1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biosynthesis of Glutamate, Aspartate, Asparagine, -Alanine, and -Alanine

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Author: Larry Reitzer1
  • Editor: Valley Stewart2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular and Cell Biology, FO 31, The University of Texas at Dallas, 2601 N. Floyd Rd., Richardson, TX 75083-0688; 2: University of California, Davis, Davis, CA
  • Received 13 November 2003 Accepted 28 January 2004 Published 06 July 2004
  • Address correspondence to Larry Reitzer reitzer@utdallas.edu
image of Biosynthesis of Glutamate, Aspartate, Asparagine, <span class="jp-small">L</span>-Alanine, and <span class="jp-small">D</span>-Alanine
    Preview this reference work article:
    Zoom in
    Zoomout

    Biosynthesis of Glutamate, Aspartate, Asparagine, -Alanine, and -Alanine, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/1/3_6_1_3_module-1.gif /docserver/preview/fulltext/ecosalplus/1/1/3_6_1_3_module-2.gif
  • Abstract:

    Glutamate, aspartate, asparagine, L-alanine, and D-alanine are derived from intermediates of central metabolism, mostly the citric acid cycle, in one or two steps. While the pathways are short, the importance and complexity of the functions of these amino acids befit their proximity to central metabolism. Inorganic nitrogen (ammonia) is assimilated into glutamate, which is the major intracellular nitrogen donor. Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also important for survival in acidic environments, and changes in glutamate concentration accompany changes in osmolarity. Aspartate is a precursor for asparagine, isoleucine, methionine, lysine, threonine, pyrimidines, NAD, and pantothenate; a nitrogen donor for arginine and purine synthesis; and an important metabolic effector controlling the interconversion of C and C intermediates and the activity of the DcuS-DcuR two-component system. Finally, L- and D-alanine are components of the peptide of peptidoglycan, and L-alanine is an effector of the leucine responsive regulatory protein and an inhibitor of glutamine synthetase (GS). This review summarizes the genes and enzymes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and the regulators and environmental factors that control the expression of these genes. Glutamate dehydrogenase (GDH) deficient strains of , , and serovar Typhimurium grow normally in glucose containing (energy-rich) minimal medium but are at a competitive disadvantage in energy limited medium. Glutamate, aspartate, asparagine, -alanine, and -alanine have multiple transport systems.

  • Citation: Reitzer L. 2004. Biosynthesis of Glutamate, Aspartate, Asparagine, -Alanine, and -Alanine, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.3

Key Concept Ranking

Aromatic Amino Acids
1.1235075
Amino Acids
0.6929043
Transcription Start Site
0.5873189
Proteins
0.45566243
Integral Membrane Proteins
0.428145
1.1235075

