1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Methionine

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Elise R. Hondorp1, and Rowena G. Matthews2
  • Editor: Valley Stewart3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Life Sciences Institut, University of Michigan, Ann Arbor, MI 48109; 2: Life Sciences Institute and Department of Biological Chemistry and Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109; 3: University of California, Davis, Davis, CA
  • Received 08 December 2005 Accepted 23 February 2006 Published 28 April 2006
  • Address correspondence to Rowena G. Matthews rmatthew@umich.edu
image of Methionine
    Preview this reference work article:
    Zoom in
    Zoomout

    Methionine, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/1/3_6_1_7_module-1.gif /docserver/preview/fulltext/ecosalplus/2/1/3_6_1_7_module-2.gif
  • Abstract:

    This review focuses on the steps unique to methionine biosynthesis, namely the conversion of homoserine to methionine. The past decade has provided a wealth of information concerning the details of methionine metabolism and the review focuses on providing a comprehensive overview of the field, emphasizing more recent findings. Details of methionine biosynthesis are addressed along with key cellular aspects, including regulation, uptake, utilization, AdoMet, the methyl cycle, and growing evidence that inhibition of methionine biosynthesis occurs under stressful cellular conditions. The first unique step in methionine biosynthesis is catalyzed by the gene product, homoserine transsuccinylase (HTS, or homoserine O-succinyltransferase). Recent experiments suggest that transcription of these genes is indeed regulated by MetJ, although the repressor-binding sites have not yet been verified. Methionine also serves as the precursor of -adenosylmethionine, which is an essential molecule employed in numerous biological processes. -adenosylhomocysteine is produced as a consequence of the numerous AdoMet-dependent methyl transfer reactions that occur within the cell. In and , this molecule is recycled in two discrete steps to complete the methyl cycle. Cultures challenged by oxidative stress appear to experience a growth limitation that depends on methionine levels. that are deficient for the manganese and iron superoxide dismutases (the sodA and sodB gene products, respectively) require the addition of methionine or cysteine for aerobic growth. Modulation of methionine levels in response to stressful conditions further increases the complexity of its regulation.

  • Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7

Key Concept Ranking

Branched-Chain Amino Acid Biosynthesis
0.42408118
Transcription Start Site
0.36931598
Fatty Acid Synthase
0.33068794
0.42408118

