1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biosynthesis of the Aromatic Amino Acids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: James Pittard1, and Ji Yang2
  • Editor: Valley Stewart3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia; 2: Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia; 3: University of California, Davis, Davis, CA
  • Received 26 August 2008 Accepted 07 November 2008 Published 23 June 2008
  • Address correspondence to James Pittard alfred@unimelb.edu.au
image of Biosynthesis of the Aromatic Amino Acids
    Preview this reference work article:
    Zoom in
    Zoomout

    Biosynthesis of the Aromatic Amino Acids, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/1/3_6_1_8_module-1.gif /docserver/preview/fulltext/ecosalplus/3/1/3_6_1_8_module-2.gif
  • Abstract:

    This chapter describes in detail the genes and proteins of involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.

  • Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8

Key Concept Ranking

Aromatic Amino Acids
0.5739506
Aromatic Amino Acid Biosynthesis
0.43901014
Gene Expression and Regulation
0.42759606
Major Facilitator Superfamily
0.3776596
Transcription Start Site
0.3636518
0.5739506

References

1. Pittard AJ. 1996. Biosyhthesis of the aromatic amino acids, p 458–484. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, DC.
2. Davis B. 1950. Aromatic biosynthesis. 1. The role of shikimic acid. J Biol Chem 191:315–325.
3. Davis B, Weiss U. 1953. Aromatic biosynthesis. VIII. The roles of 5-dehydroquinic acid and quinic acid. Arch Exp Pathol Pharmacol 220:1–15. [CrossRef]
4. Salamon IL, Davis B. 1953. Aromatic biosynthesis IX. The isolation of a precursor of shikimic acid. J Am Chem Soc 75:5567–5571.
5. Weiss DS, Batut J, Klose KE, Keener J, Kustu S. 1991. The phosphorylated form of the enhancer-binding protein NtrC has an ATPase activity that is essential for activation of transcription. Cell 67:707–712.
6. Weiss U, Gilvarg C, Mingioli E, Davis B. 1954. Aromatic biosynthesis XI. The aromatization step in the synthesis of phenylalanine. Science 119:774–775.
7. Davis B, Mingioli E. 1953. Aromatic biosynthesis. VII. Accumulation of two derivatives of shikimic acid by bacterial mutants. J Bacteriol 66:129–136. [PubMed]
8. Doy C, Gibson F. 1959. 1-(O-Carboxyphenylamino)-1-deoxyribulose. A compound formed by mutant strains of Aerobacter aerogenes and Escherichia coli blocked in the biosynthesis of tryptophan. Biochem J 72:586–597. [PubMed]
9. Gibson F, Jones J, Teltscher H. 1955. Synthesis of indole and anthranilic acid by mutants of Escherichia coli. Nature 175:853–854. [PubMed][CrossRef]
10. Rivera A Jnr, Srinivasan P. 1962. 3-Enolpyruvylshikimate 5-phosphate, an intermediate in the biosynthesis of anthranilate. Proc Natl Acad Sci USA 48:864–867.
11. Srinivasan P, Shigeura H, Sprecher M, Sprinson D, Davis B. 1956. The biosynthesis of shikimic acid from D-glucose. J Biol Chem 220:447–497.
12. Ballou C, Fischer H, MacDonald D. 1955. The synthesis and properties of D-erythrose-4-phosphate. J Am Chem Soc 77:5967–5970. [CrossRef]
13. Srinivasan P, Katagiri M, Sprinson D. 1959. The conversion of phosphoenolpyruvic acid and D-erythrose 4-phosphate to 5-dehydroquinic acid. J Biol Chem 234:713–715.
14. Gibson M, Gibson F. 1964. Preliminary studies on the isolation and metabolism of an intermediate in aromatic biosynthesis: chorismic acid. Biochem J 90:248–256. [PubMed]
15. Gibson F. 1964. Chorismic acid: purification and some chemical and physical studies. Biochem J 90:256–261. [PubMed]
16. Morell H, Clark M, Knowles P, Sprinson D. 1967. The enzymic synthesis of chorismic and prephenic acids from 3-enolpyruvyl shikimic acid 5-phosphate. J Biol Chem 242:82–90.
17. Levin J, Sprinson D. 1964. The enzymatic formation and isolation of 3-enolpyruvylshikimate 5-phosphate. J Biol Chem 239:1142–1150.
18. Shumilin IA, Kretsinger RH, Bauerle RH. 1999. Crystal structure of phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli. Structure 7:865–875.
19. Barker JL, Frost JW. 2001. Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol Bioeng 76:376–390. [PubMed][CrossRef]
20. Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, Bongaerts J, Sprenger G, Takors R. 2002. Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains. Biotechnol Bioeng 80:746–754. [PubMed][CrossRef]
21. Patnaik R, Liao JC. 1994. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol 60:3903–3908.
22. Karnell A, Cam P, Verma N, Lindberg A. 1993. aroD deletion attenuates Shigella flexneri strain 2457T and makes it a safe and efficacious oral vaccine in monkeys. Vaccine 11:830–836. [PubMed][CrossRef]
23. Tacket C, DM H, Losonsky G, Guers L, Edelman R, Levine M. 1992. Clinical acceptability and immunogenicity of CVD 908 Salmonella typhi vaccine strain. Vaccine 10:443–446.
24. Wagner T, Shumilin IA, Bauerle R, Kretsinger RH. 2000. Structure of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli: comparison of the Mn(2+)2-phosphoglycolate and the Pb(2+)2-phosphoenolpyruvate complexes and implications for catalysis. J Mol Biol 301:389–399.
25. Eschenburg S, Healy ML, Priestman MA, Lushington GH, Schonbrunn E. 2002. How the mutation glycine96 to alanine confers glyphosate insensitivity to 5-enolpyruvyl shikimate-3-phosphate synthase from Escherichia coli. Planta 216:129–135. [PubMed][CrossRef]
26. Brown K, Doy C. 1966. Control of three isoenzymic 7-phospho-2-oxo-3-deoxy-D-arabino-heptonate-D-erythrose-4-phosphate lyases of Escherichia coli W and derived mutants by repressive and inductive effects of the aromatic amino acids. Biochim Biophys Acta 118:157–172. [PubMed]
27. Camakaris J, Pittard J. 1974. Purification and properties of 3-deoxy-D-arabinoheptulosonic acid-7-phosphate synthetase (trp) from Escherichia coli. J Bacteriol 120:406–414.
28. Doy C, Brown K. 1965. Control of aromatic biosynthesis: the multiplicity of 7-phospho-2-oxo-3-deoxy-D-arabino-heptonate D-erythrose-4-phospate-lyase (pyruvate phosphorylating) in Escherichia coli W. Biochim Biophys Acta 104:377–389. [PubMed]
29. McCandliss R, Poling M, Herrman K. 1978. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase purification and molecular characterisation of the phenylalanine-sensitive isoenzyme from Escherichia coli. J Biol Chem 243:4259–4265.