References

1. Berlyn MK. 1998. Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62:814–984.[PubMed]
2. Reitzer L. 2003. Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57:155–176. [PubMed][CrossRef]
3. Meers JL, Tempest DW, Brown CM. 1970. Glutamine(amide):2-oxoglutarate amino transferase oxido-reductase (NADP); an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol 64:187–194.[PubMed]
4. Tempest DW, Meers JL, Brown CM. 1970. Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem J 117:405–407.[PubMed]
5. Berberich MA. 1972. A glutamate-dependent phenotype in E. coli K12: the result of two mutations Biochem Biophys Res Commun 47:1498–1503. [PubMed][CrossRef]
6. Tyler B. 1978. Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem 47:1127–1162. [PubMed][CrossRef]
7. Schneider BL, Kiupakis AK, Reitzer LJ. 1998. Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J Bacteriol 180:4278–4286.[PubMed]
8. Schneider BL, Ruback S, Kiupakis AK, Kasbarian H, Pybus C, Reitzer L. 2002. The Escherichia coli gabDTPC operon: specific γ-aminobutyrate catabolism and nonspecific induction. J Bacteriol 184:6976–6986. [PubMed][CrossRef]
9. Kiupakis AK, Reitzer L. 2002. ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184:2940–2950. [PubMed][CrossRef]
10. Coulton JW, Kapoor M. 1973. Purification and some properties of the glutamate dehydrogenase of Salmonella typhimurium. Can J Microbiol 19:427–438.[PubMed]
11. Coulton JW, Kapoor M. 1973. Studies on the kinetics and regulation of glutamate dehydrogenase of Salmonella typhimurium. Can J Microbiol 19:439–450.[PubMed]
12. Sakamoto N, Kotre AM, Savageau MA. 1975. Glutamate dehydrogenase from Escherichia coli: purification and properties. J Bacteriol 124:775–783.[PubMed]
13. Veronese FM, Boccu E, Conventi L. 1975. Glutamate dehydrogenase from Escherichia coli: induction, purification and properties of the enzyme. Biochim Biophys Acta 377:217–228.[PubMed]
14. Riba L, Becerril B, Servin-Gonzalez L, Valle F, Bolivar F. 1988. Identification of a functional promoter for the Escherichia coli gdhA gene and its regulation. Gene 71:233–246. [PubMed][CrossRef]
15. Becerril B, Valle F, Merino E, Riba L, Bolivar F. 1985. Repetitive extragenic palindromic (REP) sequences in the Escherichia coli gdhA gene. Gene 37:53–62. [CrossRef]
16. Merino E, Becerril B, Valle F, Bolivar F. 1987. Deletion of a repetitive extragenic palindromic (REP) sequence downstream from the structural gene of Escherichia coli glutamate dehydrogenase affects the stability of its mRNA. Gene 58:305–309. [PubMed][CrossRef]
17. Brenchley JE, Magasanik B. 1974. Mutants of Klebsiella aerogenes lacking glutamate dehydrogenase. J Bacteriol 117:544–550.[PubMed]
18. Vender J, Rickenberg HV. 1964. Ammonia metabolism in a mutant of Escherichia coli lacking glutamate dehydrogenase. Biochim Biophys Acta 90:218–220.[PubMed]
19. Helling RB. 1998. Pathway choice in glutamate synthesis in Escherichia coli. J Bacteriol 180:4571–4575.[PubMed]
20. Helling RB. 2002. Speed versus efficiency in microbial growth and the role of parallel pathways. J Bacteriol 184:1041–1045. [PubMed][CrossRef]
21. Helling RB. 1994. Why does Escherichia coli have two primary pathways for synthesis of glutamate? J Bacteriol 176:4664–4668.[PubMed]
22. Brenchley JE. 1973. Effect of methionine sulfoximine and methionine sulfone on glutamate synthesis in Klebsiella aerogenes. J Bacteriol 114:666–673.[PubMed]
23. Brenchley JE, Baker CA, Patil LG. 1975. Regulation of the ammonia assimilatory enzymes in Salmonella typhimurium. J Bacteriol 124:182–189.[PubMed]
24. Brenchley JE, Prival MJ, Magasanik B. 1973. Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J Biol Chem 248:6122–6128.[PubMed]
25. Varricchio F. 1969. Control of glutamate dehydrogenase synthesis in Escherichia coli. Biochim Biophys Acta 177:560–564.[PubMed]
26. Magasanik B, Lund P, Neidhardt FC, Schwartz DT. 1965. Induction and repression of the histidine-degrading enzymes in Aerobacter aerogenes. J Biol Chem 240:4320–4324.[PubMed]
27. Bender RA, Macaluso A, Magasanik B. 1976. Glutamate dehydrogenase: genetic mapping and isolation of regulatory mutants of Klebsiella aerogenes. J Bacteriol 127:141–148.[PubMed]
28. Bender RA. 1991. The role of the NAC protein in the nitrogen regulation of Klebsiella aerogenes. Mol Microbiol 5:2575–2580. [PubMed][CrossRef]
29. Schwacha A, Bender RA. 1993. The product of the Klebsiella aerogenes nac (nitrogen assimilation control) gene is sufficient for activation of the hut operons and repression of the gdh operon. J Bacteriol 175:2116–2124.[PubMed]
30. Muse WB, Bender RA. 1998. The nac (nitrogen assimilation control) gene from Escherichia coli. J Bacteriol 180:1166–1173.[PubMed]
31. Goss TJ, Bender RA. 1995. The nitrogen assimilation control protein, NAC, is a DNA binding transcription activator in Klebsiella aerogenes. J Bacteriol 177:3546–3555.[PubMed]
32. Goss TJ, Janes BK, Bender RA. 2002. Repression of glutamate dehydrogenase formation in Klebsiella aerogenes requires two binding sites for the nitrogen assimilation control protein, NAC. J Bacteriol 184:6966–6975. [PubMed][CrossRef]
33. Halpern YS, Umbarger HE. 1960. Conversion of ammonia to amino groups in Escherichia coli. J Bacteriol 80:285–288.[PubMed]
34. Maurizi MR, Rasulova F. 2002. Degradation of L-glutamate dehydrogenase from Escherichia coli: allosteric regulation of enzyme stability. Arch Biochem Biophys 397:206–216. [PubMed][CrossRef]
35. Tao H, Bausch C, Richmond C, Blattner FR, Conway T. 1999. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181:6425–6440.[PubMed]
36. Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S. 2000. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci USA 97:14674–14679. [CrossRef]