References

1. Mueller JH. 1922. A new sulphur-containing amino acid isolated from casein. Proc Soc Exp Biol Med 19:161–163.
2. Adams JM, Capecchi MR. 1966. N-Formylmethionyl-sRNA as the initiator of protein synthesis. Proc Natl Acad Sci USA 55:147–155. [PubMed][CrossRef]
3. Cantoni GL. 1975. Biological methylation: selected aspects. Annu Rev Biochem 44:435–451. [PubMed][CrossRef]
4. Webster RE, Engelhardt DL, Zinder ND. 1966. In vitro protein synthesis: chain initiation. Proc Natl Acad Sci USA 55:155–161. [PubMed][CrossRef]
5. Ingraham JL, Maaløe, Neidhardt FC. 1983. Growth of the Bacterial Cell. Sinauer Associates, Sunderland, Mass.
6. Flavin M. 1975. Methionine biosynthesis, p 456–503. In Greenberg DM (ed), Metabolism of Sulfur Compounds. Academic Press, New York, N.Y.
7. Greene RC. 1996. Biosynthesis of methionine, p 542–560. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
8. Old IG, Phillips SE, Stockley PG, Saint Girons I. 1991. Regulation of methionine biosynthesis in the Enterobacteriaceae. Prog Biophys Mol Biol 56:145–185. [PubMed][CrossRef]
9. Saint-Girons I, Parsot C, Zakin MM, Bârzu O, Cohen GN. 1988. Methionine biosynthesis in Enterobacteriaceae: biochemical, regulatory, and evolutionary aspects. CRC Crit Rev Biochem 23(Suppl. 1):S1–S42. [CrossRef]
10. Sekowska A, Kung HF, Danchin A. 2000. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2:145–177.[PubMed]
11. Born TL, Blanchard JS. 1999. Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. Biochemistry 38:14416–14423. [PubMed][CrossRef]
12. Michaeli S, Ron EZ. 1984. Expression of the metA gene of Escherichia coli in recombinant plasmids. FEMS Microbiol Lett 23:125–129. [CrossRef]
13. Michaeli S, Ron EZ, Cohen G. 1981. Construction and physical mapping of plasmids containing the metA gene of Escherichia coli K-12. Mol Gen Genet 182:349–354. [PubMed][CrossRef]
14. Rosen R, Becher D, Büttner K, Biran D, Hecker M, Ron EZ. 2004. Probing the active site of homoserine trans-succinylase. FEBS Lett 577:386–392. [PubMed][CrossRef]
15. Lee LW, Ravel JM, Shive W. 1966. Multimetabolite control of a biosynthetic pathway by sequential metabolites. J Biol Chem 241:5479–5480.[PubMed]
16. Savin MA, Flavin M, Slaughter C. 1972. Regulation of homocysteine biosynthesis in Salmonella typhimurium. J Bacteriol 111:547–556.[PubMed]
17. Biran D, Brot N, Weissbach H, Ron EZ. 1995. Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli. J Bacteriol 177:1374–1379.[PubMed]
18. Biran D, Gur E, Gollan L, Ron EZ. 2000. Control of methionine biosynthesis in Escherichia coli by proteolysis. Mol Microbiol 37:1436–1443. [PubMed][CrossRef]
19. Gur E, Biran D, Gazit E, Ron EZ. 2002. In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures. Mol Microbiol 46:1391–1397. [PubMed][CrossRef]
20. Ron EZ. 1975. Growth rate of Enterobacteriaceae at elevated temperatures: limitation by methionine. J Bacteriol 124:243–246.[PubMed]
21. Ron EZ, Davis BD. 1971. Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J Bacteriol 107:391–396.[PubMed]
22. Ron EZ, Shani M. 1971. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. J Bacteriol 107:397–400.[PubMed]
23. Ron EZ, Alajem S, Biran D, Grossman N. 1990. Adaptation of Escherichia coli to elevated temperatures: the metA gene product is a heat shock protein. Antonie Van Leeuwenhoek 58:169–174. [PubMed][CrossRef]
24. Holbrook EL, Greene RC, Krueger JH. 1990. Purification and properties of cystathionine γ-synthase from overproducing strains of Escherichia coli. Biochemistry 29:435–442. [PubMed][CrossRef]
25. Kaplan MM, Flavin M. 1966. Cystathionine γ-synthetase of Salmonella. Catalytic properties of a new enzyme in bacterial methionine biosynthesis. J Biol Chem 241:4463–4471.[PubMed]
26. Kaplan MM, Flavin M. 1966. Cystathionine γ-synthetase of Salmonella. Structural properties of a new enzyme in bacterial methionine biosynthesis. J Biol Chem 241:5781–5789.[PubMed]
27. Martel A, Bouthier de la Tour C, Le Goffic F. 1987. Pyridoxal 5′ phosphate binding site of Escherichia coli beta cystathionase and cystathionine gamma synthase comparison of their sequences. Biochem Biophys Res Commun 147:565–571. [PubMed][CrossRef]
28. Tran SV, Schaeffer E, Bertrand O, Mariuzza R, Ferrara P. 1983. Appendix. Purification, molecular weight, and NH2-terminal sequence of cystathionine γ-synthase of Escherichia coli. J Biol Chem 258:14872–14873.[PubMed]
29. Clausen T, Huber R, Prade L, Wahl MC, Messerschmidt A. 1998. Crystal structure of Escherichia coli cystathionine γ-synthase at 1.5 Å resolution. EMBO J 17:6827–6838. [PubMed][CrossRef]
30. Aitken SM, Kim DH, Kirsch JF. 2003. Escherichia coli cystathionine γ-synthase does not obey ping-pong kinetics. Novel continuous assays for the elimination and substitution reactions. Biochemistry 42:11297–11306. [PubMed][CrossRef]
31. Brzovic P, Holbrook EL, Greene RC, Dunn MF. 1990. Reaction mechanism of Escherichia coli cystathionine γ-synthase: direct evidence for a pyridoxamine derivative of vinylglyoxylate as a key intermediate in pyridoxal phosphate dependent γ-elimination and γ-replacement reactions. Biochemistry 29:442–451. [PubMed][CrossRef]
32. Aitken SM, Kirsch JF. 2005. The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity. Arch Biochem Biophys 433:166–175. [PubMed][CrossRef]
33. Guggenheim S, Flavin M. 1969. Cystathionine γ-synthase. A pyridoxal phosphate enzyme catalyzing rapid exchanges of β and α hydrogen atoms in amino acids. J Biol Chem 244:6217–6227.[PubMed]
34. Guggenheim S, Flavin M. 1969. Cystathionine γ-synthase from Salmonella. β elimination and replacement reactions and inhibition by O-succinylserine. J Biol Chem 244:3722–3727.[PubMed]
35. Posner BI, Flavin M. 1972. Cystathionine γ-synthase. Studies of hydrogen exchange reactions. J Biol Chem 247:6402–6411.[PubMed]
36. Hacham Y, Gophna U, Amir R. 2003. In vivo analysis of various substrates utilized by cystathionine γ-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. Mol Biol Evol 20:1513–1520. [PubMed][CrossRef]
37. Wiebers JL, Garner HR. 1967. Acyl derivatives of homoserine as substrates for homocysteine synthesis in Neurospora crassa, yeast, and Escherichia coli. J Biol Chem 242:5644–5649.[PubMed]
38. Flavin M, Slaughter C. 1967. Enzymatic synthesis of homocysteine or methionine directly from O-succinyl-homoserine. Biochim Biophys Acta 132:400–405.[PubMed]
39. Belfaiza J, Parsot C, Martel A, de la Tour CB, Margarita D, Cohen GN, Saint-Girons I. 1986. Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci USA 83:867–871. [PubMed][CrossRef]
40. Dwivedi CM, Ragin RC, Uren JR. 1982. Cloning, purification, and characterization of β-cystathionase from Escherichia coli. Biochemistry 21:3064–3069. [PubMed][CrossRef]
41. Park YM, Stauffer GV. 1987. Cloning and characterization of the metC gene from Salmonella typhimurium LT2. Gene 60:291–297. [PubMed][CrossRef]
42. Clausen T, Huber R, Laber B, Pohlenz HD, Messerschmidt A. 1996. Crystal structure of the pyridoxal-5′-phosphate dependent cystathionine β-lyase from Escherichia coli at 1.83 Å. J Mol Biol 262:202–224. [PubMed][CrossRef]
43. Clausen T, Huber R, Messerschmidt A, Pohlenz HD, Laber B. 1997. Slow-binding inhibition of Escherichia coli cystathionine β-lyase by L-aminoethoxyvinylglycine: a kinetic and X-ray study. Biochemistry 36:12633–12643. [PubMed][CrossRef]
44. Ejim LJ, D'Costa VM, Elowe NH, Loredo-Osti JC, Malo D, Wright GD. 2004. Cystathionine β-lyase is important for virulence of Salmonella enterica serovar Typhimurium. Infect Immun 72:3310–3314. [PubMed][CrossRef]
45. Gentry-Weeks CR, Keith JM, Thompson J. 1993. Toxicity of Bordetella avium β-cystathionase toward MC3T3-E1 osteogenic cells. J Biol Chem 268:7298–7314.[PubMed]
46. Guggenheim S. 1971. β-Cystathionase (Salmonella). Methods Enzymol 17B:439–442. [CrossRef]
47. Zdych E, Peist R, Reidl J, Boos W. 1995. MalY of Escherichia coli is an enzyme with the activity of a βC-S lyase (cystathionase). J Bacteriol 177:5035–5039.[PubMed]
48. Clausen T, Schlegel A, Peist R, Schneider E, Steegborn C, Chang YS, Haase A, Bourenkov GP, Bartunik HD, Boos W. 2000. X-ray structure of MalY from Escherichia coli: a pyridoxal 5′-phosphate-dependent enzyme acting as a modulator in mal gene expression. EMBO J 19:831–842. [PubMed][CrossRef]
49. Schreiber V, Steegborn C, Clausen T, Boos W, Richet E. 2000. A new mechanism for the control of a prokaryotic transcriptional regulator: antagonistic binding of positive and negative effectors. Mol Microbiol 35:765–776. [PubMed][CrossRef]
50. Simon M, Hong JS. 1983. Direct homocysteine biosynthesis from O-succinylhomoserine in Escherichia coli: an alternate pathway that bypasses cystathionine. J Bacteriol 153:558–561.[PubMed]
51. Old IG, Saint Girons I, Richaud C. 1993. Physical mapping of the scattered methionine genes on the Escherichia coli chromosome. J Bacteriol 175:3689–3691.[PubMed]
52. Reidl J, Römisch K, Ehrmann M, Boos W. 1989. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI. J Bacteriol 171:4888–4899.[PubMed]
53. Merlin C, Gardiner G, Durand S, Masters M. 2002. The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol 184:5513–5517. [PubMed][CrossRef]
54. Gál J, Szvetnik A, Schnell R, Kálmán M. 2002. The metD D-methionine transporter locus of Escherichia coli is an ABC transporter gene cluster. J Bacteriol 184:4930–4932. [PubMed][CrossRef]
55. Hatch FT, Larrabee AR, Cathou RE, Buchanan JM. 1961. Enzymatic synthesis of the methyl group of methionine. I. Identification of the enzymes and cofactors involved in the system isolated from Escherichia coli. J Biol Chem 236:1095–1101.[PubMed]
56. Johnson JR, Greene RC, Krueger JH. 1977. Isolation and characterization of specialized lambda transducing bacteriophage carrying the metBJF methionine gene cluster. J Bacteriol 131:795–800.[PubMed]
57. Katzen HM, Buchanan JM. 1965. Enzymatic synthesis of the methyl group of methionine. 8. Repression-derepression, purification, and properties of 5,10-methylenetetrahydrofolate reductase from Escherichia coli. J Biol Chem 240:825–835.[PubMed]
58. Zakin MM, Greene RC, Dautry-Varsat A, Duchange N, Ferrara P, Py MC, Margarita D, Cohen GN. 1982. Construction and physical mapping of plasmids containing the metJBLF gene cluster of E. coli K12. Mol Gen Genet 187:101–106. [PubMed][CrossRef]
59. Sheppard CA, Trimmer EE, Matthews RG. 1999. Purification and properties of NADH-dependent 5,10-methylenetetrahydrofolate reductase (MetF) from Escherichia coli. J Bacteriol 181:718–725.[PubMed]
60. Guenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG, Ludwig ML. 1999. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 6:359–365. [PubMed][CrossRef]
61. Saint-Girons I, Duchange N, Zakin MM, Park I, Margarita D, Ferrara P, Cohen GN. 1983. Nucleotide sequence of metF, the E. coli structural gene for 5–10 methylene tetrahydrofolate reductase and of its control region. Nucleic Acids Res 11:6723–6732. [PubMed][CrossRef]
62. Stauffer GV, Stauffer LT. 1988. Cloning and nucleotide sequence of the Salmonella typhimurium LT2 metF gene and its homology with the corresponding sequence of Escherichia coli. Mol Gen Genet 212:246–251. [PubMed][CrossRef]
63. Trimmer EE, Ballou DP, Matthews RG. 2001. Methylenetetrahydrofolate reductase from Escherichia coli: elucidation of the kinetic mechanism by steady-state and rapid-reaction studies. Biochemistry 40:6205–6215. [PubMed][CrossRef]
64. Trimmer EE, Ballou DP, Ludwig ML, Matthews RG. 2001. Folate activation and catalysis in methylenetetrahydrofolate reductase from Escherichia coli: roles for aspartate 120 and glutamate 28. Biochemistry 40:6216–6226. [PubMed][CrossRef]
65. Trimmer EE, Ballou DP, Galloway LJ, Scannell SA, Brinker DR, Casas KR. 2005. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: Evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity. Biochemistry 44:6809–6822. [PubMed][CrossRef]
