DNA complex. J Biol Chem 273:11257–11266. [PubMed][CrossRef]
180. Vanden Boom TJ, Reed KE, Cronan JE, Jr. 1991. Lipoic acid metabolism in Escherichia coli: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning, and characterization of the E. coli lip locus, and identification of the lipoylated protein of the glycine cleavage system. J Bacteriol 173:6411–6420.
181. Wang L, Helmann JD, Winans SC. 1992. The A. tumefaciens transcriptional activator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Cell 69:659–667. [CrossRef]
182. Wek RC, Hatfield GW. 1988. Transcriptional activation at adjacent operators in the divergent-overlapping ilvY and ilvC promoters of Escherichia coli. J Mol Biol 203:643–663. [CrossRef]
183. Adhya S, Garges S. 1990. Positive control. J Biol Chem 265:10797–10800.[PubMed]
184. Ebright RH, Busby S. 1995. The Escherichia coli RNA polymerase alpha subunit: structure and function. Curr Opin Genet Dev 5:197–203. [PubMed][CrossRef]
185. Ishihama A. 1993. Protein-protein communication within the transcription apparatus. J Bacteriol 175:2483–2489.[PubMed]
186. Russo FD, Silhavy TJ. 1992. Alpha: the Cinderella subunit of RNA polymerase. J Biol Chem 267:14515–14518.[PubMed]
187. Tao K, Zou C, Fujita N, Ishihama A. 1995. Mapping of the OxyR protein contact site in the C-terminal region of RNA polymerase alpha subunit. J Bacteriol 177:6740–6744.
188. Thomas MS, Glass RE. 1991. Escherichia coli rpoA mutation which impairs transcription of positively regulated systems. Mol Microbiol 5:2719–2725. [CrossRef]
189. Jourdan AD, Stauffer GV. 1999. GcvA-mediated activation of gcvT-lacZ expression involves the carboxy-terminal domain of the alpha subunit of RNA polymerase. FEMS Microbiol Lett 181:307–312. [PubMed][CrossRef]
190. Collado-Vides J, Magasanik B, Gralla JD. 1991. Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev 55:371–394.
191. Stauffer LT, Stauffer GV. 1998. Roles for GcvA-binding sites 3 and 2 and the Lrp-binding region in gcvT::lacZ expression in Escherichia coli. Microbiology 144:2865–2872. [PubMed][CrossRef]
192. Xin W, Feiss M. 1993. Function of IHF in lambda DNA packaging. I. Identification of the strong binding site for integration host factor and the locus for intrinsic bending in cosB. J Mol Biol 230:492–504. [CrossRef]
193. Stauffer LT, Stauffer GV. 1999. Role for the leucine-responsive regulatory protein (Lrp) as a structural protein in regulating the Escherichia coli gcvTHP operon. Microbiology 145:569–576. [PubMed][CrossRef]
194. Ghrist AC, Stauffer GV. 1998. Promoter characterization and constitutive expression of the Escherichia coli gcvR gene. J Bacteriol 180:1803–1807.[PubMed]
195. Ghrist AC, Heil G, Stauffer GV. 2001. GcvR interacts with GcvA to inhibit activation of the Escherichia coli glycine cleavage operon. Microbiology 147:2215–2221.
196. Heil GL. 2002. Evidence for Allosteric Coeffector Mediated Inhibition of a Protein-Protein Interaction Involved in the Transcriptional Regulation of the gcv Operon of Escherichia coli. Ph.D. thesis. University of Iowa, Iowa City.
197. Raunio R, Rosenqvist H. 1970. Amino acid pool of Escherichia coli during the different phases of growth. Acta Chem Scand 24:2737–2744. [CrossRef]
198. Jourdan AD, Stauffer GV. 1999. Genetic analysis of the GcvA binding site in the gcvA control region. Microbiology 145:2153–2162. [CrossRef]
199. Zalkin H, Nygaard P (ed). 1996. Biosynthesis of Purine Nucleotides, 2nd ed. ASM Press, Washington, D.C.
200. Wonderling LD, Stauffer GV. 1999. The cyclic AMP receptor protein is dependent on GcvA for regulation of the gcv operon. J Bacteriol 181:1912–1919.
201. Busby S, Ebright RH. 1997. Transcription activation at class II CAP-dependent promoters. Mol Microbiol 23:853–859. [CrossRef]
202. Ebright RH. 1993. Transcription activation at Class I CAP-dependent promoters. Mol Microbiol 8:797–802. [PubMed][CrossRef]
203. Rhodius VA, West DM, Webster CL, Busby SJ, Savery NJ. 1997. Transcription activation at class II CRP-dependent promoters: the role of different activating regions. Nucleic Acids Res 25:326–332. [CrossRef]
204. Guest JR, Angier SJ, Russell GC. 1989. Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli. Ann N Y Acad Sci 573:76–99. [PubMed][CrossRef]
205. Perham RN. 1991. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30:8501–8512. [PubMed][CrossRef]
206. Amarasingham CR, Davis BD. 1965. Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli. J Biol Chem 240:3664–3668.[PubMed]
207. Buck D, Spencer ME, Guest JR. 1986. Cloning and expression of the succinyl-CoA synthetase genes of Escherichia coli K12. J Gen Microbiol 132:1753–1762.
208. Quail MA, Haydon DJ, Guest JR. 1994. The pdhR-aceEF-lpd operon of Escherichia coli expresses the pyruvate dehydrogenase complex. Mol Microbiol 12:95–104. [PubMed][CrossRef]
209. Smith MW, Neidhardt FC. 1983. 2-Oxoacid dehydrogenase complexes of Escherichia coli: cellular amounts and patterns of synthesis. J Bacteriol 156:81–88.[PubMed]
210. Spencer ME, Guest JR. 1985. Transcription analysis of the sucAB, aceEF and lpd genes of Escherichia coli. Mol Gen Genet 200:145–154. [CrossRef]
211. Cunningham L, Georgellis D, Green J, Guest JR. 1998. Co-regulation of lipoamide dehydrogenase and 2-oxoglutarate dehydrogenase synthesis in Escherichia coli: characterisation of an ArcA binding site in the lpd promoter. FEMS Microbiol Lett 169:403–408. [PubMed][CrossRef]
212. Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S. 2001. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11:941–950. [CrossRef]
213. Urbanowski ML, Stauffer LT, Stauffer GV. 2000. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol 37:856–868. [CrossRef]
214. Andrews JC, Short SA. 1985. Genetic analysis of Escherichia coli oligopeptide transport mutants. J Bacteriol 161:484–492.[PubMed]
215. Hogarth BG, Higgins CF. 1983. Genetic organization of the oligopeptide permease (opp) locus of Salmonella typhimurium and Escherichia coli. J Bacteriol 153:1548–1551.[PubMed]