37. Hung SP, Baldi P, Hatfield GW. 2002. Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein J Biol Chem 277:40309–40323. [PubMed][CrossRef]
38. Smulski DR, Huang LL, McCluskey MP, Reeve MJ, Vollmer AC, Van Dyk TK, LaRossa RA. 2001. Combined, functional genomic-biochemical approach to intermediary metabolism: interaction of acivicin, a glutamine amidotransferase inhibitor, with Escherichia coli K-12. J Bacteriol 183:3353–3364. [PubMed][CrossRef]
39. Weber A, Jung K. 2002. Profiling early osmostress-dependent gene expression in Escherichia coli using DNA macroarrays. J Bacteriol 184:5502–5507. [PubMed][CrossRef]
40. Miller RE, Stadtman ER. 1972. Glutamate synthase from Escherichia coli. An iron-sulfide flavoprotein. J Biol Chem 247:7407–7419.[PubMed]
41. Trotta PP, Platzer KE, Haschemeyer RH, Meister A. 1974. Glutamine-binding subunit of glutamate synthase and partial reactions catalyzed by this glutamine amidotransferase. Proc Natl Acad Sci USA 71:4607–4611. [PubMed][CrossRef]
42. Madonna MJ, Fuchs RL, Brenchley JE. 1985. Fine structure analysis of Salmonella typhimurium glutamate synthase genes. J Bacteriol 161:353–360.[PubMed]
43. Geary LE, Meister A. 1977. On the mechanism of glutamine-dependent reductive amination of α-ketoglutarate catalyzed by glutamate synthase. J Biol Chem 252:3501–3508.[PubMed]
44. Mantsala P, Zalkin H. 1976. Active subunits of Escherichia coli glutamate synthase. J Bacteriol 126:539–541.[PubMed]
45. Mantsala P, Zalkin H. 1976. Glutamate synthase. Properties of the glutamine-dependent activity. J Biol Chem 251:3294–3299.
46. Mantsala P, Zalkin H. 1976. Properties of apoglutamate synthase and comparison with glutamate dehydrogenase. J Biol Chem 251:3300–3305.[PubMed]
47. Bower S, Zalkin H. 1983. Chemical modification and ligand binding studies with Escherichia coli glutamate synthase. Biochemistry 22:1613–1620. [PubMed][CrossRef]
48. Rendina AR, Orme-Johnson WH. 1978. Glutamate synthase: on the kinetic mechanism of the enzyme from Escherichia coli W. Biochemistry 17:5388–5393. [PubMed][CrossRef]
49. Covarrubias AA, Sanchez-Pescador R, Osorio A, Bolivar F, Bastarrachea F. 1980. ColE1 hybrid plasmids containing Escherichia coli genes involved in the biosynthesis of glutamate and glutamine. Plasmid 3:150–164. [PubMed][CrossRef]
50. Oliver G, Gosset G, Sanchez-Pescador R, Lozoya E, Ku LM, Flores N, Becerril B, Valle F, Bolivar F. 1987. Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene 60:1–11. [PubMed][CrossRef]
51. Castano I, Flores N, Valle F, Covarrubias AA, Bolivar F. 1992. gltF, a member of the gltBDF operon of Escherichia coli, is involved in nitrogen-regulated gene expression. Mol Microbiol 6:2733–2741. [PubMed][CrossRef]
52. Castano I, Bastarrachea F, Covarrubias AA. 1988. gltBDF operon of Escherichia coli. J Bacteriol 170:821–827.[PubMed]
53. Goss TJ, Perez-Matos A, Bender RA. 2001. Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes. J Bacteriol 183:6607–6619. [PubMed][CrossRef]
54. Dendinger SM, Patil LG, Brenchley JE. 1980. Salmonella typhimurium mutants with altered glutamate dehydrogenase and glutamate synthase activities. J Bacteriol 141:190–198.[PubMed]
55. Nagatani H, Shimizu M, Valentine RC. 1971. The mechanism of ammonia assimilation in nitrogen fixing bacteria. Arch Mikrobiol 79:164–175. [PubMed][CrossRef]
56. Pahel G, Zelenetz AD, Tyler BM. 1978. gltB gene and regulation of nitrogen metabolism by glutamine synthetase in Escherichia coli. J Bacteriol 133:139–148.[PubMed]
57. Ernsting BR, Atkinson MR, Ninfa AJ, Matthews RG. 1992. Characterization of the regulon controlled by the leucine-responsive regulatory protein in Escherichia coli. J Bacteriol 174:1109–1118.[PubMed]
58. Janes BK, Bender RA. 1999. Two roles for the leucine-responsive regulatory protein in expression of the alanine catabolic operon (dadAB) in Klebsiella aerogenes. J Bacteriol 181:1054–1058.[PubMed]
59. Ernsting BR, Denninger JW, Blumenthal RM, Matthews RG. 1993. Regulation of the gltBDF operon of Escherichia coli: how is a leucine-insensitive operon regulated by the leucine-responsive regulatory protein? J Bacteriol 175:7160–7169.[PubMed]
60. Wiese DE II, Ernsting BR, Blumenthal RM, Matthews RG. 1997. A nucleoprotein activation complex between the leucine-responsive regulatory protein and DNA upstream of the gltBDF operon in Escherichia coli. J Mol Biol 270:152–168. [PubMed][CrossRef]
61. Paul L, Blumenthal RM, Matthews RG. 2001. Activation from a distance: roles of Lrp and integration host factor in transcriptional activation of gltBDF. J Bacteriol 183:3910–3918. [PubMed][CrossRef]
62. Landgraf JR, Wu J, Calvo JM. 1996. Effects of nutrition and growth rate on Lrp levels in Escherichia coli. J Bacteriol 178:6930–6936.[PubMed]
63. Sales M, Brenchley JE. 1982. The regulation of the ammonia assimilatory enzymes in Rel+ and Rel strains of Salmonella typhimurium. Mol Gen Genet 186:263–268. [PubMed][CrossRef]
64. Rosenfeld SA, Brenchley JE. 1980. Regulation of nitrogen utilization of hisT mutants of Salmonella typhimurium. J Bacteriol 143:801–808.[PubMed]
65. Prusiner S, Miller RE, Valentine RC. 1972. Adenosine 3′:5′-cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli. Proc Natl Acad Sci USA 69:2922–2926. [PubMed][CrossRef]
66. Metcalf WW, Steed PM, Wanner BL. 1990. Identification of phosphate starvation-inducible genes in Escherichia coli K-12 by DNA sequence analysis of psi::lacZ(Mu d1) transcriptional fusions. J Bacteriol 172:3191–3200.[PubMed]
67. Lapointe J, Delcuve G, Duplain L. 1975. Derepressed levels of glutamate synthase and glutamine synthetase in Escherichia coli mutants altered in glutamyl-transfer ribonucleic acid synthetase. J Bacteriol 123:843–850.[PubMed]