66. Wohlfarth G, Diekert G. 1991. Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch Microbiol 155:378–381. [CrossRef]
67. Bochner BR, Ames BN. 1982. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem 257:9759–9769.[PubMed]
68. De Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ. 1999. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181:2351–2357.[PubMed]
69. Daubner SC, Matthews RG. 1982. Purification and properties of methylenetetrahydrofolate reductase from pig liver. J Biol Chem 257:140–145.[PubMed]
70. Matthews RG, Kaufman S. 1980. Characterization of the dihydropterin reductase activity of pig liver methylenetetrahydrofolate reductase. J Biol Chem 255:6014–6017.[PubMed]
71. Pejchal R, Sargeant R, Ludwig ML. 2005. Structures of NADH and CH3-H4folate complexes of Escherichia coli methylenetetrahydrofolate reductase reveal a spartan strategy for a ping-pong reaction. Biochemistry 44:11447–11457. [PubMed][CrossRef]
72. Misra SK, Bhakuni V. 2003. Unique holoenzyme dimers of the tetrameric enzyme Escherichia coli methylenetetrahydrofolate reductase: characterization of structural features associated with modulation of the enzyme’s function. Biochemistry 42:3921–3928. [PubMed][CrossRef]
73. Yamada K, Chen Z, Rozen R, Matthews RG. 2001. Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. Proc Natl Acad Sci USA 98:14853–14858. [PubMed][CrossRef]
74. Foster MA, Tejerina G, Guest JR, Woods DD. 1964. Two enzymic mechanisms for the methylation of homocysteine by extracts of Escherichia coli. Biochem J 92:476–488.[PubMed]
75. Dawes J, Foster MA. 1971. Vitamin B12 and methionine synthesis in Escherichia coli. Biochim Biophys Acta 237:455–464.[PubMed]
76. Kung HF, Spears C, Greene RC, Weissbach H. 1972. Regulation of the terminal reactions in methionine biosynthesis by vitamin B12 and methionine. Arch Biochem Biophys 150:23–31. [PubMed][CrossRef]
77. Milner L, Whitfield C, Weissbach H. 1969. Effect of L-methionine and vitamin B12 on methionine biosynthesis in Escherichia coli. Arch Biochem Biophys 133:413–419. [PubMed][CrossRef]
78. Roth JR, Lawrence JG, Bobik TA. 1996. Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181. [PubMed][CrossRef]
79. Banerjee RV, Matthews RG. 1990. Cobalamin-dependent methionine synthase. FASEB J 4:1450–1459.[PubMed]
80. Gruber K, Kratky C. 2001. Cobalamin-dependent methionine synthase, p 1010–1022. In Messerschmidt A, Poulos T, and Wieghardt K (ed), Handbook of Metalloproteins. John Wiley & Sons, Chichester, United Kingdom.
81. Jarrett JT, Goulding CW, Fluhr K, Huang S, Matthews RG. 1997. Purification and assay of cobalamin-dependent methionine synthase from Escherichia coli. Methods Enzymol 281:196–213. [PubMed][CrossRef]
82. Matthews RG. 1984. Methionine biosynthesis, p 497–553. In Blakley RL and Benkovic SJ (ed), Folates and Pterins. John Wiley & Sons, New York, N.Y.
83. Taylor RT. 1982. B12-dependent methionine biosynthesis, p 307–355. In Dolphin D (ed), B12. John Wiley & Sons, New York, N.Y.
84. Banerjee RV, Frasca V, Ballou DP, Matthews RG. 1990. Participation of cob(I) alamin in the reaction catalyzed by methionine synthase from Escherichia coli: a steady-state and rapid reaction kinetic analysis. Biochemistry 29:11101–11109. [PubMed][CrossRef]
85. Fujii K, Huennekens FM. 1974. Activation of methionine synthetase by a reduced triphosphopyridine nucleotide-dependent flavoprotein system. J Biol Chem 249:6745–6753.[PubMed]
86. Mangum JH, Scrimgeour KGF. 1962. Cofactor requirements and intermediates in methionine biosynthesis. Fed Proc 21:242.
87. Osborne C, Chen LM, Matthews RG. 1991. Isolation, cloning, mapping, and nucleotide sequencing of the gene encoding flavodoxin in Escherichia coli. J Bacteriol 173:1729–1737.[PubMed]
88. Drummond JT, Loo RR, Matthews RG. 1993. Electrospray mass spectrometric analysis of the domains of a large enzyme: observation of the occupied cobalamin-binding domain and redefinition of the carboxyl terminus of methionine synthase. Biochemistry 32:9282–9289. [PubMed][CrossRef]
89. Goulding CW, Postigo D, Matthews RG. 1997. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine. Biochemistry 36:8082–8091. [PubMed][CrossRef]
90. Bandarian V, Ludwig ML, Matthews RG. 2003. Factors modulating conformational equilibria in large modular proteins: a case study with cobalamin-dependent methionine synthase. Proc Natl Acad Sci USA 100:8156–8163. [PubMed][CrossRef]
91. Bandarian V, Pattridge KA, Lennon BW, Huddler DP, Matthews RG, Ludwig ML. 2002. Domain alternation switches B12-dependent methionine synthase to the activation conformation. Nat Struct Biol 9:53–56. [PubMed][CrossRef]
92. Dixon MM, Huang S, Matthews RG, Ludwig M. 1996. The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12. Structure 4:1263–1275. [PubMed][CrossRef]
93. Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML. 1994. How a protein binds B12: A 3.0 Å X-ray structure of B12-binding domains of methionine synthase. Science 266:1669–1674. [PubMed][CrossRef]
94. Evans JC, Huddler DP, Hilgers MT, Romanchuk G, Matthews RG, Ludwig ML. 2004. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc Natl Acad Sci USA 101:3729–3736. [PubMed][CrossRef]
95. Matthews RG, Smith AE, Zhou ZS, Taurog RE, Bandarian V, Evans JC, Ludwig M. 2003. Cobalamin-dependent and cobalamin-independent methionine synthases: Are there two solutions to the same chemical problem? Helv Chim Acta 86:3939–3954. [CrossRef]
96. González JC, Peariso K, Penner-Hahn JE, Matthews RG. 1996. Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme. Biochemistry 35:12228–12234. [PubMed][CrossRef]
97. Goulding CW, Matthews RG. 1997. Cobalamin-dependent methionine synthase from Escherichia coli: involvement of zinc in homocysteine activation. Biochemistry 36:15749–15757. [PubMed][CrossRef]
98. Peariso K, Goulding CW, Huang S, Matthews RG, Penner-Hahn JE. 1998. Characterization of the zinc binding site in methionine synthase enzymes of Escherichia coli: the role of zinc in the methylation of homocysteine. J Am Chem Soc 120:8410–8416. [CrossRef]
99. Peariso K, Zhou ZS, Smith AE, Matthews RG, Penner-Hahn JE. 2001. Characterization of the zinc sites in cobalamin-independent and cobalamin-dependent methionine synthase using zinc and selenium X-ray absorption spectroscopy. Biochemistry 40:987–993. [PubMed][CrossRef]
100. Pejchal R, Ludwig ML. 2005. Cobalamin-independent methionine synthase (MetE): a face-to-face double barrel that evolved by gene duplication. PLoS Biol 3:e31. [CrossRef]
101. Zhou ZS, Peariso K, Penner-Hahn JE, Matthews RG. 1999. Identification of the zinc ligands in cobalamin-independent methionine synthase (MetE) from Escherichia coli. Biochemistry 38:15915–15926. [PubMed][CrossRef]
102. González JC, Banerjee RV, Huang S, Sumner JS, Matthews RG. 1992. Comparison of cobalamin-independent and cobalamin-dependent methionine synthases from Escherichia coli: two solutions to the same chemical problem. Biochemistry 31:6045–6056. [PubMed][CrossRef]
103. Whitfield CD, Steers EJ, Jr, Weisbach H. 1970. Purification and properties of 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase. J Biol Chem 245:390–401.[PubMed]
104. Pedersen S, Bloch PL, Reeh S, Neidhardt FC. 1978. Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell 14:179–190. [PubMed][CrossRef]
105. VanBogelen RA, Abshire KZ, Pertsemlidis A, Clark RL, Neidhardt FC. 1996. Gene-protein database of Escherichia coli K-12, 6th ed., p 2067–2117. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
106. Hondorp ER, Matthews RG. 2004. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biol 2:e336. [CrossRef]
107. Ikeda M. 2003. Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35. [PubMed][CrossRef]
108. Nakamori S, Kobayashi S, Nishimura T, Takagi H. 1999. Mechanism of L-methionine overproduction by Escherichia coli: the replacement of Ser-54 by Asn in the MetJ protein causes the derepression of L-methionine biosynthetic enzymes. Appl Microbiol Biotechnol 52:179–185. [PubMed][CrossRef]
109. Cohn M, Cohen GN, Monod J. 1953. [The specific inhibiting effect of methionine in the formation of methionine-synthase by Escherichia coli.]. C R Hebd Seances Acad Sci 236:746–748.[PubMed]
110. Wijesundera S, Woods DD. 1953. The effect of growth on a medium containing methionine on the synthesis of this amino acid by Bacterium coli. Process Biochem 55:viii.
111. Lawrence DA, Smith DA, Rowbury RJ. 1968. Regulation of methionine synthesis in Salmonella typhimurium: mutants resistant to inhibition by analogues of methionine. Genetics 58:473–492.[PubMed]
112. Saint-Girons I, Duchange N, Cohen GN, Zakin MM. 1984. Structure and autoregulation of the metJ regulatory gene in Escherichia coli. J Biol Chem 259:14282–14285.[PubMed]
113. Smith AA, Greene RC. 1984. Cloning of the methionine regulatory gene, metJ, of Escherichia coli K12 and identification of its product. J Biol Chem 259:14279–14281.[PubMed]
114. Smith AA, Greene RC, Kirby TW, Hindenach BR. 1985. Isolation and characterization of the product of the methionine-regulatory gene metJ of Escherichia coli K-12. Proc Natl Acad Sci USA 82:6104–6108. [PubMed][CrossRef]
115. Urbanowski ML, Stauffer GV. 1985. Nucleotide sequence and biochemical characterization of the metJ gene from Salmonella typhimurium LT2. Nucleic Acids Res 13:673–685. [PubMed][CrossRef]
116. Cooper A, McAlpine A, Stockley PG. 1994. Calorimetric studies of the energetics of protein-DNA interactions in the E. coli methionine repressor (MetJ) system. FEBS Lett 348:41–45. [PubMed][CrossRef]
117. Hyre DE, Spicer LD. 1995. Thermodynamic evaluation of binding interactions in the methionine repressor system of Escherichia coli using isothermal titration calorimetry. Biochemistry 34:3212–3221. [PubMed][CrossRef]
118. Phillips SE, Manfield I, Parsons I, Davidson BE, Rafferty JB, Somers WS, Margarita D, Cohen GN, Saint-Girons I, Stockley PG. 1989. Cooperative tandem binding of met repressor of Escherichia coli. Nature 341:711–715. [PubMed][CrossRef]
119. Rafferty JB, Somers WS, Saint-Girons I, Phillips SE. 1989. Three-dimensional crystal structures of Escherichia coli met repressor with and without corepressor. Nature 341:705–710. [PubMed][CrossRef]
120. Saint-Girons I, Belfaiza J, Guillou Y, Perrin D, Guiso N, Barzu O, Cohen GN. 1986. Interactions of the Escherichia coli methionine repressor with the metF operator and with its corepressor, S-adenosylmethionine. J Biol Chem 261:10936–10940.[PubMed]
121. Wild CM, McNally T, Phillips SE, Stockley PG. 1996. Effects of systematic variation of the minimal Escherichia coli met consensus operator site: in vivo and in vitro met repressor binding. Mol Microbiol 21:1125–1135. [PubMed][CrossRef]
122. Phillips K, Phillips SE. 1994. Electrostatic activation of Escherichia coli methionine repressor. Structure 2:309–316. [PubMed][CrossRef]
123. Garvie CW, Phillips SE. 2000. Direct and indirect readout in mutant Met repressor-operator complexes. Struct Fold Des 8:905–914. [CrossRef]
124. Somers WS, Phillips SE. 1992. Crystal structure of the met repressor-operator complex at 2.8 Å resolution reveals DNA recognition by β-strands. Nature 359:387–393. [PubMed][CrossRef]
125. He YY, McNally T, Manfield I, Navratil O, Old IG, Phillips SE, Saint-Girons I, Stockley PG. 1992. Probing met repressor-operator recognition in solution. Nature 359:431–433. [PubMed][CrossRef]
126. Lawrenson ID, Stockley PG. 2004. Kinetic analysis of operator binding by the E. coli methionine repressor highlights the role(s) of electrostatic interactions. FEBS Lett 564:136–142. [PubMed][CrossRef]
127. Parsons ID, Persson B, Mekhalfia A, Blackburn GM, Stockley PG. 1995. Probing the molecular mechanism of action of co-repressor in the E. coli methionine repressor-operator complex using surface plasmon resonance (SPR). Nucleic Acids Res 23:211–216. [PubMed][CrossRef]