30. Ray JM, Bauerle R. 1991. Purification and properties of tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli. J Bacteriol 173:1894–1901.
31. Schoner R, Herrman K. 1976. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase purification, properties and kinetics of the tyrosine-sensitive isozyme from Escherichia coli. J Biol Chem 251:5440–5447.
32. Smith I, Ravel J, Lax S, Shive W. 1962. The control of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthesis by phenylalanine and tyrosine. J Biol Chem 237:3566–3570.
33. Pittard J, Camakaris J, Wallace BJ. 1969. Inhibition of 3-deoxy-D-arabinoheptulosonic acid-7-phosphate synthetase (trp) in Escherichia coli. J Bacteriol 97:1242–1247.
34. Ray JM, Yanofsky C, Bauerle R. 1988. Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. J Bacteriol 170:5500–5506.
35. Wallace BJ, Pittard J. 1967. Genetic and biochemical analysis of the isoenzymes concerned in the first reaction of aromatic biosynthesis in Escherichia coli. J Bacteriol 93:237–244.
36. Brown KD. 1968. Regulation of aromatic amino acid biosynthesis in Escherichia coli K-12. Genetics 60:31–48. [PubMed]
37. Brown KD, Somerville RL. 1971. Repression of aromatic amino acid biosynthesis in Escherichia coli K-12. J Bacteriol 108:386–399. [PubMed]
38. Camakaris J, Pittard J. 1971. Repression of 3-deoxy-D-arabinoheptulosonic acid-7-phosphate synthetase (Trp) and enzymes of the tryptophan pathway in Escherichia coli K-12. J Bacteriol 107:406–414. [PubMed]
39. Davies WD, Pittard J, Davidson BE. 1985. Cloning of aroG, the gene coding for phospho-2-keto-3-deoxy-heptonate aldolase (Phe), in Escherichia coli K-12, and subcloning of the aroG promoter and operator in a promoter-detecting plasmid. Gene 33:323–331. [PubMed][CrossRef]
40. Im SWK, Davidson H, Pittard J. 1971. Phenylalanine and tryosine biosynthesis in Escherichia coli K-12: mutants derepressed for 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase (phe), 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase (tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A. J Bacteriol 108:400–409. [PubMed]
41. Wallace BJ, Pittard J. 1969. Regulation of 3-deoxy-D-arabino-heptulosonic 7-phosphate acid synthetase activity in relation to the synthesis of the aromatic vitamins in Escherichia coli K-12. J Bacteriol 99:707–712.
42. Calhoun DH, Bonner CA, Gu W, Xie G, Jensen RA. 2001. The emerging periplasm-localized subclass of AroQ chorismate mutases, exemplified by those from Salmonella typhimurium and Pseudomonas aeruginosa. Genome Biol 2:1–16. [CrossRef]
43. Walker JC, Verma NK. 1997. Cloning and characterisation of the aroA and aroD genes of Shigella dysenteriae type 1. Microbiol Immunol 41:809–813.
44. Wallace BJ, Pittard J. 1967. Chromatography of 3-deoxy-D-arabinoheptulosonic acid-7-phosphate synthetase (Trp) on diethylaminoethyl cellulose: a correction. J Bacteriol 94:1279–1280.
45. Stephens C, Bauerle R. 1991. Analysis of the metal requirement of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli. J Biol Chem 266:20810–20817.
46. Nagano H, Zalkin H. 1970. Tyrosine-inhibited 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase. Arch Biochem Biophys 138:51–65.
47. Park KR, Giarde J, Eom JH, Bearson S, Foster JW. 1999. Cyclic AMP receptor protein and TyrR are required for acid pH and anaerobic induction of hyaB and aniC in Salmonella typhimurium. J Bacteriol 181:689–694.
48. Subramaniam P, Xie G, Xia T, Jensen R. 1998. Substrate ambiguity of 3-deoxy-D-manno-octulosonate 8-phosphate synthase from Neisseria gonorrhoeae in the context of its membership in a protein family containing a subset of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases. J Bacteriol 180:119–127.
49. Shumilin IA, Bauerle R, Kretsinger RH. 2003. The high-resolution structure of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase reveals a twist in the plane of bound phosphoenolpyruvate. Biochemistry 42:3766–3776.
50. Viswanathan VK, Green JM, Nichols BP. 1995. Kinetic characterization of 4-amino 4-deoxychorismate synthase from Escherichia coli. J Bacteriol 177:5918–5923.
51. Shumilin IA, Zhao C, Bauerle R, Kretsinger RH. 2002. Allosteric inhibition of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase alters the coordination of both substrates. J Mol Biol 320:1147–1156.
52. Hartmann M, Schneider TR, Pfeil A, Heinrich G, Lipscomb WN, Braus GH. 2003. Evolution of feedback-inhibited β/α barrel isoenzymes by gene duplication and a single mutation. Proc Natl Acad Sci USA 100:862–867. [PubMed][CrossRef]
53. Deleo A, Dayan J, Sprinson DB. 1973. Purification and kinetics of tyrosine-sensitive 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase from Salmonella. J Biol Chem 248:2344–2355. [PubMed]
54. Tribe DE, Camakaris H, Pittard J. 1976. Constitutive and repressible enzymes of the common pathway of aromatic biosynthesis in Escherichia coli K-12: regulation of enzyme synthesis at different growth rates. J Bacteriol 127:1085–1097.
55. Srinivasan P, Rothschild J, Sprinson D. 1963. The enzymic conversion of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate to 5-dehydroquinate. J Biol Chem 238:3176–3182.
56. Rotenberg S, Sprinson D. 1970. Mechanism and stereochemistry of 5-dehydroquinate synthetase. Proc Natl Acad Sci USA 67:1669–1672.
57. Rotenberg S, Sprinson DB. 1978. Isotope effects in 3-dehydroquinate synthase and dehydratase. J Biol Chem 253:2210–2215.
58. Maitra US, Sprinson DB. 1978. 5-Dehydro-3-deoxy-D-arabino-heptulosonic acid 7-phosphate. An intermediate in the 3-dehydroquinate synthase reaction. J Biol Chem 253:5426–5430.
59. Millar G, Coggins J. 1986. The complete amino acid sequence of 3-dehydroquinate synthase of Escherichia coli K-12. FEBS Lett 200:11–17.
60. Frost JW, Binder J, Kadonaga J, Knowles J. 1984. Dehydroquinate synthase from Escherichia coli; purification, cloning and construction of overproducers of the enzyme. Biochemistry 23:4470–4475. [PubMed][CrossRef]
61. Carpenter E, Hawkins A, Frost J, Brown K. 1998. Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis. Nature 394:299–302. [PubMed][CrossRef]
62. Ogino T, Garner CC, Markley J, Herrman K. 1982. Biosynthesis of aromatic compounds: 13C NMR spectroscopy of whole Escherichia coli cells. Proc Natl Acad Sci USA 79:5828–5832.