216. Olson ER, Dunyak DS, Jurss LM, Poorman RA. 1991. Identification and characterization of dppA, an Escherichia coli gene encoding a periplasmic dipeptide transport protein. J Bacteriol 173:234–244.
217. Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S. 2003. Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124. [CrossRef]
218. Goodell EW, Higgins CF. 1987. Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli. J Bacteriol 169:3861–3865.
219. Manson MD, Blank V, Brade G, Higgins CF. 1986. Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature 321:253–256. [CrossRef]
220. Hiles ID, Gallagher MP, Jamieson DJ, Higgins CF. 1987. Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J Mol Biol 195:125–142. [PubMed][CrossRef]
221. Smith MW, Payne JW. 1990. Simultaneous exploitation of different peptide permeases by combinations of synthetic peptide smugglins can lead to enhanced antibacterial activity. FEMS Microbiol Lett 58:311–316. [PubMed][CrossRef]
222. Schimmel P. 1987. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem 56:125–158. [CrossRef]
223. Eriani G, Delarue M, Poch O, Gangloff J, Moras D. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206. [PubMed][CrossRef]
224. Freist W, Logan DT, Gauss DH. 1996. Glycyl-tRNA synthetase. Biol Chem Hoppe Seyler 377:343–356.[PubMed]
225. Keng T, Webster TA, Sauer RT, Schimmel P. 1982. Gene for Escherichia coli glycyl-tRNA synthetase has tandem subunit coding regions in the same reading frame. J Biol Chem 257:12503–12508.
226. Ostrem DL, Berg P. 1974. Glycyl transfer ribonucleic acid synthetase from Escherichia coli: purification, properties, and substrate binding. Biochemistry 13:1338–1348. [PubMed][CrossRef]
227. Webster TA, Gibson BW, Keng T, Biemann K, Schimmel P. 1983. Primary structures of both subunits of Escherichia coli glycyl-tRNA synthetase. J Biol Chem 258:10637–10641.
228. Led JJ, Switon WK, Jensen KF. 1983. Phosphorolytic activity of Escherichia coli glycyl-tRNA synthetase towards its cognate aminoacyl adenylate detected by 31P-NMR spectroscopy and thin-layer chromatography. Eur J Biochem 136:469–479. [CrossRef]
229. Plateau P, Blanquet S. 1994. Dinucleoside oligophosphates in micro-organisms. Adv Microb Physiol 36:81–109. [CrossRef]
230. Cusack S, Hartlein M, Leberman R. 1991. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res 19:3489–3498. [CrossRef]
231. Hartlein M, Madern D, Leberman R. 1987. Cloning and characterization of the gene for Escherichia coli seryl-tRNA synthetase. Nucleic Acids Res 15:1005–1017. [PubMed][CrossRef]
232. Leberman R, Hartlein M, Cusack S. 1991. Escherichia coli seryl-tRNA synthetase: the structure of a class 2 aminoacyl-tRNA synthetase. Biochim Biophys Acta 1089:287–298.[PubMed]
233. Cusack S, Berthet-Colominas C, Hartlein M, Nassar N, Leberman R. 1990. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347:249–255. [CrossRef]
234. Price S, Cusack S, Borel F, Berthet-Colominas C, Leberman R. 1993. Crystallization of the seryl-tRNA synthetase:tRNAS(ser) complex of Escherichia coli. FEBS Lett 324:167–170. [PubMed][CrossRef]
235. Neidhardt FC, Bloch PL, Pedersen S, Reeh S. 1977. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J Bacteriol 129:378–387.
236. Pedersen S, Bloch PL, Reeh S, Neidhardt FC. 1978. Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell 14:179–190. [PubMed][CrossRef]
237. Reeh S, Pedersen S, Neidhardt FC. 1977. Transient rates of synthesis of five amionacyl-transfer ribonucleic acid synthetases during a shift-up of Escherichia coli. J Bacteriol 129:702–706.
238. Hill RJ, Konigsberg W. 1980. Mutation in the structural gene for seryl-transfer ribonucleic acid synthetase of Escherichia coli which affects formation of its gene product at high temperature. J Bacteriol 141:1163–1169.[PubMed]
239. Ferri ML, Vincent C, Leberman R, Hartlein M. 1997. Characterization of a temperature-sensitive Escherichia coli mutant and revertants with altered seryl-tRNA synthetase activity. J Bacteriol 179:2446–2448.[PubMed]
240. Cosloy SD. 1973. D-Serine transport system in Escherichia coli K-12. J Bacteriol 114:679–684.
241. Wargel RJ, Hadur CA, Neuhaus FC. 1971. Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine, and glycine. J Bacteriol 105:1028–1035.
242. Wargel RJ, Shadur CA, Neuhaus FC. 1970. Mechanism of D-cycloserine action: transport systems for D-alanine, D-cycloserine, L-alanine, and glycine. J Bacteriol 103:778–788.
243. Robbins JC, Oxender DL. 1973. Transport systems for alanine, serine, and glycine in Escherichia coli K-12. J Bacteriol 116:12–18.[PubMed]
244. Hama H, Shimamoto T, Tsuda M, Tsuchiya T. 1988. Characterization of a novel L-serine transport system in Escherichia coli. J Bacteriol 170:2236–2239.[PubMed]
245. Hama H, Shimamoto T, Tsuda M, Tsuchiya T. 1987. Properties of a Na+-coupled serine-threonine transport system in Escherichia coli. Biochim Biophys Acta 905:231–239. [PubMed][CrossRef]
246. Ganduri YL, Sadda SR, Datta MW, Jambukeswaran RK, Datta P. 1993. TdcA, a transcriptional activator of the tdcABC operon of Escherichia coli, is a member of the LysR family of proteins. Mol Gen Genet 240:395–402.
247. Sumantran VN, Schweizer HP, Datta P. 1990. A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli. J Bacteriol 172:4288–4294.
248. Hobert EH, Datta P. 1983. Synthesis of biodegradative threonine dehydratase in Escherichia coli: role of amino acids, electron acceptors, and certain intermediary metabolites. J Bacteriol 155:586–592.[PubMed]
249. Epstein W (ed). 1983. Membrane-Mediated Regulation of Gene Expression in Bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
250. Ratzkin B, Grabnar M, Roth J. 1978. Regulation of the major proline permease gene of Salmonella typhimurium. J Bacteriol 133:737–743.
ecosalplus.3.6.1.2.citations
ecosalplus/1/1
content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.2
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.2
2004-05-19
2017-03-28