128. He YY, Garvie CW, Elworthy S, Manfield IW, McNally T, Lawrenson ID, Phillips SE, Stockley PG. 2002. Structural and functional studies of an intermediate on the pathway to operator binding by Escherichia coli MetJ. J Mol Biol 320:39–53. [PubMed][CrossRef]
129. Stockley PG, Baron AJ, Wild CM, Parsons ID, Miller CM, Holtham CA, Baumberg S. 1998. Dissecting the molecular details of prokaryotic transcriptional control by surface plasmon resonance: the methionine and arginine repressor proteins. Biosens Bioelectron 13:637–650. [PubMed][CrossRef]
130. He YY, Stockley PG, Gold L. 1996. In vitro evolution of the DNA binding sites of Escherichia coli methionine repressor, MetJ. J Mol Biol 255:55–66. [PubMed][CrossRef]
131. Liu R, Blackwell TW, States DJ. 2001. Conformational model for binding site recognition by the E. coli MetJ transcription factor. Bioinformatics 17:622–633. [PubMed][CrossRef]
132. Holloway CT, Greene RC, Su CH. 1970. Regulation of S-adenosylmethionine synthetase in Escherichia coli. J Bacteriol 104:734–747.[PubMed]
133. Thanbichler M, Neuhierl B, Böck A. 1999. S-Methylmethionine metabolism in Escherichia coli. J Bacteriol 181:662–665.[PubMed]
134. Zhang Z, Feige JN, Chang AB, Anderson IJ, Brodianski VM, Vitreschak AG, Gelfand MS, Saier MH, Jr. 2003. A transporter of Escherichia coli specific for L- and D-methionine is the prototype for a new family within the ABC superfamily. Arch Microbiol 180:88–100. [PubMed][CrossRef]
135. Dolzan M, Johansson K, Roig-Zamboni V, Campanacci V, Tegoni M, Schneider G, Cambillau C. 2004. Crystal structure and reactivity of YbdL from Escherichia coli identify a methionine aminotransferase function. FEBS Lett 571:141–146. [PubMed][CrossRef]
136. Cowan JM, Urbanowski ML, Talmi M, Stauffer GV. 1993. Regulation of the Salmonella typhimurium metF gene by the MetR protein. J Bacteriol 175:5862–5866.[PubMed]
137. Mares R, Urbanowski ML, Stauffer GV. 1992. Regulation of the Salmonella typhimurium metA gene by the MetR protein and homocysteine. J Bacteriol 174:390–397.[PubMed]
138. Urbanowski ML, Stauffer LT, Plamann LS, Stauffer GV. 1987. A new methionine locus, metR, that encodes a trans-acting protein required for activation of metE and metH in Escherichia coli and Salmonella typhimurium. J Bacteriol 169:1391–1397.[PubMed]
139. Cai XY, Maxon ME, Redfield B, Glass R, Brot N, Weissbach H. 1989. Methionine synthesis in Escherichia coli: effect of the MetR protein on metE and metH expression. Proc Natl Acad Sci USA 86:4407–4411. [PubMed][CrossRef]
140. Maxon ME, Wigboldus J, Brot N, Weissbach H. 1990. Structure-function studies on Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl Acad Sci USA 87:7076–7079. [PubMed][CrossRef]
141. Schell MA. 1993. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626. [PubMed][CrossRef]
142. Cai XY, Redfield B, Maxon M, Weissbach H, Brot N. 1989. The effect of homocysteine on MetR regulation of metE, metR and metH expression in vitro. Biochem Biophys Res Commun 163:79–83. [PubMed][CrossRef]
143. Maxon ME, Redfield B, Cai XY, Shoeman R, Fujita K, Fisher W, Stauffer G, Weissbach H, Brot N. 1989. Regulation of methionine synthesis in Escherichia coli: effect of the MetR protein on the expression of the metE and metR genes. Proc Natl Acad Sci USA 86:85–89. [PubMed][CrossRef]
144. Urbanowski ML, Stauffer GV. 1987. Regulation of the metR gene of Salmonella typhimurium. J Bacteriol 169:5841–5844.[PubMed]
145. Plamann LS, Stauffer GV. 1987. Nucleotide sequence of the Salmonella typhimurium metR gene and the metR-metE control region. J Bacteriol 169:3932–3937.[PubMed]
146. Urbanowski ML, Stauffer GV. 1989. Genetic and biochemical analysis of the MetR activator-binding site in the metE metR control region of Salmonella typhimurium. J Bacteriol 171:5620–5629.[PubMed]
147. Wu WF, Urbanowski ML, Stauffer GV. 1993. MetJ-mediated regulation of the Salmonella typhimurium metE and metR genes occurs through a common operator region. FEMS Microbiol Lett 108:145–150. [PubMed][CrossRef]
148. Wu WF, Urbanowski ML, Stauffer GV. 1995. Characterization of a second MetR-binding site in the metE metR regulatory region of Salmonella typhimurium. J Bacteriol 177:1834–1839.[PubMed]
149. Urbanowski ML, Stauffer GV. 1989. Role of homocysteine in metR-mediated activation of the metE and metH genes in Salmonella typhimurium and Escherichia coli. J Bacteriol 171:3277–3281.[PubMed]
150. Byerly KA, Urbanowski ML, Stauffer GV. 1990. Escherichia coli metR mutants that produce a MetR activator protein with an altered homocysteine response. J Bacteriol 172:2839–2843.[PubMed]
151. Byerly KA, Urbanowski ML, Stauffer GV. 1991. The MetR binding site in the Salmonella typhimurium metH gene: DNA sequence constraints on activation. J Bacteriol 173:3547–3553.[PubMed]
152. Fritsch PS, Urbanowski ML, Stauffer GV. 2000. Role of the RNA polymerase α subunits in MetR-dependent activation of metE and metH: important residues in the C-terminal domain and orientation requirements within RNA polymerase. J Bacteriol 182:5539–5550. [PubMed][CrossRef]
153. Jafri S, Urbanowski ML, Stauffer GV. 1995. A mutation in the rpoA gene encoding the α subunit of RNA polymerase that affects metE-metR transcription in Escherichia coli. J Bacteriol 177:524–529.[PubMed]
154. Jafri S, Urbanowski ML, Stauffer GV. 1996. The glutamic acid residue at amino acid 261 of the α subunit is a determinant of the intrinsic efficiency of RNA polymerase at the metE core promoter in Escherichia coli. J Bacteriol 178:6810–6816.[PubMed]
155. Membrillo-Hernández J, Coopamah MD, Channa A, Hughes MN, Poole RK. 1998. A novel mechanism for upregulation of the Escherichia coli K-12 hmp (flavohaemoglobin) gene by the ‘NO releaser’, S-nitrosoglutathione: nitrosation of homocysteine and modulation of MetR binding to the glyA-hmp intergenic region. Mol Microbiol 29:1101–1112. [PubMed][CrossRef]
156. Plamann MD, Stauffer GV. 1989. Regulation of the Escherichia coli glyA gene by the metR gene product and homocysteine. J Bacteriol 171:4958–4962.[PubMed]
157. Chatterjee J, Miyamoto CM, Zouzoulas A, Lang BF, Skouris N, Meighen EA. 2002. MetR and CRP bind to the Vibrio harveyi lux promoters and regulate luminescence. Mol Microbiol 46:101–111. [PubMed][CrossRef]
158. Cai XY, Jakubowski H, Redfield B, Zaleski B, Brot N, Weissbach H. 1992. Role of the metF and metJ genes on the vitamin B12 regulation of methionine gene expression: involvement of N5-methyltetrahydrofolic acid. Biochem Biophys Res Commun 182:651–658. [PubMed][CrossRef]
159. Mulligan JT, Margolin W, Krueger JH, Walker GC. 1982. Mutations affecting regulation of methionine biosynthetic genes isolated by use of met-lac fusions. J Bacteriol 151:609–619.[PubMed]
160. Wu WF, Urbanowski ML, Stauffer GV. 1992. Role of the MetR regulatory system in vitamin B12-mediated repression of the Salmonella typhimurium metE gene. J Bacteriol 174:4833–4837.[PubMed]
161. Greene RC, Williams RD, Kung HF, Spears C, Weissbach H. 1973. Effect of methionine and vitamin B12 on the activities of methionine biosynthetic enzymes in metJ mutants of Escherichia coli K12. Arch Biochem Biophys 158:249–256. [PubMed][CrossRef]
162. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 278:41148–41159. [PubMed][CrossRef]
163. Nahvi A, Barrick JE, Breaker RR. 2004. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–150. [PubMed][CrossRef]
164. Nudler E, Mironov AS. 2004. The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17. [PubMed][CrossRef]
165. Tani TH. 2002. Transitions between the gut and the gutter: a global examination of the regulon controlled by the leucine responsive regulatory protein (LRP) in Escherichia coli, p 216. Ph.D. Dissertation, University of Michigan, Ann Arbor.
166. Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP. 2003. Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J Biol Chem 278:29837–29855. [PubMed][CrossRef]
167. Stojiljkovic I, Bäumler AJ, Hantke K. 1994. Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. J Mol Biol 236:531–545. [PubMed][CrossRef]
168. Kadner RJ. 1975. Regulation of methionine transport activity in Escherichia coli. J Bacteriol 122:110–119.[PubMed]
169. Cottam AN, Ayling PD. 1989. Genetic studies of mutants in a high-affinity methionine transport system in Salmonella typhimurium. Mol Gen Genet 215:358–363. [PubMed][CrossRef]
170. Kadner RJ, Winkler HH. 1975. Energy coupling for methionine transport in Escherichia coli. J Bacteriol 123:985–991.[PubMed]
171. Wainberg RH, Watkins DK, Stebler BA, Cramp WA, Yatvin MB. 1990. Effects of heat and other agents on amino acid uptake in Escherichia coli. Int J Hyperthermia 6:597–605. [PubMed][CrossRef]
172. Ayling PD, Bridgeland ES. 1972. Methionine transport in wild-type and transport-defective mutants of Salmonella typhimurium. J Gen Microbiol 73:127–141.[PubMed]
173. Ayling PD, Mojica-a T, Klopotowski T. 1979. Methionine transport in Salmonella typhimurium: evidence for at least one low-affinity transport system. J Gen Microbiol 114:227–246.[PubMed]
174. Kadner RJ. 1974. Transport systems for L-methionine in Escherichia coli. J Bacteriol 117:232–241.[PubMed]
175. Kadner RJ, Watson WJ. 1974. Methionine transport in Escherichia coli: physiological and genetic evidence for two uptake systems. J Bacteriol 119:401–409.[PubMed]
176. Ayling PD. 1981. Methionine sulfoxide is transported by high-affinity methionine and glutamine transport systems in Salmonella typhimurium. J Bacteriol 148:514–520.[PubMed]
177. Kadner RJ. 1977. Transport and utilization of D-methionine and other methionine sources in Escherichia coli. J Bacteriol 129:207–216.[PubMed]
178. Cooper S. 1966. Utilization of D-methionine by Escherichia coli. J Bacteriol 92:328–332.[PubMed]
179. Balish E, Shapiro SK. 1967. Methionine biosynthesis in Escherichia coli: induction and repression of methylmethionine (or adenosylmethionine): homocysteine methyltransferase. Arch Biochem Biophys 119:62–68. [PubMed][CrossRef]
180. Neuhierl B, Thanbichler M, Lottspeich F, Böck A. 1999. A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414. [PubMed][CrossRef]
181. Gellman SH. 1991. On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces. Biochemistry 30:6633–6636. [PubMed][CrossRef]
182. Karlin S, Zhu ZY, Karlin KD. 1997. The extended environment of mononuclear metal centers in protein structures. Proc Natl Acad Sci USA 94:14225–14230. [PubMed][CrossRef]
183. Wallace CJ, Clark-Lewis I. 1992. Functional role of heme ligation in cytochrome c. Effects of replacement of methionine 80 with natural and non-natural residues by semisynthesis. J Biol Chem 267:3852–3861.[PubMed]
184. Klapper MH. 1977. The independent distribution of amino acid near neighbor pairs into polypeptides. Biochem Biophys Res Commun 78:1018–1024. [PubMed][CrossRef]
185. Vaughan MD, Sampson PB, Honek JF. 2002. Methionine in and out of proteins: targets for drug design. Curr Med Chem 9:385–409.[PubMed]
186. Berlyn MK. 1998. Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62:814–984.[PubMed]
187. Ikemura T, Ozeki H. 1977. Gross map location of Escherichia coli transfer RNA genes. J Mol Biol 117:419–446. [PubMed][CrossRef]
188. Kenri T, Imamoto F, Kano Y. 1994. Three tandemly repeated structural genes encoding tRNAf1Met in the metZ operon of Escherichia coli K-12. Gene 138:261–262. [PubMed][CrossRef]
189. Primrose SB. 1976. Formation of ethylene by Escherichia coli. J Gen Microbiol 95:159–165.[PubMed]
190. Primrose SB, Dilworth MJ. 1976. Ethylene production by bacteria. J Gen Microbiol 93:177–181.[PubMed]
191. Fukuda H, Ogawa T, Tanase S. 1993. Ethylene production by micro-organisms. Adv Microb Physiol 35:275–306. [PubMed][CrossRef]