63. Lyngstadaas A, Lobner-Olesen A, Grelland E, Boye E. 1999. The gene for 2-phosphoglycolate phosphatase (gph) in Escherichia coli is located in the same operon as dam and at least five other diverse genes. Biochim Biophys Acta 1472:376–384.
64. Butler J, Alworth W, Nugent M. 1974. Mechanism of dehydroquinase catalyzed dehydration. J Am Chem Soc 96:1617–1618. [CrossRef]
65. Hanson K, Rose I. 1963. The absolute stereochemical course of citric acid biosynthesis. Proc Natl Acad Sci USA 50:981–988. [PubMed][CrossRef]
66. Vaz A, Butler J, Nugent M. 1975. Dehydroquinase catalyzed dehydration. II. Identification of the reactive conformation of the substrate responsible for syn elimination. J Am Chem Soc 97:5914–5915.
67. Mitsuhashi S, Davis B. 1954. Aromatic biosynthesis. XII. Conversion of 5-dehydroquinic acid to 5-dehydroshikimic acid by 5-dehydroquinase. Biochim Biophys Acta 15:54–61.
68. Klenthous C, Deka R, Davies K, Kelly S, Cooper A, Harding S, Price N, Hawkins A, Coggins JR. 1992. A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes. Biochem J 282:687–695. [PubMed]
69. Servos S, Chatfield S, Hone D, Levine M, Dimitriadis G, Pickard D, Dougan G, Fairweather N, Charles I. 1991. Molecular cloning and characterization of the aroD gene encoding 3-dehydroquinase from Salmonella typhi. J Gen Microbiol 137:147–152.
70. Whipp MJ, Pittard AJ. 1977. Regulation of aromatic amino acid transport systems in Escherichia coli K-12. J Bacteriol 132:453–461.
71. Chaudhuri S, Duncan K, Coggins JR. 1987. 3-Dehydroquinate dehydratase from Escherichia coli. Methods Enzymol 142:320–324. [PubMed]
72. Gourley D, Shrive A, Polikarpov I, Krell T, Coggins JR, Hawkins A, Isaacs N, Sawyer L. 1999. The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction. Nat Struct Biol 6:521–525. [PubMed][CrossRef]
73. Leech AP, James R, Coggins JR, Kleanthous C. 1995. Mutagenesis of active site residues in type I dehydroquinase from Escherichia coli. Stalled catalysis in a histidine to alanine mutant. J Biol Chem 270:25827–25836.
74. Gollub E, Zalkin H, Sprinson DB. 1967. Correlation of genes and enzymes, and studies on regulation of the aromatic pathway in Salmonella. J Biol Chem 243:5323–5328.
75. Yang XJ, Miles EW. 1992. Threonine 183 and adjacent flexible loop residues in the tryptophan synthase alpha subunit have critical roles in modulating the enzymatic activities of the beta subunit in the α2β2 complex. J Biol Chem 267:7520–7528.
76. Dansette P, Azerad R. 1974. The shikimate pathway. II. Stereospecificity of hydrogen transfer catalyzed by NADPH-dehydroshikimate reductase of E. coli. Biochimie 56:751–755. [PubMed][CrossRef]
77. Chaudhuri S, Coggins JR. 1985. The purification of shikimate dehydrogenase from Escherichia coli. Biochem J 226:217–223. [PubMed]
78. Anton IA, Coggins JR. 1988. Sequencing and overexpression of the Escherichia coli aroE gene encoding shikimate dehydrogenase. Biochem J 249:319–326. [PubMed]
79. Benach J, Lee I, Edstrom W, Kuzin AP, Chiang Y, Acton TB, Montelione GT, Hunt JF. 2003. The 2.3-Å crystal structure of the shikimate 5-dehydrogenase orthologue YdiB from Escherichia coli suggests a novel catalytic environment for an NAD-dependent dehydrogenase. J Biol Chem 278:19176–19182. [PubMed][CrossRef]
80. Maclean J, Campbell SA, Pollock K, Chackrewarthy S, Coggins JR, Lapthorn AJ. 2000. Crystallization and preliminary X-ray analysis of shikimate dehydrogenase from Escherichia coli. Acta Crystallogr D Biol Crystallogr 56:512–515.
81. Michel G, Roszak AW, Sauve V, Maclean J, Matte A, Coggins JR, Cygler M, Lapthorn AJ. 2003. Structures of shikimate dehydrogenase AroE and its Paralog YdiB. A common structural framework for different activities. J Biol Chem 278:19463–19472.
82. Pittard J, Wallace BJ. 1966. Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J Bacteriol 91:1494–1508.
83. Morell H, Sprinson DB. 1968. Shikimate kinase isoenzymes in Salmonella typhimurium. J Biol Chem 243:676–677.
84. Berlyn M, Giles N. 1969. Organization of enzymes in the polyaromatic synthetic pathway: separability in bacteria. J Bacteriol 99:222–230. [PubMed]
85. Ely B, Pittard J. 1979. Aromatic amino acid biosynthesis: regulation of shikimate kinase in Escherichia coli K-12. J Bacteriol 138:933–943. [PubMed]
86. DeFeyter RC, Davidson BE, Pittard J. 1986. Nucleotide sequence of the transcription unit containing the aroL and aroM genes from Escherichia coli K-12. J Bacteriol 165:233–239. [PubMed]
87. DeFeyter RC, Pittard J. 1986. Purification and properties of shikimate kinase II from Escherichia coli K-12. J Bacteriol 165:331–333. [PubMed]
88. Millar G, Lewendon A, Hunter MG, Coggins JR. 1986. The cloning and expression of the aroL gene from Escherichia coli K12. J Biochem 237:427–437.
89. Lobner-Olesen A, Marinus MG. 1992. Identification of the gene (aroK) encoding shikimic acid kinase I of Escherichia coli. J Bacteriol 174:525–529.
90. Whipp MJ, Halsall DM, Pittard AJ. 1980. Isolation and characterization of an Escherichia coli mutant defective in tyrosine- and phenylalanine-specific transport systems. J Bacteriol 143:1–7.
91. Vincent S, Chen S, Wilson DB, Ganem B. 2002. Probing the overlap of chorismate mutase and prephenate dehydrogenase sites in the Escherichia coli T-protein: a dehydrogenase-selective inhibitor. Bioorg Med Chem Lett 12:929–931.
92. Krell T, Maclean J, Boam DJ, Cooper A, Resmini M, Brocklehurst K, Kelly SM, Price NC, Lapthorn AJ, Coggins JR. 2001. Biochemical and X-ray crystallographic studies on shikimate kinase: the important structural role of the P-loop lysine. Protein Sci 10:1137–1149. [PubMed][CrossRef]
93. Romanowski MJ, Burley SK. 2002. Crystal structure of the Escherichia coli shikimate kinase I (AroK) that confers sensitivity to mecillinam. Proteins 47:558–562.