68. Osorio AV, Camarena L, Salazar G, Noll-Louzada M, Bastarrachea F. 1993. Nitrogen regulation in an Escherichia coli strain with a temperature sensitive glutamyl-tRNA synthetase. Mol Gen Genet 239:400–408. [PubMed][CrossRef]
69. Arfin SM, Long AD, Ito ET, Tolleri L, Riehle MM, Paegle ES, Hatfield GW. 2000. Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J Biol Chem 275:29672–29684. [PubMed][CrossRef]
70. Chang DE, Smalley DJ, Conway T. 2002. Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol 45:289–306. [PubMed][CrossRef]
71. Salmelin C, Vilpo J. 2003. Induction of SOS response, cellular efflux and oxidative stress response genes by chlorambucil in DNA repair-deficient Escherichia coli cells (ada, ogt and mutS). Mutat Res 522:33–44.[PubMed]
72. Schembri MA, Kjaergaard K, Klemm P. 2003. Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267. [PubMed][CrossRef]
73. Lobner-Olesen A, Marinus MG, Hansen FG. 2003. Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sci USA 100:4672–4677. [PubMed][CrossRef]
74. Oshima T, Wada C, Kawagoe Y, Ara T, Maeda M, Masuda Y, Hiraga S, Mori H. 2002. Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol 45:673–695. [PubMed][CrossRef]
75. Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P. 2001. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36. [PubMed][CrossRef]
76. Phadtare S, Kato I, Inouye M. 2002. DNA microarray analysis of the expression profile of Escherichia coli in response to treatment with 4,5-dihydroxy-2-cyclopenten-1-one. J Bacteriol 184:6725–6729. [PubMed][CrossRef]
77. Staudinger BJ, Oberdoerster MA, Lewis PJ, Rosen H. 2002. mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J Clin Investig 110:1151–1163. [PubMed][CrossRef]
78. Gelfand DH, Steinberg RA. 1977. Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J Bacteriol 130:429–440.[PubMed]
79. Hayashi H, Inoue K, Nagata T, Kuramitsu S, Kagamiyama H. 1993. Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase. Biochemistry 32:12229–12239. [PubMed][CrossRef]
80. Mavrides C, Orr W. 1975. Multispecific aspartate and aromatic amino acid aminotransferases in Escherichia coli. J Biol Chem 250:4128–4133.[PubMed]
81. Powell JT, Morrison JF. 1978. The purification and properties of the aspartate aminotransferase and aromatic-amino-acid aminotransferase from Escherichia coli. Eur J Biochem 87:391–400. [PubMed][CrossRef]
82. Yagi T, Kagamiyama H, Motosugi K, Nozaki M, Soda K. 1979. Crystallization and properties of aspartate aminotransferase from Escherichia coli B. FEBS Lett 100:81–84. [PubMed][CrossRef]
83. Heilbronn J, Wilson J, Berger BJ. 1999. Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. J Bacteriol 181:1739–1747.[PubMed]
84. Collier RH, Kohlhaw G. 1972. Nonidentity of the aspartate and the aromatic aminotransferase components of transaminase A in Escherichia coli. J Bacteriol 112:365–371.[PubMed]
85. Mehta PK, Hale TI, Christen P. 1993. Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214:549–561. [PubMed][CrossRef]
86. Jensen RA, Gu W. 1996. Evolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases. J Bacteriol 178:2161–2171.[PubMed]
87. Fotheringham IG, Dacey SA, Taylor PP, Smith TJ, Hunter MG, Finlay ME, Primrose SB, Parker DM, Edwards RM. 1986. The cloning and sequence analysis of the aspC and tyrB genes from Escherichia coli K12. Comparison of the primary structures of the aspartate aminotransferase and aromatic aminotransferase of E coli with those of the pig aspartate aminotransferase isoenzymes. Biochem J 234:593–604.[PubMed]
88. Kondo K, Wakabayashi S, Kagamiyama H. 1987. Structural studies on aspartate aminotransferase from Escherichia coli. Covalent structure. J Biol Chem 262:8648–8657.[PubMed]
89. Kondo K, Wakabayashi S, Yagi T, Kagamiyama H. 1984. The complete amino acid sequence of aspartate aminotransferase from Escherichia coli: sequence comparison with pig isoenzymes. Biochem Biophys Res Commun 122:62–67. [PubMed][CrossRef]
90. Kamitori S, Okamoto A, Hirotsu K, Higuchi T, Kuramitsu S, Kagamiyama H, Matsuura Y, Katsube Y. 1990. Three-dimensional structures of aspartate aminotransferase from Escherichia coli and its mutant enzyme at 2.5 Å resolution. J Biochem (Tokyo) 108:175–184.
91. Kohler E, Seville M, Jager J, Fotheringham I, Hunter M, Edwards M, Jansonius JN, Kirschner K. 1994. Significant improvement to the catalytic properties of aspartate aminotransferase: role of hydrophobic and charged residues in the substrate binding pocket. Biochemistry 33:90–97. [PubMed][CrossRef]
92. Mavrides C, Orr W. 1974. Multiple forms of plurispecific aromatic:2-oxoglutarate (oxaloacetate) aminotransferase (transaminase A) in Escherichia coli and selective repression by L-tyrosine. Biochim Biophys Acta 336:70–78.
93. Silbert DF, Jorgensen SE, Lin EC. 1963. Repression of transaminase A by tyrosine in Escherichia coli. Biochim Biophys Acta 73:232–240. [PubMed][CrossRef]
94. Minagawa S, Ogasawara H, Kato A, Yamamoto K, Eguchi Y, Oshima T, Mori H, Ishihama A, Utsumi R. 2003. Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J Bacteriol 185:3696–3702. [PubMed][CrossRef]
95. Felton J, Michaelis S, Wright A. 1980. Mutations in two unlinked genes are required to produce asparagine auxotrophy in Escherichia coli. J Bacteriol 142:221–228.[PubMed]
96. Humbert R, Simoni RD. 1980. Genetic and biomedical studies demonstrating a second gene coding for asparagine synthetase in Escherichia coli. J Bacteriol 142:212–220.
97. Reitzer LJ, Magasanik B. 1982. Asparagine synthetases of Klebsiella aerogenes: properties and regulation of synthesis. J Bacteriol 151:1299–1313.[PubMed]
98. de Wind N, de Jong M, Meijer M, Stuitje AR. 1985. Site-directed mutagenesis of the Escherichia coli chromosome near oriC: identification and characterization of asnC, a regulatory element in E. coli asparagine metabolism Nucleic Acids Res 13:8797–8811. [PubMed][CrossRef]