192. Markham GD, Hafner EW, Tabor CW, Tabor H. 1980. S-Adenosylmethionine synthetase from Escherichia coli. J Biol Chem 255:9082–9092.[PubMed]
193. Takusagawa F, Kamitori S, Misaki S, Markham GD. 1996. Crystal structure of S-adenosylmethionine synthetase. J Biol Chem 271:136–147. [PubMed][CrossRef]
194. Komoto J, Yamada T, Takata Y, Markham GD, Takusagawa F. 2004. Crystal structure of the S-adenosylmethionine synthetase ternary complex: a novel catalytic mechanism of S-adenosylmethionine synthesis from ATP and Met. Biochemistry 43:1821–1831. [PubMed][CrossRef]
195. McQueney MS, Anderson KS, Markham GD. 2000. Energetics of S-adenosylmethionine synthetase catalysis. Biochemistry 39:4443–4454. [PubMed][CrossRef]
196. Takusagawa F, Kamitori S, Markham GD. 1996. Structure and function of S-adenosylmethionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 2.8 Å resolution. Biochemistry 35:2586–2596. [PubMed][CrossRef]
197. Taylor JC, Takusagawa F, Markham GD. 2002. The active site loop of S-adenosylmethionine synthetase modulates catalytic efficiency. Biochemistry 41:9358–9369. [PubMed][CrossRef]
198. Taylor JC, Markham GD. 2003. Conformational dynamics of the active site loop of S-adenosylmethionine synthetase illuminated by site-directed spin labeling. Arch Biochem Biophys 415:164–171. [PubMed][CrossRef]
199. Satishchandran C, Taylor JC, Markham GD. 1990. Novel Escherichia coli K-12 mutants impaired in S-adenosylmethionine synthesis. J Bacteriol 172:4489–4496.[PubMed]
200. Satishchandran C, Taylor JC, Markham GD. 1993. Isozymes of S-adenosylmethionine synthetase are encoded by tandemly duplicated genes in Escherichia coli. Mol Microbiol 9:835–846. [PubMed][CrossRef]
201. Newman EB, Budman LI, Chan EC, Greene RC, Lin RT, Woldringh CL, D'Ari R. 1998. Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. J Bacteriol 180:3614–3619.[PubMed]
202. Wei Y, Newman EB. 2002. Studies on the role of the metK gene product of Escherichia coli K-12. Mol Microbiol 43:1651–1656. [PubMed][CrossRef]
203. Tuan LR, D'Ari R, Newman EB. 1990. The leucine regulon of Escherichia coli K-12: a mutation in rblA alters expression of L-leucine-dependent metabolic operons. J Bacteriol 172:4529–4535.[PubMed]
204. Cantoni GL. 1953. S-Adenosylmethionine: a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J Biol Chem 204:403–416.[PubMed]
205. Alberty RA. 1994. Recommendations for nomenclature and tables in biochemical thermodynamics. Pure Appl Chem 66:1641–1666. [CrossRef]
206. Banerjee RV, Harder SR, Ragsdale SW, Matthews RG. 1990. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Biochemistry 29:1129–1135. [PubMed][CrossRef]
207. Durell J, Rawitscher M, Sturtevant JM. 1962. The synthesis of methionine by enzymic transmethylation. VIII. Enthalpy changes in the methyl-transfer from betaine and S-methylmethionine bromide. Biochim Biophys Acta 56:552–558. [PubMed][CrossRef]
208. Fujii K, Galivan JH, Huennekens FM. 1977. Activation of methionine synthase: further characterization of flavoprotein system. Arch Biochem Biophys 178:662–670. [PubMed][CrossRef]
209. Mudd SH, Klee WA, Ross PD. 1966. Enthalpy changes accompanying the transfer of a methyl group from S-adenosylmethionine and other sulfonium compounds to homocysteine. Biochemistry 5:1653–1660. [PubMed][CrossRef]
210. Iwig DF, Grippe AT, McIntyre TA, Booker SJ. 2004. Isotope and elemental effects indicate a rate-limiting methyl transfer as the initial step in the reaction catalyzed by Escherichia coli cyclopropane fatty acid synthase. Biochemistry 43:13510–13524. [PubMed][CrossRef]
211. Keller JP, Smith PM, Benach J, Christendat D, deTitta GT, Hunt JF. 2002. The crystal structure of MT0146/CbiT suggests that the putative precorrin-8w decarboxylase is a methyltransferase. Structure (Camb) 10:1475–1487. [PubMed][CrossRef]
212. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. 2002. The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 19:390–412. [PubMed][CrossRef]
213. Grogan DW, Cronan JE, Jr. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441.[PubMed]
214. Stock JB, Surette MG. 1996. Chemotaxis, p 1103–1129. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
215. Warren MJ, Roessner CA, Santander PJ, Scott AI. 1990. The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J 265:725–729.[PubMed]
216. Marinus MG. 1996. Methylation of DNA, p 782–791. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
217. Burnens AP, Stanley J, Sack R, Hunziker P, Brodard I, Nicolet J. 1997. The flagellin N-methylase gene fliB and an adjacent serovar-specific IS200 element in Salmonella typhimurium. Microbiology 143(Pt 5):1539–1547. [CrossRef]
218. Björk GR, Hagervall TG. 25 July 2005, posting date. Transfer RNA Modification, Transfer RNA modification. In Böck A, Curtiss R III, Kaper JB, Neidhardt FC, Nyström T, Rudd KE, and Squires CL (ed), EcoSalEscherichia coli and Salmonella: Cellular and Molecular Biology. [Online.] http://www.ecosal.org. ASM Press, Washington, D.C.
219. Fu JC, Ding L, Clarke S. 1991. Purification, gene cloning, and sequence analysis of an L-isoaspartyl protein carboxyl methyltransferase from Escherichia coli. J Biol Chem 266:14562–14572.[PubMed]
220. Heurgué-Hamard V, Champ S, Engström A, Ehrenberg M, Buckingham RH. 2002. The hemK gene in Escherichia coli encodes the N5-glutamine methyltransferase that modifies peptide release factors. EMBO J 21:769–778. [PubMed][CrossRef]
221. Ofengand J, Del Campo M. 29 December 2004, posting date. Modified Nucleosides of Escherichia coli Ribosomal RNA, Modified nucleosides of Escherichia coli Ribosomal RNA. In Böck A, Curtiss R III, Kaper JB, Neidhardt FC, Nyström T, Rudd KE, and Squires CL (ed), EcoSalEscherichia coli and Salmonella: Cellular and Molecular Biology. [Online.] http://www.ecosal.org. ASM Press, Washington, D.C.
222. Cai H, Clarke S. 1999. A novel methyltransferase catalyzes the methyl esterification of trans-aconitate in Escherichia coli. J Biol Chem 274:13470–13479. [PubMed][CrossRef]
223. De Bie LGS, Roovers M, Oudjama Y, Wattiez R, Tricot C, Stalon V, Droogmans L, Bujnicki JM. 2003. The yggH gene of Escherichia coli encodes a tRNA (m7G46) methyltransferase. J Bacteriol 185:3238–3243. [PubMed][CrossRef]
224. Purta E, van Vliet F, Tricot C, De Bie LG, Feder M, Skowronek K, Droogmans L, Bujnicki JM. 2005. Sequence-structure-function relationships of a tRNA (m7G46) methyltransferase studied by homology modeling and site-directed mutagenesis. Proteins 59:482–488. [PubMed][CrossRef]
225. Lee PT, Hsu AY, Ha HT, Clarke CF. 1997. A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene. J Bacteriol 179:1748–1754.[PubMed]
226. Hsu AY, Poon WW, Shepherd JA, Myles DC, Clarke CF. 1996. Complementation of coq3 mutant yeast by mitochondrial targeting of the Escherichia coli UbiG polypeptide: evidence that UbiG catalyzes both O-methylation steps in ubiquinone biosynthesis. Biochemistry 35:9797–9806. [PubMed][CrossRef]
227. Spencer JB, Stolowich NJ, Roessner CA, Scott AI. 1993. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett 335:57–60. [PubMed][CrossRef]
228. Schubert HL, Blumenthal RM, Cheng X. 2003. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329–335. [PubMed][CrossRef]
229. Cheng X, Blumenthal RM. 1999. S-Adenosylmethionine-Dependent Methyltransferases: Structures and Functions. World Scientific, Hackensack, N.J.
230. Cheng X, Roberts RJ. 2001. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 29:3784–3795. [PubMed][CrossRef]
231. Frey PA, Magnusson OT. 2003. S-Adenosylmethionine: a wolf in sheep's clothing, or a rich man's adenosylcobalamin? Chem Rev 103:2129–2148. [PubMed][CrossRef]
232. Jarrett JT. 2003. The generation of 5′-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes. Curr Opin Chem Biol 7:174–182. [PubMed][CrossRef]
233. Layer G, Heinz DW, Jahn D, Schubert WD. 2004. Structure and function of radical SAM enzymes. Curr Opin Chem Biol 8:468–476. [PubMed][CrossRef]
234. Marsh ENG, Patwardhan A, Huhta MS. 2004. S-Adenosylmethionine radical enzymes. Bioorg Chem 32:326–340. [PubMed][CrossRef]
235. Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. 2001. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106. [PubMed][CrossRef]
236. Iwata-Reuyl D. 2003. Biosynthesis of the 7-deazaguanosine hypermodified nucleosides of transfer RNA. Bioorg Chem 31:24–43. [PubMed][CrossRef]
237. Nishimura S, Taya Y, Kuchino Y, Oashi Z. 1974. Enzymatic synthesis of 3-(3-amino-3-carboxypropyl)uridine in Escherichia coli phenylalanine transfer RNA: transfer of the 3-amino-acid-3-carboxypropyl group from S-adenosylmethionine. Biochem Biophys Res Commun 57:702–708. [PubMed][CrossRef]
238. Dai Y, Pochapsky TC, Abeles RH. 2001. Mechanistic studies of two dioxygenases in the methionine salvage pathway of Klebsiella pneumoniae. Biochemistry 40:6379–6387. [PubMed][CrossRef]
239. Heilbronn J, Wilson J, Berger BJ. 1999. Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. J Bacteriol 181:1739–1747.[PubMed]
240. Sekowska A, Danchin A. 2002. The methionine salvage pathway in Bacillus subtilis. BMC Microbiol 2:8. [CrossRef]
241. Sekowska A, Dénervaud V, Ashida H, Michoud K, Haas D, Yokota A, Danchin A. 2004. Bacterial variations on the methionine salvage pathway. BMC Microbiol 4:9. [CrossRef]
242. Schroeder HR, Barnes CJ, Bohinski RC, Mallette MF. 1973. Biological production of 5-methylthioribose. Can J Microbiol 19:1347–1354.[PubMed]
243. Schroeder HR, Barnes CJ, Bohinski RC, Mumma RO, Mallette MF. 1972. Isolation and identification of 5-methylthioribose from Escherichia coli B. Biochim Biophys Acta 273:254–264.[PubMed]
244. Davis BD, Mingioli ES. 1950. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol 60:17–28.[PubMed]
245. Cornell KA, Riscoe MK. 1998. Cloning and expression of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase: identification of the pfs gene product. Biochim Biophys Acta 1396:8–14.[PubMed]
246. Della Ragione F, Porcelli M, Cartení-Farina M, Zappia V, Pegg AE. 1985. Escherichia coli S-adenosylhomocysteine/5′-methylthioadenosine nucleosidase. Purification, substrate specificity and mechanism of action. Biochem J 232:335–341.[PubMed]
247. Duerre JA. 1962. A hydrolytic nucleosidase acting on S-adenosylhomocysteine and on 5′-methylthioadenosine. J Biol Chem 237:3737–3741.
248. Lee JE, Cornell KA, Riscoe MK, Howell PL. 2001. Structure of E. coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase reveals similarity to the purine nucleoside phosphorylases. Structure (Camb.) 9:941–953. [PubMed][CrossRef]
249. Cornell KA, Swarts WE, Barry RD, Riscoe MK. 1996. Characterization of recombinant Eschericha coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase: analysis of enzymatic activity and substrate specificity. Biochem Biophys Res Commun 228:724–732. [PubMed][CrossRef]
250. Borchardt RT. 1980. S-Adenosyl-L-methionine-dependent macromolecule methyltransferases: potential targets for the design of chemotherapeutic agents. J Med Chem 23:347–357. [PubMed][CrossRef]
251. Bowman WH, Tabor CW, Tabor H. 1973. Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J Biol Chem 248:2480–2486.[PubMed]
252. Crooks PA, Tribe MJ, Pinney RJ. 1984. Inhibition of bacterial DNA cytosine-5-methyltransferase by S-adenosyl-L-homocysteine and some related compounds. J Pharm Pharmacol 36:85–89.[PubMed]
253. Duerre JA, Walker RD. 1977. Metabolism of adenosylhomocysteine, p 43–57. In Salvatore F, Borek E, Zappia V, Williams-Ashman HG, and Schlenk F (ed), The Biochemistry of Adenosylmethionine. Columbia University Press, New York, N.Y.
254. Lee JE, Cornell KA, Riscoe MK, Howell PL. 2003. Structure of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase inhibitor complexes provide insight into the conformational changes required for substrate binding and catalysis. J Biol Chem 278:8761–8770. [PubMed][CrossRef]