94. Cohen G. 1983. The common pathway to lysine, methionine and threonine, p 147–172. In Herrmann KM and Somerville RL (ed), Amino Acids: Biosynthesis and Genetic Regulation. Addison-Wesley Publishing Inc., Reading, MA.
95. Bondinell W, Vnek J, Knowles P, Sprecher M, Sprinson D. 1971. On the mechanism of 5-enolpyruvylshikimate 3-phosphate synthetase. J Biol Chem 246:6191–6196. [PubMed]
96. Lewendon A, Coggins J. 1983. Purification of 5-enolpyruvylshikimate 3-phosphate synthase from Escherichia coli. Biochem J 213:187–191.
97. Duncan K, Lewendon A, Coggins JR. 1984. The purification of 5-enolpyruvylshikimate 3-phosphate synthase from an overproducing strain of Escherichia coli. FEBS Lett 165:121–127. [PubMed][CrossRef]
98. Duncan K, Lewendon A, Coggins J. 1984. The complete amino acid sequence of Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase. FEBS Lett 170:59–63. [CrossRef]
99. Schonbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JN, Kabsch W. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci USA 98:1376–1380.
100. Stallings WC, Abdel-Meguid SS, Lim LW, Shieh HS, Dayringer HE, Leimgruber NK, Stegeman RA, Anderson KS, Sikorski JA, Padgette SR, Kishore GM. 1991. Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: a distinctive protein fold. Proc Natl Acad Sci USA 88:5046–5050.
101. Clark ME, Berti PJ. 2007. Enolpyruvyl activation by enolpyruvylshikimate-3-phosphate synthase. Biochemistry 46:1933–1940. [PubMed][CrossRef]
102. Eschenburg S, Kabsch W, Healy ML, Schonbrunn E. 2003. A new view of the mechanisms of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states. J Biol Chem 278:49215–49222. [PubMed][CrossRef]
103. Mizyed S, Wright JE, Byczynski B, Berti PJ. 2003. Identification of the catalytic residues of AroA (enolpyruvylshikimate 3-phosphate synthase) using partitioning analysis. Biochemistry 42:6986–6995.
104. Hoiseth S, Stocker B. 1985. Genes aroA and serC of Salmonella typhimurium constitute an operon. J Bacteriol 163:355–361. [PubMed]
105. Man TK, Pease AJ, Winkler ME. 1997. Maximization of transcription of the serC (pdxF)-aroA multifunctional operon by antagonistic effects of the cyclic AMP (cAMP) receptor protein-cAMP complex and Lrp global regulators of Escherichia coli K-12. J Bacteriol 179:3458–3469.
106. Ehammer H, Rauch G, Prem A, Kappes B, Macheroux P. 2007. Conservation of NADPH utilization by chorismate synthase and its implications for the evolution of the shikimate pathway. Mol Microbiol 65:1249–1257. [PubMed][CrossRef]
107. Charles I, Lamb H, Pickard D, Dougan G, Hawkins A. 1990. Isolation, characterization and nucleotide sequence of the aroC genes encoding chorismate synthase from Salmonella typhi and Escherichia coli. J Gen Microbiol 136:353–358. [PubMed]
108. White P, Young J, Hunter I, Nimmo H, Coggins JR. 1990. The purification and characterisation of 3-dehydroquinase from Streptomyces coelicolor. Biochem J 265:735–738.
109. Macheroux P, Schonbrunn E, Svergun DI, Volkov VV, Koch MH, Bornemann S, Thorneley RN. 1998. Evidence for a major structural change in Escherichia coli chorismate synthase induced by flavin and substrate binding. Biochem J 335:319–327.
110. Osborne A, Thorneley RN, Abell C, Bornemann S. 2000. Studies with substrate and cofactor analogues provide evidence for a radical mechanism in the chorismate synthase reaction. J Biol Chem 275:35825–35830.
111. Ahn HJ, Yoon HJ, Lee BI, Suh SW. 2004. Crystal structure of chorismate synthase: a novel FMN-binding protein fold and functional insights. J Mol Biol 336:903–915. [PubMed][CrossRef]
112. Maclean J, Ali S. 2003. The structure of chorismate synthase reveals a novel flavin binding site fundamental to a unique chemical reaction. Structure 11:1499–1511.
113. Weiss U, Davis B, Mingioli E. 1953. Aromatic biosynthesis X. Identification of an early precursor as 5-dehydroquinic acid. J Am Chem Soc 75:5572–5576.
114. Simmonds S. 1950. The metabolism of phenylalanine and tyrosine in Escherichia coli. J Biol Chem 185:755–762.
115. Davis B. 1953. Autocatalytic growth of a mutant due to accumulation of an unstable phenylalanine precursor. Science 118:251–252. [PubMed][CrossRef]
116. Katagiri M, Sato R. 1953. Accumulation of phenylalanine by a phenylalanineless mutant of Escherichia coli. Science 118:250–251. [CrossRef]
117. Cotton R, Gibson F. 1965. The biosynthesis of phenylalanine and tyrosine: enzymes converting chorismic acid into prephenic acid and their relationships to prephenate dehydratase and prephenate dehydrogenase. Biochim Biophys Acta 100:76–88. [PubMed]
118. Dopheide TA, Crewther P, Davidson BE. 1972. Chorismate mutase-prephenate dehydratase from Escherichia coli K-12. II. Kinetic properties. J Biol Chem 247:4447–4452. [PubMed]
119. Gething MJH, Davidson BE. 1976. Chorismate mutase/prephenate dehydratase from Escherichia coli. 2. Evidence for identical subunits catalyzing the two activities. Eur J Biochem 71:327–336. [PubMed][CrossRef]
120. Hudson GS, Wong V, Davidson BE. 1985. Chorismate mutase-prephenate dehydrogenase from Escherichia coli K-12. Purification, characterisation and identification of a reactive cysteine. Biochemistry 23:6240–6249. [CrossRef]
121. Koch GL, Shaw DC, Gibson F. 1972. Studies on the relationship between the active sites of chorismate mutase-prephenate dehydrogenase from Escherichia coli or Aerobacter aerogenes. Biochim Biophys Acta 258:719–730. [PubMed]
122. Koch GLE, Shaw DC, Gibson F. 1971. Characterization of the subunits of chorismate mutase-prephenate dehydrogenase from Escherichia coli K-12. Biochim Biophys Acta 258:805–812.