99. Buchanan JM. 1973. The amidotransferases. Adv Enzymol Relat Areas Mol Biol 39:91–183. [PubMed][CrossRef]
100. Meister A. 1974. Asparagine synthetase, p 561–580. In Boyer PD (ed), The Enzymes, vol. X. Academic Press, New York, N.Y.
101. Reitzer L. 1983. Aspartate and asparagine biosynthesis, p 133–145. In Herrmann KM and Somerville RL (ed), Amino acids: Biosynthesis and Genetic Regulation. Addison-Wesley, Reading, Mass.
102. Zalkin H. 1993. The amidotransferases. Adv Enzymol Relat Areas Mol Biol 66:203–309. [PubMed][CrossRef]
103. Hinchman SK, Schuster SM. 1992. Overproduction, preparation of monoclonal antibodies and purification of E. coli asparagine synthetase A. Protein Eng 5:279–283. [PubMed][CrossRef]
104. Sugiyama A, Kato H, Nishioka T, Oda J. 1992. Overexpression and purification of asparagine synthetase from Escherichia coli. Biosci Biotechnol Biochem 56:376–379. [PubMed][CrossRef]
105. Cedar H, Schwartz JH. 1969. The asparagine synthetase of Escherichia coli. II. Studies on mechanism. J Biol Chem 244:4122–4127.[PubMed]
106. Draczynska-Lusiak B, Brown OR. 1994. Asparagine synthetase: an oxidant-sensitive enzyme in Escherichia coli. Microbios 77:141–152.[PubMed]
107. Boehlein SK, Richards NG, Schuster SM. 1994. Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad. J Biol Chem 269:7450–7457.[PubMed]
108. Larsen TM, Boehlein SK, Schuster SM, Richards NG, Thoden JB, Holden HM, Rayment I. 1999. Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. Biochemistry 38:16146–16157. [PubMed][CrossRef]
109. Boehlein SK, Walworth ES, Richards NG, Schuster SM. 1997. Mutagenesis and chemical rescue indicate residues involved in β-aspartyl-AMP formation by Escherichia coli asparagine synthetase B. J Biol Chem 272:12384–12392. [PubMed][CrossRef]
110. Parr IB, Boehlein SK, Dribben AB, Schuster SM, Richards NG. 1996. Mapping the aspartic acid binding site of Escherichia coli asparagine synthetase B using substrate analogs. J Med Chem 39:2367–2378. [PubMed][CrossRef]
111. Richards NG, Schuster SM. 1992. An alternative mechanism for the nitrogen transfer reaction in asparagine synthetase. FEBS Lett 313:98–102. [PubMed][CrossRef]
112. Stoker PW, O’Leary MH, Boehlein SK, Schuster SM, Richards NG. 1996. Probing the mechanism of nitrogen transfer in Escherichia coli asparagine synthetase by using heavy atom isotope effects. Biochemistry 35:3024–3030. [PubMed][CrossRef]
113. Boehlein SK, Stewart JD, Walworth ES, Thirumoorthy R, Richards NG, Schuster SM. 1998. Kinetic mechanism of Escherichia coli asparagine synthetase B. Biochemistry 37:13230–13238. [PubMed][CrossRef]
114. Tesson AR, Soper TS, Ciustea M, Richards NG. 2003. Revisiting the steady state kinetic mechanism of glutamine-dependent asparagine synthetase from Escherichia coli. Arch Biochem Biophys 413:23–31. [PubMed][CrossRef]
115. Hinchman SK, Henikoff S, Schuster SM. 1992. A relationship between asparagine synthetase A and aspartyl tRNA synthetase. J Biol Chem 267:144–149.[PubMed]
116. Nakatsu T, Kato H, Oda J. 1998. Crystal structure of asparagine synthetase reveals a close evolutionary relationship to class II aminoacyl-tRNA synthetase. Nat Struct Biol 5:15–19. [PubMed][CrossRef]
117. Cedar H, Schwartz JH. 1969. The asparagine synthetase of Escherichia coli. I. Biosynthetic role of the enzyme, purification, and characterization of the reaction products. J Biol Chem 244:4112–4121.[PubMed]
118. Kolling R, Lother H. 1985. AsnC: an autogenously regulated activator of asparagine synthetase A transcription in Escherichia coli. J Bacteriol 164:310–315.[PubMed]
119. Poggio S, Domeinzain C, Osorio A, Camarena L. 2002. The nitrogen assimilation control (Nac) protein represses asnC and asnA transcription in Escherichia coli. FEMS Microbiol Lett 206:151–156. [PubMed][CrossRef]
120. Kolling R, Gielow A, Seufert W, Kucherer C, Messer W. 1988. AsnC, a multifunctional regulator of genes located around the replication origin of Escherichia coli, oriC. Mol Gen Genet 212:99–104. [PubMed][CrossRef]
121. Oh MK, Liao JC. 2000. Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278–286. [PubMed][CrossRef]
122. Neidhardt FC, Umbarger HE. 1996. Chemical composition of Escherichia coli, p 13–16. In Niedhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
123. Csonka LN. 1977. Use of 3H and 14C double-labeled glucose to assess in vivo pathways of amino acid biosynthesis in Escherichia coli. J Biol Chem 252:3392–3398.[PubMed]
124. Kurokawa Y, Watanabe A, Yoshimura T, Esaki N, Soda K. 1998. Transamination as a side-reaction catalyzed by alanine racemase of Bacillus stearothermophilus. J Biochem (Tokyo) 124:1163–1169.
125. Mihara H, Esaki N. 2002. Bacterial cysteine desulfurases: their function and mechanisms. Appl Microbiol Biotechnol 60:12–23. [PubMed][CrossRef]
126. Heldal M, Norland S, Tumyr O. 1985. X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Appl Environ Microbiol 50:1251–1257.[PubMed]
127. Niehaus F, Hantke K, Unden G. 1991. Iron content and FNR-dependent gene regulation in Escherichia coli. FEMS Microbiol Lett 68:319–323. [PubMed][CrossRef]
128. Falkinham JO, III. 1977. Escherichia coli K-12 mutant with alternate requirements for vitamin B6 or branched-chain amino acids and lacking transaminase C activity. J Bacteriol 130:566–568.[PubMed]
129. Raunio RP, Jenkins WT. 1973. D-Alanine oxidase from Escherichia coli: localization and induction by L-alanine. J Bacteriol 115:560–566.[PubMed]
130. Rudman D, Meister A. 1953. Transamination in Escherichia coli. J Biol Chem 200:591–604.[PubMed]
131. Berg CM, Liu L, Vartak NB, Whalen WA, Wang B. 1990. The branched-chain amino acid transaminase genes and their products in Escherichia coli, p 131–162. In Chipman M, Barak Z, and Scholl JV (ed), Biosynthesis of Branched-Chain Amino Acids. VCH Verlagsgesellschaft, Weinheim, Federal Republic of Germany.