255. Lee JE, Smith GD, Horvatin C, Huang DJ, Cornell KA, Riscoe MK, Howell PL. 2005. Structural snapshots of MTA/AdoHcy nucleosidase along the reaction coordinate provide insights into enzyme and nucleoside flexibility during catalysis. J Mol Biol 352:559–574. [PubMed][CrossRef]
256. Lee JE, Singh V, Evans GB, Tyler PC, Furneaux RH, Cornell KA, Riscoe MK, Schramm VL, Howell PL. 2005. Structural rationale for the affinity of pico- and femtomolar transition state analogues of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. J Biol Chem 280:18274–18282. [PubMed][CrossRef]
257. Allart B, Gatel M, Guillerm D, Guillerm G. 1998. The catalytic mechanism of adenosylhomocysteine/methylthioadenosine nucleosidase from Escherichia coli—chemical evidence for a transition state with a substantial oxocarbenium character. Eur J Biochem 256:155–162. [PubMed][CrossRef]
258. Lee JE, Luong W, Huang DJ, Cornell KA, Riscoe MK, Howell PL. 2005. Mutational analysis of a nucleosidase involved in quorum-sensing autoinducer-2 biosynthesis. Biochemistry 44:11049–11057. [PubMed][CrossRef]
259. Singh V, Lee JE, Nunez S, Howell PL, Schramm VL. 2005. Transition state structure of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues. Biochemistry 44:11647–11659. [PubMed][CrossRef]
260. Singh V, Evans GB, Lenz DH, Mason JM, Clinch K, Mee S, Painter GF, Tyler PC, Furneaux RH, Lee JE, Howell PL, Schramm VL. 2005. Femtomolar transition state analogue inhibitors of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli. J Biol Chem 280:18265–18273. [PubMed][CrossRef]
261. Cadieux N, Bradbeer C, Reeger-Schneider E, Köster W, Mohanty AK, Wiener MC, Kadner RJ. 2002. Identification of the periplasmic cobalamin-binding protein BtuF of Escherichia coli. J Bacteriol 184:706–717. [PubMed][CrossRef]
262. Choi-Rhee E, Cronan JE. 2005. A nucleosidase required for in vivo function of the S-adenosyl-L-methionine radical enzyme, biotin synthase. Chem Biol 12:589–593. [PubMed][CrossRef]
263. Ollagnier-de-Choudens S, Mulliez E, Fontecave M. 2002. The PLP-dependent biotin synthase from Escherichia coli: mechanistic studies. FEBS Lett 532:465–468. [PubMed][CrossRef]
264. Duerre JA, Miller CH. 1966. Cleavage of S-ribosyl-L-homocysteine by extracts from Escherichia coli. J Bacteriol 91:1210–1217.[PubMed]
265. Miller CH, Duerre JA. 1968. S-Ribosylhomocysteine cleavage enzyme from Escherichia coli. J Biol Chem 243:92–97.[PubMed]
266. Schauder S, Shokat K, Surette MG, Bassler BL. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476. [PubMed][CrossRef]
267. Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MT, Linforth R, Cornell KA, Taylor AJ, Hill PJ, Williams P. 2002. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148:909–922.[PubMed]
268. Bassler BL, Greenberg EP, Stevens AM. 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045.[PubMed]
269. Surette MG, Bassler BL. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci USA 95:7046–7050. [PubMed][CrossRef]
270. Surette MG, Miller MB, Bassler BL. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA 96:1639–1644. [PubMed][CrossRef]
271. Xavier KB, Bassler BL. 2003. LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197. [PubMed][CrossRef]
272. De Keersmaecker SCJ, Varszegi C, van Boxel N, Habel LW, Metzger K, Daniels R, Marchal K, De Vos D, Vanderleyden J. 2005. Chemical synthesis of (S)-4,5-dihydroxy-2,3-pentanedione, a bacterial signal molecule precursor, and validation of its activity in Salmonella typhimurium. J Biol Chem 280:19563–19568. [PubMed][CrossRef]
273. Meijler MM, Hom LG, Kaufmann GF, McKenzie KM, Sun C, Moss JA, Matsushita M, Janda KD. 2004. Synthesis and biological validation of a ubiquitous quorum-sensing molecule. Angew Chem Int Ed Engl 43:2106–2108. [PubMed][CrossRef]
274. Semmelhack MF, Campagna SR, Federle MJ, Bassler BL. 2005. An expeditious synthesis of DPD and boron binding studies. Org Lett 7:569–572. [PubMed][CrossRef]
275. Zhao G, Wan W, Mansouri S, Alfaro JF, Bassler BL, Cornell KA, Zhou ZS. 2003. Chemical synthesis of S-ribosyl-L-homocysteine and activity assay as a LuxS substrate. Bioorg Med Chem Lett 13:3897–3900. [PubMed][CrossRef]
276. Hilgers MT, Ludwig ML. 2001. Crystal structure of the quorum-sensing protein LuxS reveals a catalytic metal site. Proc Natl Acad Sci USA 98:11169–11174. [PubMed][CrossRef]
277. Lewis HA, Furlong EB, Laubert B, Eroshkina GA, Batiyenko Y, Adams JM, Bergseid MG, Marsh CD, Peat TS, Sanderson WE, Sauder JM, Buchanan SG. 2001. A structural genomics approach to the study of quorum sensing: crystal structures of three LuxS orthologs. Structure (Camb.) 9:527–537. [PubMed][CrossRef]
278. Ruzheinikov SN, Das SK, Sedelnikova SE, Hartley A, Foster SJ, Horsburgh MJ, Cox AG, McCleod CW, Mekhalfia A, Blackburn GM, Rice DW, Baker PJ. 2001. The 1.2 Å structure of a novel quorum-sensing protein, Bacillus subtilis LuxS. J Mol Biol 313:111–122. [PubMed][CrossRef]
279. Zhu J, Dizin E, Hu X, Wavreille AS, Park J, Pei D. 2003. S-Ribosylhomocysteinase (LuxS) is a mononuclear iron protein. Biochemistry 42:4717–4726. [PubMed][CrossRef]
280. Pei D, Zhu J. 2004. Mechanism of action of S-ribosylhomocysteinase (LuxS). Curr Opin Chem Biol 8:492–497. [PubMed][CrossRef]
281. Rajan R, Zhu J, Hu X, Pei D, Bell CE. 2005. Crystal structure of S-ribosylhomocysteinase (LuxS) in complex with a catalytic 2-ketone intermediate. Biochemistry 44:3745–3753. [PubMed][CrossRef]
282. Zhu J, Patel R, Pei D. 2004. Catalytic mechanism of S-ribosylhomocysteinase (LuxS): stereochemical course and kinetic isotope effect of proton transfer reactions. Biochemistry 43:10166–10172. [PubMed][CrossRef]
283. Zhu J, Hu X, Dizin E, Pei D. 2003. Catalytic mechanism of S-ribosylhomocysteinase (LuxS): direct observation of ketone intermediates by 13C NMR spectroscopy. J Am Chem Soc 125:13379–13381. [PubMed][CrossRef]
284. Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 15:677–687. [PubMed][CrossRef]
285. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549. [PubMed][CrossRef]
286. Kaper JB, Sperandio V. 2005. Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun 73:3197–3209. [PubMed][CrossRef]
287. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. 2005. Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 3:383–396. [PubMed][CrossRef]
288. Beeston AL, Surette MG. 2002. pfs-dependent regulation of autoinducer 2 production in Salmonella enterica serovar Typhimurium. J Bacteriol 184:3450–3456. [PubMed][CrossRef]
289. DeLisa MP, Valdes JJ, Bentley WE. 2001. Mapping stress-induced changes in autoinducer AI-2 production in chemostat-cultivated Escherichia coli K-12. J Bacteriol 183:2918–2928. [PubMed][CrossRef]
290. Wang L, Hashimoto Y, Tsao CY, Valdes JJ, Bentley WE. 2005. Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. J Bacteriol 187:2066–2076. [PubMed][CrossRef]
291. Xavier KB, Bassler BL. 2005. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J Bacteriol 187:238–248. [PubMed][CrossRef]
292. Taga ME, Semmelhack JL, Bassler BL. 2001. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol 42:777–793. [PubMed][CrossRef]
293. Sperandio V, Torres AG, Girón JA, Kaper JB. 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 183:5187–5197. [PubMed][CrossRef]
294. Taga ME, Miller ST, Bassler BL. 2003. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol Microbiol 50:1411–1427. [PubMed][CrossRef]
295. Wang L, Li J, March JC, Valdes JJ, Bentley WE. 2005. luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J Bacteriol 187:8350–8360. [PubMed][CrossRef]
296. DeLisa MP, Wu CF, Wang L, Valdes JJ, Bentley WE. 2001. DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol 183:5239–5247. [PubMed][CrossRef]
297. Winzer K, Hardie KR, Williams P. 2002. Bacterial cell-to-cell communication: sorry, can't talk now - gone to lunch! Curr Opin Microbiol 5:216–222. [PubMed][CrossRef]
298. Benov L, Kredich NM, Fridovich I. 1996. The mechanism of the auxotrophy for sulfur-containing amino acids imposed upon Escherichia coli by superoxide. J Biol Chem 271:21037–21040. [PubMed][CrossRef]
299. Carlioz A, Touati D. 1986. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J 5:623–630.[PubMed]
300. Benov L, Fridovich I. 1997. Superoxide imposes leakage of sulfite from Escherichia coli. Arch Biochem Biophys 347:271–274. [PubMed][CrossRef]
301. Imlay JA. 2003. Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. [PubMed][CrossRef]
302. Lillig CH, Potamitou A, Schwenn JD, Vlamis-Gardikas A, Holmgren A. 2003. Redox regulation of 3′-phosphoadenylylsulfate reductase from Escherichia coli by glutathione and glutaredoxins. J Biol Chem 278:22325–22330. [PubMed][CrossRef]
303. Leichert LI, Jakob U. 2004. Protein thiol modifications visualized in vivo. PLoS Biol 2:e333. [CrossRef]
304. Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B. 1999. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949. [PubMed][CrossRef]
305. Weissbach H, Resnick L, Brot N. 2005. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta 1703:203–212.[PubMed]
306. Roe AJ, O'Byrne C, McLaggan D, Booth IR. 2002. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148:2215–2222.[PubMed]
307. Arnold CN, McElhanon J, Lee A, Leonhart R, Siegele DA. 2001. Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J Bacteriol 183:2178–2186. [PubMed][CrossRef]
308. Tuite NL, Fraser KR, O'Byrne CP. 2005. Homocysteine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis. J Bacteriol 187:4362–4371. [PubMed][CrossRef]
309. Price-Carter M, Fazzio TG, Vallbona EI, Roth JR. 2005. Polyphosphate kinase protects Salmonella enterica from weak organic acid stress. J Bacteriol 187:3088–3099. [PubMed][CrossRef]
310. De Groote MA, Testerman T, Xu Y, Stauffer G, Fang FC. 1996. Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science 272:414–417. [PubMed][CrossRef]
311. Flatley J, Barrett J, Pullan ST, Hughes MN, Green J, Poole RK. 2005. Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J Biol Chem 280:10065–10072. [PubMed][CrossRef]
312. Gyaneshwar P, Paliy O, McAuliffe J, Jones A, Jordan MI, Kustu S. 2005. Lessons from Escherichia coli genes similarly regulated in response to nitrogen and sulfur limitation. Proc Natl Acad Sci USA 102:3453–3458. [PubMed][CrossRef]
313. Gyaneshwar P, Paliy O, McAuliffe J, Popham DL, Jordan MI, Kustu S. 2005. Sulfur and nitrogen limitation in Escherichia coli K-12: specific homeostatic responses. J Bacteriol 187:1074–1090. [PubMed][CrossRef]
314. Horwich AL, Low KB, Fenton WA, Hirshfield IN, Furtak K. 1993. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74:909–917. [PubMed][CrossRef]
315. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU. 1999. Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154. [PubMed][CrossRef]
316. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU. 2005. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220. [PubMed][CrossRef]
317. Deuerling E, Patzelt H, Vorderwulbecke S, Rauch T, Kramer G, Schaffitzel E, Mogk A, Schulze-Specking A, Langen H, Bukau B. 2003. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities. Mol Microbiol 47:1317–1328. [PubMed][CrossRef]
318. Ying BW, Taguchi H, Kondo M, Ueda T. 2005. Co-translational involvement of the chaperonin GroEL in the folding of newly translated polypeptides. J Biol Chem 280:12035–12040. [PubMed][CrossRef]
319. Gold L. 1988. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem 57:199–233. [PubMed][CrossRef]
320. Patterson D, Gillespie D. 1972. Effect of elevated temperatures on protein synthesis in Escherichia coli. J Bacteriol 112:1177–1183.[PubMed]
ecosalplus.3.6.1.7.citations
ecosalplus/2/1
content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.7
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.7
2006-04-28
2017-11-19