123. Baldwin GS, Davidson BE. 1981. A kinetic and structural comparison of chorismate mutase/prephenate dehydratase from mutant strains of Escherichia coli K 12 defective in the pheA gene. Arch Biochem Biophys 211:66–75. [PubMed][CrossRef]
124. Davidson BE, Blackburn EH, Dopheide TA. 1972. Chorismate mutase-prephenate dehydratase from Escherichia coli K-12. I. Purification, molecular weight, and amino acid composition. J Biol Chem 247:4441–4446. [PubMed]
125. Dayan J, Sprinson DB. 1971. Enzyme alterations in tyrosine and phenylalanine auxotrophs of Salmonella typhimurium. J Bacteriol 108:1174–1180. [PubMed]
126. Gething MJ, Davidson BE. 1977. Chorismate mutase/prephenate dehydratase from Escherichia coli K12. Effects of chemical modification on the enzymic activities and allosteric inhibition. Eur J Biochem 78:111–117. [PubMed][CrossRef]
127. Gething MJ, Davidson BE. 1977. Chorismate mutase/prephenate dehydratase from Escherichia coli K12. Modification with 5,5′-dithio-bis(2-nitrobenzoic acid). Eur J Biochem 78:103–110. [PubMed][CrossRef]
128. Baldwin GS, Davidson BE. 1983. Kinetic studies on the mechanism of chorismate mutase/prephenate dehydratase from Escherichia coli K12. Biochim Biophys Acta 742:374–383. [PubMed]
129. Duggleby RG, Snedden MK, Morrison JF. 1978. Chorismate mutase-prephenate dehydratase from Escherichia coli active sites of a bifunctional enzyme. Biochemistry 17:1548–1554. [PubMed][CrossRef]
130. Schmit JC, Zalkin H. 1969. Chorismate mutase-prephenate dehydratase. Partial purification and properties of the enzyme from Salmonella typhimurium. Biochemistry 8:174–181.
131. Schmit JC, Zalkin H. 1971. Chorismate mutase-prephenate dehydratase. Phenylalanine induced dimerization and its relationship to feedback inhibition. J Biol Chem 246:6002–6010.
132. Zhang RS, Joachimiak A, Lawson CL, Schevitz RW, Otwinowski Z, Sigler PB. 1987. The crystal structure of the trp aporepressor at 1.8 Å shows how binding of tryptophan enhances DNA affinity. Nature 327:591–597.
133. Zhang S, Pohnert G, Kongsaeree P, Wilson DB, Clardy J, Ganem B. 1998. Chorismate mutase-prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins. J Biol Chem 273:6248–6253.
134. Pohnert G, Zhang S, Husain A, Wilson DB, Ganem B. 1999. Regulation of phenylalanine biosynthesis. Studies on the mechanism of phenylalanine binding and feedback inhibition in the Escherichia coli P-protein. Biochemistry 38:12212–12217.
135. Nelms J, Edwards RM, Warwick J, Fotheringham I. 1992. Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase. Appl Environ Microbiol 58:2592–2598.
136. Rood JL, Perrot B, Heyde E, Morrison JF. 1982. Characterisation of monofunctional chorismate mutase/prephenate dehydrogenase enzyme obtained via mutagenesis of recombinant plasmids in vivo. Eur J Biochem 124:513–519.
137. Hudson GS, Howlett GJ, Davidson BE. 1983. The binding of tyrosine and NAD+ to chorismate mutase/prephenate dehydrogenase from Escherichia coli K12 and the effects of these ligands on the activity and self-association of the enzyme. Analysis in terms of a model. J Biol Chem 258:3114–3120. [PubMed]
138. Heyde E, Morrison JF. 1978. Kinetic studies on the reactions catalyzed by chorismate mutase-prephenate dehydrogenase from Aerobacter aerogenes. Biochemistry 17:1573–1580. [PubMed][CrossRef]
139. Heyde E. 1979. Chorismate mutase-prephenate dehydrogenase from Aerobacter aerogenes. Evidence that the two reactions occur at one active site. Biochemistry 18:2766–2775. [PubMed][CrossRef]
140. Verger D, Carr PD, Kwok T, Ollis DL. 2006. Crystal structure of the N-terminal domain of the TyrR transcription factor responsible for gene regulation of aromatic amino acid biosynthesis and transport in Escherichia coli K12. J Mol Biol 367:102–112.
141. Christendat D, Saridakis VC, Turnbull JL. 1998. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli. Biochemistry 37:15703–15712. [PubMed][CrossRef]
142. Chen S, Vincent S, Wilson DB, Ganem B. 2003. Mapping of chorismate mutase and prephenate dehydrogenase domains in the Escherichia coli T-protein. Eur J Biochem 270:757–763. [PubMed][CrossRef]
143. Baker TI, Crawford IP. 1966. Anthranilate synthetase. Partial purification and some kinetic studies on the enzyme from Escherichia coli. J Biol Chem 241:5577–5584. [PubMed]
144. Davis B. 1952. Aromatic biosynthesis. IV. Preferential conversion, in incompletely blocked mutants, of a common precursor of several metabolites. J Bacteriol 64:729–748. [PubMed][CrossRef]
145. Chesne S, Montmitonnet A, Pelmont J. 1975. Transamination du L-aspartate et de la L-phenylalanine chez Escherichia coli K-12. Biochimie 57:1029–1034. [PubMed][CrossRef]
146. Collier RH, Kohlhaw G. 1972. Nonidentity of the aspartate and the aromatic aminotransferase components of transaminase A in Escherichia coli. J Bacteriol 112:365–371. [PubMed]
147. Mavrides C, Orr W. 1974. Multiple forms of plurispecific aromatic 2-oxo-glutarate (oxaloacetate) aminotransferase (transaminase A) in Escherichia coli and selective repression by L-tyrosine. Biochim Biophys Acta 336:70–78.
148. Mavrides C, Orr W. 1975. Multispecific aspartate and aromatic amino acid aminotransferases in Escherichia coli. J Biol Chem 250:4128–4135.
149. Monnier N, Montmitonnet A, Chesne S, Pelmont J. 1976. Transaminase B d’Escherichia coli. I. Purification et premieres proprietes. Biochimie 58:663–675.
150. Rudman D, Meister A. 1953. Transamination in Escherichia coli. J Biol Chem 200:591–604.
151. Silbert DF, Jorgensen SE, Lin ECC. 1963. Repression of transaminas A by tyrosine in Escherichia coli. Biochim Biophys Acta 73:232–240.
152. Gelfand DH, Rudo N. 1977. Mapping of the aspartate and aromatic amino acid aminotransferase genes tyrB and aspC. J Bacteriol 130:441–444.
153. Gelfand DH, Steinberg RA. 1977. Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J Bacteriol 130:429–440. [PubMed]
154. Umbarger HE, Mueller JH. 1951. Isoleucine and valine metabolism of Escherichia coli. I. Growth studies on amino acid-deficient mutants. J Biol Chem 189:277–285.
155. Powell JT, Morrison JF. 1978. The purification and properties of the aspartate aminotransferase and aromatic-amino-acid aminotransferase from Escherichia coli. Eur J Biochem 87:391–400.