132. Berg CM, Whalen WA, Archambault LB. 1983. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant. J Bacteriol 155:1009–1014.[PubMed]
133. Falkinham JO, III. 1979. Identification of a mutation affecting an alanine-α-ketoisovalerate transaminase activity in Escherichia coli K-12. Mol Gen Genet 176:147–149. [PubMed][CrossRef]
134. Whalen WA, Berg CM. 1982. Analysis of an avtA::Mu d1(Ap lac) mutant: metabolic role of transaminase C. J Bacteriol 150:739–746.[PubMed]
135. McGilvray D, Umbarger HE. 1974. Regulation of transaminase C synthesis in Escherichia coli: conditional leucine auxotrophy. J Bacteriol 120:715–723.[PubMed]
136. Whalen WA, Berg CM. 1984. Gratuitous repression of avtA in Escherichia coli and Salmonella typhimurium. J Bacteriol 158:571–574.[PubMed]
137. Gonzalez R, Tao H, Shanmugam KT, York SW, Ingram LO. 2002. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol Prog 18:6–20. [PubMed][CrossRef]
138. Pomposiello PJ, Bennik MH, Demple B. 2001. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183:3890–3902. [PubMed][CrossRef]
139. Wang MD, Buckley L, Berg CM. 1987. Cloning of genes that suppress an Escherichia coli K-12 alanine auxotroph when present in multicopy plasmids. J Bacteriol 169:5610–5614.[PubMed]
140. Wasserman SA, Walsh CT, Botstein D. 1983. Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J Bacteriol 153:1439–1450.[PubMed]
141. Wild J, Hennig J, Lobocka M, Walczak W, Klopotowski T. 1985. Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12. Mol Gen Genet 198:315–322. [PubMed][CrossRef]
142. Walsh CT. 1989. Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem 264:2393–2396.[PubMed]
143. Franklin FC, Venables WA, Wijsman HJ. 1981. Genetic studies of D-alanine-dehydrogenase-less mutants of Escherichia coli K12. Genet Res 38:197–208. [PubMed][CrossRef]
144. Galakatos NG, Daub E, Botstein D, Walsh CT. 1986. Biosynthetic alr alanine racemase from Salmonella typhimurium: DNA and protein sequence determination. Biochemistry 25:3255–3260. [PubMed][CrossRef]
145. Lobocka M, Hennig J, Wild J, Klopotowski T. 1994. Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of D-amino acid dehydrogenase and the catabolic alanine racemase. J Bacteriol 176:1500–1510.[PubMed]
146. Wasserman SA, Daub E, Grisafi P, Botstein D, Walsh CT. 1984. Catabolic alanine racemase from Salmonella typhimurium: DNA sequence, enzyme purification, and characterization. Biochemistry 23:5182–5187. [PubMed][CrossRef]
147. Wild J, Klopotowski T. 1981. D-Amino acid dehydrogenase of Escherichia coli K12: positive selection of mutants defective in enzyme activity and localization of the structural gene. Mol Gen Genet 181:373–378. [PubMed][CrossRef]
148. Wild J, Walczak W, Krajewska-Grynkiewicz K, Klopotowski T. 1974. D-Amino acid dehydrogenase: the enzyme of the first step of D-histidine and D-methionine racemization in Salmonella typhimurium. Mol Gen Genet 128:131–146. [PubMed][CrossRef]
149. Janes BK, Bender RA. 1998. Alanine catabolism in Klebsiella aerogenes: molecular characterization of the dadAB operon and its regulation by the nitrogen assimilation control protein. J Bacteriol 180:563–570.[PubMed]
150. Esaki N, Walsh CT. 1986. Biosynthetic alanine racemase of Salmonella typhimurium: purification and characterization of the enzyme encoded by the alr gene. Biochemistry 25:3261–3267. [PubMed][CrossRef]
151. Strych U, Benedik MJ. 2002. Mutant analysis shows that alanine racemases from Pseudomonas aeruginosa and Escherichia coli are dimeric. J Bacteriol 184:4321–4325. [PubMed][CrossRef]
152. Franklin FC, Venables WA. 1976. Biochemical, genetic, and regulatory studies of alanine catabolism in Escherichia coli K12. Mol Gen Genet 149:229–237. [PubMed][CrossRef]
153. Lambert MP, Neuhaus FC. 1972. Factors affecting the level of alanine racemase in Escherichia coli. J Bacteriol 109:1156–1161.[PubMed]
154. Zhi J, Mathew E, Freundlich M. 1998. In vitro and in vivo characterization of three major dadAX promoters in Escherichia coli that are regulated by cyclic AMP-CRP and Lrp. Mol Gen Genet 258:442–447. [PubMed][CrossRef]
155. Mathew E, Zhi J, Freundlich M. 1996. Lrp is a direct repressor of the dad operon in Escherichia coli. J Bacteriol 178:7234–7240.[PubMed]
156. Zhi J, Mathew E, Freundlich M. 1999. Lrp binds to two regions in the dadAX promoter region of Escherichia coli to repress and activate transcription directly. Mol Microbiol 32:29–40. [PubMed][CrossRef]
157. Hecht K, Zhang S, Klopotowski T, Ames GF. 1996. D-Histidine utilization in Salmonella typhimurium is controlled by the leucine-responsive regulatory protein (Lrp). J Bacteriol 178:327–331.[PubMed]
158. Lee JH, Lee DE, Lee BU, Kim HS. 2003. Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J Bacteriol 185:5442–5451. [PubMed][CrossRef]
159. Deguchi Y, Yamato I, Anraku Y. 1989. Molecular cloning of gltS and gltP, which encode glutamate carriers of Escherichia coli B. J Bacteriol 171:1314–1319.[PubMed]
160. Marcus M, Halpern YS. 1969. Genetic analysis of the glutamate permease in Escherichia coli K-12. J Bacteriol 97:1118–1128.[PubMed]
161. Deguchi Y, Yamato I, Anraku Y. 1990. Nucleotide sequence of gltS, the Na+/glutamate symport carrier gene of Escherichia coli B. J Biol Chem 265:21704–21708.[PubMed]
162. Kalman M, Gentry DR, Cashel M. 1991. Characterization of the Escherichia coli K12 gltS glutamate permease gene. Mol Gen Genet 225:379–386. [PubMed][CrossRef]
163. Schellenberg GD, Furlong CE. 1977. Resolution of the multiplicity of the glutamate and aspartate transport systems of Escherichia coli. J Biol Chem 252:9055–9064.[PubMed]