Abstract:

This review focuses on the steps unique to methionine biosynthesis, namely the conversion of homoserine to methionine. The past decade has provided a wealth of information concerning the details of methionine metabolism and the review focuses on providing a comprehensive overview of the field, emphasizing more recent findings. Details of methionine biosynthesis are addressed along with key cellular aspects, including regulation, uptake, utilization, AdoMet, the methyl cycle, and growing evidence that inhibition of methionine biosynthesis occurs under stressful cellular conditions. The first unique step in methionine biosynthesis is catalyzed by the gene product, homoserine transsuccinylase (HTS, or homoserine O-succinyltransferase). Recent experiments suggest that transcription of these genes is indeed regulated by MetJ, although the repressor-binding sites have not yet been verified. Methionine also serves as the precursor of -adenosylmethionine, which is an essential molecule employed in numerous biological processes. -adenosylhomocysteine is produced as a consequence of the numerous AdoMet-dependent methyl transfer reactions that occur within the cell. In and , this molecule is recycled in two discrete steps to complete the methyl cycle. Cultures challenged by oxidative stress appear to experience a growth limitation that depends on methionine levels. that are deficient for the manganese and iron superoxide dismutases (the sodA and sodB gene products, respectively) require the addition of methionine or cysteine for aerobic growth. Modulation of methionine levels in response to stressful conditions further increases the complexity of its regulation.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The genes for proteins that catalyze reactions discussed in this chapter are shown.