Abstract:

The biosynthesis of serine, glycine, and one-carbon (C) units constitutes a major metabolic pathway in and serovar Typhimurium. C units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNA used to start translation in and serovar Typhimurium. The need for serine, glycine, and C units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: , , and ; gene; operon; ; and ; and genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of cells in GM medium, and isoleucine releases this growth inhibition. The glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Citation: Stauffer G. 2004. Regulation of Serine, Glycine, and One-Carbon Biosynthesis, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Citation: Stauffer G. 2004. Regulation of Serine, Glycine, and One-Carbon Biosynthesis, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The −35 and −10 regions for promoters P1 and P2, the Lrp binding region, and a putative CRP binding site are indicated. The sites are approximately to scale.

Citation: Stauffer G. 2004. Regulation of Serine, Glycine, and One-Carbon Biosynthesis, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The promoter −35, −10, and +1 elements for and hmp and the binding sites for MetR and PurR are indicated. The RNAP binding site for extends from bp −68 to −75 (lightly shaded bar) in the presence of MetR. MetR binding site 3 was observed only in the presence of RNAP and has not been shown genetically to be involved in regulation. The sites are approximately to scale.

Citation: Stauffer G. 2004. Regulation of Serine, Glycine, and One-Carbon Biosynthesis, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The promoter −35, −10, and +1 elements and the binding sites for GcvA, Lrp, PurR, and CRP are indicated. The sites are approximately to scale.

Citation: Stauffer G. 2004. Regulation of Serine, Glycine, and One-Carbon Biosynthesis, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

See the text for details.

Citation: Stauffer G. 2004. Regulation of Serine, Glycine, and One-Carbon Biosynthesis, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

The and promoter −35, −10, and +1 elements and the GcvA binding site are indicated. The numbering is based on the +1 transcription start site for . The sites are approximately to scale.

Citation: Stauffer G. 2004. Regulation of Serine, Glycine, and One-Carbon Biosynthesis, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error