164. Booth IR, Kleppang KE, Kempsell KE. 1989. A genetic locus for the GltII-glutamate transport system in Escherichia coli. J Gen Microbiol 135:2767–2774.[PubMed]
165. Tolner B, Poolman B, Wallace B, Konings WN. 1992. Revised nucleotide sequence of the gltP gene, which encodes the proton-glutamate-aspartate transport protein of Escherichia coli K-12. J Bacteriol 174:2391–2393.[PubMed]
166. Wallace B, Yang YJ, Hong JS, Lum D. 1990. Cloning and sequencing of a gene encoding a glutamate and aspartate carrier of Escherichia coli K-12. J Bacteriol 172:3214–3220.[PubMed]
167. Kahane S, Marcus M, Metzer E, Halpern YS. 1976. Effect of growth conditions on glutamate transport in the wild-type strain and glutamate-utilizing mutants of Escherichia coli. J Bacteriol 125:762–769.[PubMed]
168. Willis RC, Furlong CE. 1975. Purification and properties of a periplasmic glutamate-aspartate binding protein from Escherichia coli K12 strain W3092. J Biol Chem 250:2574–2580.[PubMed]
169. Reitzer L, Schneider BL. 2001. Metabolic context and possible physiological themes of σ54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65:422–444. [PubMed][CrossRef]
170. Kustu SG, McFarland NC, Hui SP, Esmon B, Ames GF. 1979. Nitrogen control of Salmonella typhimurium: co-regulation of synthesis of glutamine synthetase and amino acid transport systems. J Bacteriol 138:218–234.[PubMed]
171. Hersh BM, Farooq FT, Barstad DN, Blankenhorn DL, Slonczewski JL. 1996. A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 178:3978–3981.[PubMed]
172. Waterman SR, Small PL. 2003. Transcriptional expression of Escherichia coli glutamate-dependent acid resistance genes gadA and gadBC in an hns rpoS mutant. J Bacteriol 185:4644–4647. [PubMed][CrossRef]
173. Waterman SR, Small PL. 2003. The glutamate-dependent acid resistance system of Escherichia coli and Shigella flexneri is inhibited in vitro by L-trans-pyrrolidine-2,4-dicarboxylic acid. FEMS Microbiol Lett 224:119–125. [PubMed][CrossRef]
174. Kay WW. 1971. Two aspartate transport systems in Escherichia coli. J Biol Chem 246:7373–7382.[PubMed]
175. Kay WW, Kornberg HL. 1971. The uptake of C4-dicarboxylic acids by Escherichia coli. Eur J Biochem 18:274–281. [PubMed][CrossRef]
176. Lo TC, Sanwal BD. 1975. Isolation of the soluble substrate recognition component of the dicarboxylate transport system of Escherichia coli. J Biol Chem 250:1600–1602.[PubMed]
177. Lo TC, Sanwal BD. 1975. Membrane bound substrate recognition components of the dicarboxylate transport system in Escherichia coli. Biochem Biophys Res Commun 63:278–285. [PubMed][CrossRef]
178. Davies SJ, Golby P, Omrani D, Broad SA, Harrington VL, Guest JR, Kelly DJ, Andrews SC. 1999. Inactivation and regulation of the aerobic C4-dicarboxylate transport (dctA) gene of Escherichia coli. J Bacteriol 181:5624–5635.[PubMed]
179. Gutowski SJ, Rosenberg H. 1975. Succinate uptake and related proton movements in Escherichia coli K12. Biochem J 152:647–654.[PubMed]
180. Six S, Andrews SC, Unden G, Guest JR. 1994. Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). J Bacteriol 176:6470–6478.[PubMed]
181. Zientz E, Six S, Unden G. 1996. Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in uptake and exchange. J Bacteriol 178:7241–7247.[PubMed]
182. Golby P, Kelly DJ, Guest JR, Andrews SC. 1998. Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli. J Bacteriol 180:6586–6596.[PubMed]
183. Zientz E, Bongaerts J, Unden G. 1998. Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system. J Bacteriol 180:5421–5425.[PubMed]
184. Willis RC, Woolfolk CA. 1975. L-Asparagine uptake in Escherichia coli. J Bacteriol 123:937–945.[PubMed]
185. Jennings MP, Anderson JK, Beacham IR. 1995. Cloning and molecular analysis of the Salmonella enterica ansP gene, encoding an L-asparagine permease. Microbiology 141:141–146. [PubMed][CrossRef]
186. Robbins JC, Oxender DL. 1973. Transport systems for alanine, serine, and glycine in Escherichia coli K-12. J Bacteriol 116:12–18.[PubMed]
187. Wargel RJ, Shadur CA, Neuhaus FC. 1970. Mechanism of D-cycloserine action: transport systems for D-alanine, D-cycloserine, L-alanine, and glycine. J Bacteriol 103:778–788.[PubMed]
188. Cosloy SD. 1973. D-Serine transport system in Escherichia coli K-12. J Bacteriol 114:679–684.[PubMed]
189. Wargel RJ, Shadur CA, Neuhaus FC. 1971. Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine, and glycine. J Bacteriol 105:1028–1035.[PubMed]
190. Lombardi FJ, Kaback HR. 1972. Mechanisms of active transport in isolated bacterial membrane vesicles. 8 The transport of amino acids by membranes prepared from Escherichia coli. J Biol Chem 247:7844–7857.[PubMed]
191. Rahmanian M, Claus DR, Oxender DL. 1973. Multiplicity of leucine transport systems in Escherichia coli K-12. J Bacteriol 116:1258–1266.[PubMed]
192. Umbarger HE. 1996. Biosynthesis of the branched-chain amino acids, p 442–457. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
193. Haney SA, Platko JV, Oxender DL, Calvo JM. 1992. Lrp, a leucine-responsive protein, regulates branched-chain amino acid transport genes in Escherichia coli. J Bacteriol 174:108–115.[PubMed]
194. Bhagwat SP, Rice MR, Matthews RG, Blumenthal RM. 1997. Use of an inducible regulatory protein to identify members of a regulon: application to the regulon controlled by the leucine-responsive regulatory protein (Lrp) in Escherichia coli. J Bacteriol 179:6254–6263.[PubMed]
195. Williamson RM, Oxender DL. 1992. Premature termination of in vivo transcription of a gene encoding a branched-chain amino acid transport protein in Escherichia coli. J Bacteriol 174:1777–1782.[PubMed]
ecosalplus.3.6.1.3.citations
ecosalplus/1/1
content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.3
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.3
2004-07-06
2017-04-29