156. Hayashi H, Inoue K, Nagata T, Kuramitsu S, Kagamiyama H. 1993. Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase. Biochemistry 32:12229–12239. [PubMed][CrossRef]
157. Fotheringham IG, Dacey SA, Taylor PP, Smith TJ, Hunter MG, Finlay ME, Primrose SB, Parker DM, Edwards RM. 1986. The cloning and sequence analysis of the aspC and tyrB genes from Escherichia coli K-12. Biochem J 234:593–604. [PubMed]
158. Kuramitsu S, Inoue K, Ogawa T, Ogawa H, Kagamiyama H. 1985. Aromatic amino acid aminotransferase of Escherichia coli: nucleotide sequence of the tyrB gene. Biochim Biophys Res Commun 133:134–139. [CrossRef]
159. Kuramitsu S, Ogawa T, Ogawa H, Kagamiyama H. 1983. Branched chain amino acid aminotransferase of Escherichia coli: nucleotide sequence of the ilvE gene and deduced amino acid sequence. J Biochem 97:993–999.
160. Kondo K, Wakabayashi S, Yagi T, Kagamiyama H. 1984. The complete amino acid sequence of aspartate aminotransferase from Escherichia coli: sequence comparison with pig isoenzymes. Biochem Biophys Res Commun 122:62–67. [PubMed][CrossRef]
161. Onuffer JJ, Kirsch JF. 1995. Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Protein Sci 4:1750–1757.
162. Malashkevich VN, Onuffer JJ, Kirsch JF, Jansonius JN. 1995. Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase. Nat Struct Biol 2:548–553.
163. Shaffer WA, Luong TN, Rothman SC, Kirsch JF. 2002. Quantitative chimeric analysis of six specificity determinants that differentiate Escherichia coli aspartate from tyrosine aminotransferase. Protein Sci 11:2848–2859.
164. Ko TP, Wu SP, Yang WZ, Tsai H, Yuan HS. 1999. Crystallization and preliminary crystallographic analysis of the Escherichia coli tyrosine aminotransferase. Acta Crystallogr D Biol Crystallogr 55(Pt 8):1474–1477. [CrossRef]
165. Jensen RA, Gu W. 1996. Evolutionary recruitment of biochemically specialized subdivisions of family 1 within the protein superfamily of aminotransferases. J Bacteriol 178:2161–2171. [PubMed]
166. Powell JT, Morrison JF. 1979. Enzyme-enzyme interaction and the biosynthesis of aromatic amino acids in Escherichia coli. Biochim Biophys Acta 568:467–474.
167. Young GB, Jack DI, Smith DW, Saier MHJ. 1999. The amino acid/auxin proton symport permease family. Biochim Biophys Acta 1415:306–322.
168. Bauerle RH, Margolin P. 1966. A multifunctional enzyme complex in the tryptophan pathway of Salmonella typhimurium: comparison of polarity and pseudopolarity mutations. Cold Spring Harb Symp Quant Biol 31:203–214. [PubMed]
169. Ito J, Yanofsky C. 1966. The nature of the anthranilic acid synthetase complex of Escherichia coli. J Biol Chem 241:4112–4114. [PubMed]
170. Henderson EJ, Zalkin H. 1971. On the composition of anthranilate synthetase-anthranilate 5-phosphoribosylpyrophosphate phosphoribosyltransferase from Salmonella typhimurium. J Biol Chem 246:6891–6898. [PubMed]
171. Ito J, Yanofsky C. 1969. Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: comparative studies on the complex and the subunits. J Bacteriol 97:734–742. [PubMed]
172. Nagano H, Zalkin H, Henderson EJ. 1970. The anthranilate synthetase-anthranilate-5-phosphorribosylpyrophosphate phosphoribosyltransferase aggregate. On the reaction mechanism of anthranilate synthetase from Salmonella typhimurium. J Biol Chem 245:3810–3820.
173. Nichols BP. 1996. Evolution of genes and enzymes of tryptophan biosynthesis, p 2638–2648. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, DC.
174. Pabst MJ, Kuhn JC, Somerville RL. 1973. Feedback regulation in the anthranilate aggregate from wild type and mutant strains of Escherichia coli. J Biol Chem 248:901–914.
175. Hwang LH, Zalkin H. 1971. Multiple forms of anthranilate synthetase-anthranilate 5-phosphoribosylpyrophosphate phosphoribosyltransferase from Salmonella typhimurium. J Biol Chem 246:2338–2345. [PubMed]
176. Yanofsky C, Horn V. 1994. Role of regulatory features of the trp operon of Escherichia coli in mediating a response to a nutritional shift. J Bacteriol 176:6245–6254.
177. Nichols BP, Miozzari GF, van Cleemput M, Bennett GN, Yanofsky C. 1980. Nucleotide sequences of the trpG regions of Escherichia coli, Shigella dysenteriae, Salmonella typhimurium and Serratia marcescens. J Mol Biol 142:503–517.
178. Knochel T, Ivens A, Hester G, Gonzalez A, Bauerle R, Wilmanns M, Kirschner K, Jansonius JN. 1999. The crystal structure of anthranilate synthase from Sulfolobus solfataricus: functional implications. Proc Natl Acad Sci USA 96:9479–9484. [PubMed][CrossRef]
179. Spraggon G, Kim C, Nguyen-Huu X, Yee MC, Yanofsky C, Mills SE. 2001. The structures of anthranilate synthase of Serratia marcescens crystallized in the presence of (i) its substrates, chorismate and glutamine, and a product, glutamate, and (ii) its end-product inhibitor, L-tryptophan. Proc Natl Acad Sci USA 98:6021–6026.
180. Morollo AA, Eck MJ. 2001. Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium. Nat Struct Biol 8:243–247.
181. Morollo AA, Bauerle R. 1993. Characterization of composite aminodeoxyisochorismate synthase and aminodeoxyisochorismate lyase activities of anthranilate synthase. Proc Natl Acad Sci USA 90:9983–9987.
182. Liu J, Quinn N, Berchtold GA, Walsh CT. 1990. Overexpression, purification, and characterization of isochorismate synthase (EntC), the first enzyme involved in the biosynthesis of enterobactin from chorismate. Biochemistry 29:1417–1425.
183. Vinella D, Gagny B, Joseleau-Petit D, D’Ari R, Cashel M. 1996. Mecillinam resistance in Escherichia coli is conferred by loss of a second activity of the AroK protein. J Bacteriol 178:3818–3828.
184. Parsons JF, Jensen PY, Pachikara AS, Howard AJ, Eisenstein E, Ladner JE. 2002. Structure of Escherichia coli aminodeoxychorismate synthase: architectural conservation and diversity in chorismate-utilizing enzymes. Biochemistry 41:2198–2208.
185. He Z, Stigers Lavoie KD, Bartlett PA, Toney MD. 2004. Conservation of mechanism in three chorismate-utilizing enzymes. J Am Chem Soc 126:2378–2385. [PubMed][CrossRef]
186. Oppenheim DS, Yanofsky C. 1980. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics 95:785–795.
187. Platt T, Yanofsky C. 1975. An intercistronic region and ribosome-binding site in bacterial messenger RNA. Proc Natl Acad Sci USA 72:2399–2403.