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Homoserine transsuccinylase (HTS, the gene product) succinylates homoserine to produce -succinylhomoserine. Condensation with cysteine is catalyzed by cystathionine γ-synthase (CGS, the gene product) to form cystathionine. Cystathionine β-lyase (CBL, the gene product) hydrolyzes cystathionine to generate homocysteine. The gene product also appears to have β-cystathionase activity (see section on homocysteine synthesis). B-independent methionine synthase (MetE, the gene product) or B-dependent methionine synthase (MetH, the gene product) transfers a methyl group from methyltetrahydrofolate (CH-Hfolate) to homocysteine to produce methionine and tetrahydrofolate (Hfolate).

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

-Succinyl--homoserine (-OSHS) binds to the enzyme (E) via the formation of an external aldimine with pyridoxal phosphate (PLP). The enzyme-ketimine intermediate ([E-K]) and release of succinate is common to both the γ-replacement and γ-elimination reactions. -Cysteine (-Cys) replaces the succinate moiety through a series of steps to form -cystathionine (-Cth), which is released from the enzyme. Alternatively, γ-elimination from the unstable ketimine generates α-ketobutyrate (α-KB) and ammonia. The mechanism of γ-replacement appears to depend on cysteine concentrations. At low concentrations ([-Cys] < ), cysteine binds to the enzyme-ketimine intermediate and proceeds via a ping-pong mechanism as shown. However, at increased concentrations ([-Cys] > ), cysteine binds prior to succinate release, forming a ternary complex. In addition, substrate inhibition can occur if cysteine binds to the wrong form of CGS, which may account for previous underestimations of the kinetic parameters. Further mechanistic details may be found in references 30 , 31 , and 32 .

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

MTHFR utilizes NADH to reduce methylenetetrahydrofolate (CH-Hfolate) to methyltetrahydrofolate (CH-Hfolate).

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The active enzyme exists as a planar tetramer, with interactions between vertical monomers being stronger than those between horizontal monomers.

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

During primary turnover, a methyl group is transferred from methyltetrahydrofolate (CH-Hfolate) to the enzyme-bound cob(I)alamin [Cob(I)] to form tetrahydrofolate (Hfolate) and methylcobalamin (Me-Cob). MetH then produces methionine (Met) by transferring the methyl group to the thiol of homocysteine (Hcy), regenerating Cob(I). The Cob(I) is occasionally oxidized to cob(II)alamin [Cob(II)], thereby inactivating the enzyme. MetH may be reactivated by reductive methylation utilizing electrons supplied by flavodoxin () and a methyl group derived from AdoMet.

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

MetH contains four distinct modules for binding cobalamin and each of its substrates. The modules are arranged as indicated, where green, yellow, red, and blue depict the homocysteine (Hcy), folate (Fol), cobalamin (Cob), and AdoMet binding domains, respectively. The corresponding crystal structures for each module are shown. The structure of the N-terminal Hcy and Fol domains was solved for the MetH homologue in ( 94 ). The C-terminal structure (Cob and AdoMet domains) shown is for the enzyme ( 91 ). Figure courtesy of R. Pejchal, constructed from structural data published in references 91 and 94 .

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

The crystal structure of the highly homologous MetE enzyme is shown. The active site is situated within the cleft formed between the two βα barrel domains (blue and yellow). An extended linker between the domains is colored green. The zinc ion and metal-coordinating residues are displayed in ball-and-stick representation. Figure courtesy of R. Pejchal, constructed from data published in reference 100 .

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

The first few nucleotides of the coding regions of the and genes are shown in green and red, respectively. The −10 and −35 regions as well as the two transcription start sites for and the single start site for are indicated with the same color scheme. The MetR- and MetJ-binding sites identified by footprinting experiments are circled. MetR binding site 1 and the newly discovered site 2 are shown in dark and light blue, respectively. Assignment of site 2 is based on homology to the sequence. Asterisks above the sequence indicate matches to the consensus MetR-binding site (TGAA – – T/A – – TTCA). MetJ-binding regions are circled in black. MetJ binding to the site closest to is significantly weaker than to the region that overlaps the transcription start site. The function of the second lower-affinity MetJ-binding site is unknown. Met-boxes (defined by a minimum of 50% identity to the consensus sequence, AGACGTCT) within the MetJ-binding region are shaded orange and yellow.

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Uptake of -methionine is accomplished via the action of the low-affinity MetP transport system or the high-affinity MetD transporter, which is also responsible for -methionine import. The MetD uptake system is depicted as a typical ABC transporter. MetQ functions as a periplasmic substrate-binding protein, MetI serves as the permease, and MetN acts as the ATPase to provide energy for transport. The locus (inset), composed of the (), (), and () genes, is preceded by three met-boxes, and expression appears to be regulated by MetJ.

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

(a) MmuM (the product of the gene) catalyzes the transfer of the methyl group from -methylmethionine to homocysteine to produce methionine. (b) The gene product of utilizes methylmethionine to methylate selenocysteine, generating Se-methylselenocysteine and methionine. (c) MmuM is also able to methylate homocysteine utilizing AdoMet to form methionine.

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

MAT catalyzes the condensation of ATP with methionine to generate AdoMet and tripolyphosphate (PPP). Hydrolysis then occurs between the β- and γ-phosphates of PPP to produce pyrophosphate (PP) and orthophosphate (P).

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Bacteria exploit all the groups attached to the sulfonium of AdoMet. Transfer of the methyl, adenosyl, and ribosyl groups is shown in red, purple, and blue, respectively. Reactions employing a derivative of the aminoalkyl chain are indicated in green. (A) Numerous AdoMet-dependent methyltransferase enzymes catalyze the methylation of a wide variety of substrates. -Adenosylhomocysteine (AdoHcy) is produced following methyl transfer. The methylene of cyclopropane fatty acids (CFA) is also derived from the methyl group of AdoMet via the action of CFA synthase (the gene product). (B) 5′-Deoxyadenosyl radicals (Ado•) are produced from AdoMet and utilized by radical SAM enzymes. (C) In the penultimate step of queuosine biosynthesis, the gene product catalyzes transfer of the ribosyl group of AdoMet to preQ-tRNA to generate epoxyqueuosine (oQ-tRNA), adenine, and methionine. (D) AdoMet is decarboxylated by AdoMet decarboxylase (the gene product) and the aminopropyl group is then transferred to putrescine by spermidine synthase (the gene product) to produce spermidine and methylthioadenosine (MTA). (E) In modification of Phe tRNA, the 3-amino-3-carboxylpropyl group of AdoMet is transferred to uridine to generate 3-(3-amino-3-carboxypropyl)uridine (acpU). (F) In the second step of biotin biosynthesis, an amino group of AdoMet is donated to 7-keto-8-amino pelargonic acid (KAPA) to produce 7,8-diaminopelargonic acid (DAPA). This reaction is catalyzed by DAPA synthase, the gene product.

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

LuxS participates in the methyl cycle by catalyzing the cleavage of ribosylhomocysteine (RibHcy) to produce homocysteine (Hcy) and 4,5-dihydroxy-2,3-pentanedione (DPD). DPD can undergo spontaneous cyclization to generate a series of interconverting furanones as indicated. (2,4)-2-Methyl-2,3,3,4-tetrahydroxytetrahydrofuran (-THMF) appears to function as the AI-2 signal for , whereas the boron adduct of the opposite isomer (-THMF borate) is utilized by .

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15
Figure 15

An aldose-ketose isomerization results in the initial migration of the carbonyl group to form the 2-ketone intermediate. A second isomerization shifts the carbonyl group over another carbon to produce the 3-ketone intermediate. A final β-elimination reaction generates homocysteine (Hcy) and the enol form of 4,5-dihydroxy-2,3-pentanedione (DPD), which spontaneously isomerizes to the keto form. Further details may be found in the references listed in the text.

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

AdoMet-dependent MTases with assigned genes in and

Citation: Hondorp E, Matthews R. 2006. Methionine, EcoSal Plus 2006; doi:10.1128/ecosalplus.3.6.1.7

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error