Abstract:

Glutamate, aspartate, asparagine, L-alanine, and D-alanine are derived from intermediates of central metabolism, mostly the citric acid cycle, in one or two steps. While the pathways are short, the importance and complexity of the functions of these amino acids befit their proximity to central metabolism. Inorganic nitrogen (ammonia) is assimilated into glutamate, which is the major intracellular nitrogen donor. Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also important for survival in acidic environments, and changes in glutamate concentration accompany changes in osmolarity. Aspartate is a precursor for asparagine, isoleucine, methionine, lysine, threonine, pyrimidines, NAD, and pantothenate; a nitrogen donor for arginine and purine synthesis; and an important metabolic effector controlling the interconversion of C and C intermediates and the activity of the DcuS-DcuR two-component system. Finally, L- and D-alanine are components of the peptide of peptidoglycan, and L-alanine is an effector of the leucine responsive regulatory protein and an inhibitor of glutamine synthetase (GS). This review summarizes the genes and enzymes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and the regulators and environmental factors that control the expression of these genes. Glutamate dehydrogenase (GDH) deficient strains of , , and serovar Typhimurium grow normally in glucose containing (energy-rich) minimal medium but are at a competitive disadvantage in energy limited medium. Glutamate, aspartate, asparagine, -alanine, and -alanine have multiple transport systems.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Tables

Generic image for table
Table 1

Genes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and their regulation

Citation: Reitzer L. 2004. Biosynthesis of Glutamate, Aspartate, Asparagine, -Alanine, and -Alanine, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.3
Generic image for table
Table 2

Summary of transport systems

Citation: Reitzer L. 2004. Biosynthesis of Glutamate, Aspartate, Asparagine, -Alanine, and -Alanine, EcoSal Plus 2004; doi:10.1128/ecosalplus.3.6.1.3

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error