188. Ito J, Crawford IP. 1965. Regulation of the enzymes of the tryptophan pathway in Escherichia coli. Genetics 52:1303–1316. [PubMed]
189. Caligiuri MG, Bauerle R. 1991. Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhimurium. Evidence for an amino-terminal regulatory site. J Biol Chem 266:8328–8335. [PubMed]
190. Caligiuri MG, Bauerle R. 1991. Subunit communication in the anthranilate synthase complex from Salmonella typhimurium. Science 252:1845–1848. [PubMed][CrossRef]
191. Yanofsky C, Stadler J. 1958. The enzymatic activity associated with the protein immunologically related to tryptophan synthetase. Proc Natl Acad Sci USA 44:245–253.
192. Yanofsky C. 1981. Attenuation in the control of expression of bacterial operons. Nature 289:751–758.
193. Smith OH, Yanofsky C. 1960. 1-(o-Carboxyphenylamino)-1-deoxyribulose 5-phosphate, a new intermediate in the biosynthesis of tryptophan. J Biol Chem 235:2051–2057.
194. Gibson F, Yanofsky C. 1960. The partial purification and properties of indole-3-glycerol phosphate synthetase from Escherichia coli. Biochim Biophys Acta 43:489–500. [PubMed][CrossRef]
195. Doy CH, Rivera A Jr, Srinivasan PR. 1961. Evidence for the enzymatic synthesis of N-(5′-phosphoribosyl) anthranilic acid, a new intermediate in tryptophan biosynthesis. Biochem Biophys Res Commun 4:83–88. [PubMed][CrossRef]
196. Creighton TE, Yanofsky C. 1966. Indole-3-glycerol phosphate synthetase of Escherichia coli, an enzyme of the tryptophan operon. J Biol Chem 241:4616–4624. [PubMed]
197. Smith OH. 1967. Structure of the trpC cistron specifying indoleglycerol phosphate synthetase, and its localization in the tryptophan operon of Escherichia coli. Genetics 57:95–105.
198. Kirschner K, Wiskocil RL, Foehn M, Rezeau L. 1975. The tryptophan synthase from Escherichia coli. An improved purification procedure for the α-subunit and binding studies with substrate analogues. Eur J Biochem 60:513–523. [PubMed][CrossRef]
199. Williams MV, Kerr TJ, Lemmon RD, Tritz GJ. 1980. Azaserine resistance in Escherichia coli: chromosomal location of multiple genes. J Bacteriol 143:385–388.
200. Stehlin C, Dahm A, Kirschner K. 1997. Deletion mutagenesis as a test of evolutionary relatedness of indoleglycerol phosphate synthase with other TIM barrel enzymes. FEBS Lett 403:268–272.
201. Banner DW, Bloomer AC, Petsko GA, Phillips DC, Pogson CI, Wilson IA, Corran PH, Furth AJ, Milman JD, Offord RE, Priddle JD, Waley SG. 1975. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution using amino acid sequence data. Nature 255:609–614. [PubMed][CrossRef]
202. Darimont B, Stehlin C, Szadkowski H, Kirschner K. 1998. Mutational analysis of the active site of indoleglycerol phosphate synthase from Escherichia coli. Protein Sci 7:1221–1232. [PubMed][CrossRef]
203. Christie GE, Platt T. 1980. Gene structure in the tryptophan operon of Escherichia coli. Nucleotide sequence of trpC and the flanking intercistronic regions. J Mol Biol 142:519–530. [PubMed][CrossRef]
204. Miles EW. 1980. Tryptophan synthase: structure, function and interaction with D-tryptophan and L-tryptophan, p 137–147. In Hayaishi D, Ishimara Y, and Kido R (ed), Biochemical and Medical Aspects of Tryptophan Metabolism. Elsevier-North Holland, Amsterdam, The Netherlands.
205. Miles EW. 1979. Tryptophan synthase: structure, function, and subunit interaction. Adv Enzymol 49:127–186.
206. Yanofsky C. 1956. The enzymatic conversion of anthranilic acid to indole. J Biol Chem 223:171–184.
207. Yanofsky C. 2005. The favorable features of tryptophan synthase for proving Beadle and Tatum’s one gene-one enzyme hypothesis. Genetics 169:511–516.
208. Yaniv H, Gilvarg C. 1955. Aromatic biosynthesis. XIV: 5-Dehydroshikimic reductase. J Biol Chem 213:787–795.
209. Yanofsky C, Kelley RL, Horn V. 1984. Repression is relieved before attenuation in the trp operon of Escherichia coli as tryptophan starvation becomes increasingly severe. J Bacteriol 158:1018–1024.
210. Crawford IP, Yanofsky C. 1958. On the separation of the tryptophan synthetase of Escherichia coli into two protein components. Proc Natl Acad Sci USA 44:1161–1170. [PubMed][CrossRef]
211. Creighton TE. 1970. N-(5′-phosphoribosyl)anthranilate isomerase-indol-3-ylglycerol phosphate synthetase of tryptophan biosynthesis. Relationship between the two activities of the enzyme from Escherichia coli. Biochem J 120:699–707. [PubMed]
212. Henning U, Helinski DR, Chao FC, Yanofsky C. 1962. The A protein of the tryptophan synthetase of Escherichia coli. Purification, crystallization, and composition studies. J Biol Chem 237:1523–1530. [PubMed]
213. Schulz GE, Creighton TE. 1969. Preliminary x-ray diffraction study of the wild-type and a mutationally-altered tryptophan synthetase α-subunit. Eur J Biochem 10:195–197.
214. Li SL, Yanofsky C. 1972. Amino acid sequences of fifty residues from the amino termini of the tryptophan synthetase chains of several enterobacteria. J Biol Chem 247:1031–1037.
215. Yanofsky C. 1960. The tryptophan synthetase system. Bacteriol Rev 24:221–245.
216. Adachi O, Kohn LD, Miles EW. 1974. Crystalline alpha2 beta2 complexes of tryptophan synthetase of Escherichia coli. A comparison between the native complex and the reconstituted complex. J Biol Chem 249:7756–7763. [PubMed]
217. Adachi O, Miles EW. 1974. A rapid method for preparing crystalline beta 2 subunit of tryptophan synthetase of Escherichia coli in high yield. J Biol Chem 249:5430–5434. [PubMed]
218. Goldberg ME, Creighton TE, Baldwin RL, Yanofsky C. 1966. Subunit structure of the tryptophan synthetase of Escherichia coli. J Mol Biol 21:71–82. [PubMed][CrossRef]
219. Hathaway GM, Crawford IP. 1970. Studies on the association of beta-chain monomers of Escherichia coli tryptophan synthetase. Biochemistry 9:1801–1808. [PubMed][CrossRef]
220. Hathaway GM, Kida S, Crawford IP. 1969. Subunit structure of the B component of Escherichia coli tryptophan synthetase. Biochemistry 8:989–997. [PubMed][CrossRef]
221. Gschwind HP, Gschwind U, Paul CH, Kirschner K. 1979. Affinity chromatography of tryptophan synthase from Escherichia coli. Systematic studies with immobilized tryptophanol phosphate. Eur J Biochem 96:403–416. [PubMed][CrossRef]
222. Ahmed SA, Miles EW, Davies DR. 1985. Crystallization and preliminary X-ray crystallographic data of the tryptophan synthase α2β2 complex from Salmonella typhimurium. J Biol Chem 260:3716–3718. [PubMed]
223. Hyde CC, Ahmed SA, Padlan EA, Miles EW, Davies DR. 1988. Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium. J Biol Chem 263:17857–17871. [PubMed]
224. Ahmed SA, Ruvinov SB, Kayastha AM, Miles EW. 1991. Mechanism of mutual activation of the tryptophan synthase alpha and beta subunits. Analysis of the reaction specificity and substrate-induced inactivation of active site and tunnel mutants of the β subunit. J Biol Chem 266:21548–21557. [PubMed]
225. Brzovic PS, Sawa Y, Hyde CC, Miles EW, Dunn MF. 1992. Evidence that mutations in a loop region of the alpha-subunit inhibit the transition from an open to a closed conformation in the tryptophan synthase bienzyme complex. J Biol Chem 267:13028–13038. [PubMed]
226. Dunn MF, Aguilar V, Brzovic P, Drewe WF Jr, Houben KF, Leja CA, Roy M. 1990. The tryptophan synthase bienzyme complex transfers indole between the alpha- and beta-sites via a 25–30 Å long tunnel. Biochemistry 29:8598–8607. [PubMed][CrossRef]
227. Yang J, Pittard J. 1987. Molecular analysis of the regulatory region of the Escherichia coli K-12 tyrB gene. J Bacteriol 169:4710–4715.
228. Rhee S, Miles EW, Davies DR. 1998. Cryo-crystallography of a true substrate, indole-3-glycerol phosphate, bound to a mutant (αD60N) tryptophan tynthase α2β2 complex reveals the correct orientation of active site αGlu49. J Biol Chem 273:8553–8555.
229. Rhee S, Miles EW, Mozzarelli A, Davies DR. 1998. Cryocrystallography and microspectrophotometry of a mutant (αD60N) tryptophan synthase α2β2 complex reveals allosteric roles of αAsp60. Biochemistry 37:10653–10659.
230. Rhee S, Parris KD, Hyde CC, Ahmed SA, Miles EW, Davies DR. 1997. Crystal structures of a mutant (βK87T) tryptophan synthase α2β2 complex with ligands bound to the active sites of the α- and β-subunits reveal ligand-induced conformational changes. Biochemistry 36:7664–7680.
231. Schneider TR, Gerhardt E, Lee M, Liang PH, Anderson KS, Schlichting I. 1998. Loop closure and intersubunit communication in tryptophan synthase. Biochemistry 37:5394–5406.
232. Miles EW, Rhee S, Davies DR. 1999. The molecular basis of substrate channeling. J Biol Chem 274:12193–12196.
233. Anderson KS, Kim AY, Quillen JM, Sayers E, Yang XJ, Miles EW. 1995. Kinetic characterization of channel impaired mutants of tryptophan synthase. J Biol Chem 270:29936–29944. [PubMed][CrossRef]
234. Ahmed SA, McPhie P, Miles EW. 1996. Mechanism of activation of the tryptophan synthase α2β2 complex. Solvent effects of the co-substrate β-mercaptoethanol. J Biol Chem 271:29100–29106. [PubMed][CrossRef]
235. Ngo H, Kimmich N, Harris R, Niks D, Blumenstein L, Kulik V, Barends TR, Schlichting I, Dunn MF. 2007. Allosteric regulation of substrate channeling in tryptophan synthase: modulation of the L-serine reaction in stage I of the β-reaction by alpha-site ligands. Biochemistry 46:7740–7753.
236. Pan P, Dunn MF. 1996. Beta-site covalent reactions trigger transitions between open and closed conformations of the tryptophan synthase bienzyme complex. Biochemistry 35:5002–5013.
237. Strambini GB, Cioni P, Peracchi A, Mozzarelli A. 1992. Conformational changes and subunit communication in tryptophan synthase: effect of substrates and substrate analogs. Biochemistry 31:7535–7542.
238. Ames GE. 1964. Uptake of amino acids by Salmonella typhimurium. Arch Biochem Biophys 104:1–18. [PubMed][CrossRef]
239. Ames GE, Roth Jr. 1968. Histidine and aromatic permeases of Salmonella typhimurium. J Bacteriol 96:1742–1749. [PubMed]
240. Brown KD. 1970. Formation of aromatic amino acid pools in Escherichia coli K-12. J Bacteriol 104:177–188. [PubMed]
241. Chye M-L, Guest Jr, Pittard J. 1986. Cloning of the aroP gene and identification of its product in Escherichia coli K-12. J Bacteriol 167:749–753. [PubMed]
242. Cosgriff A, Pittard AJ. 1997. A topological model for the general aromatic amino acid permease, AroP, of Escherichia coli. J Bacteriol 179:3317–3323. [PubMed]
243. Whipp MJ, Pittard AJ. 1995. A reassessment of the relationship between aroK- and aroL-encoded shikimate kinase enzymes of Escherichia coli. J Bacteriol 177:1627–1629.
244. Yanofsky C, vanCleemput M. 1982. Nucleotide sequence of trpE of Salmonella typhimurium and its homology with the corresponding sequence of Escherichia coli. J Mol Biol 155:235–246.
245. Whipp MJ, Camakaris H, Pittard AJ. 1998. Cloning and analysis of the shiA gene, which encodes the shikimate transport system of Escherichia coli K-12. Gene 209:185–192.
246. Cosgriff A, Brasier G, Pi J, Dogovski C, Sarsero J, Pittard AJ. 2000. A study of AroP-PheP chimeric proteins and identification of a residue involved in tryptophan transport. J Bacteriol 182:2207–2217. [PubMed][CrossRef]
247. Dogovski C, Pi J, Pittard AJ. 2003. Putative interhelical interactions within the PheP protein revealed by second site suppressor analysis. J Bacteriol 185:6225–6232. [PubMed][CrossRef]
248. Pi J, Chow H, Pittard AJ. 2002. Study of second-site suppression in the pheP gene for the phenylalanine transporter of Escherichia coli. J Bacteriol 184:5842–5847.
249. Pi J, Dogovski C, Pittard AJ. 1998. Functional consequences of changing proline residues in the phenylalanine-specific permease of Escherichia coli. J Bacteriol 180:5515–5519.
250. Pi J, Pittard AJ. 1996. Topology of the phenylalanine-specific permease of Escherichia coli. J Bacteriol 178:2650–2655.
251. Pi J, Wookey PJ, Pittard AJ. 1991. Cloning and sequencing of the pheP gene, which encodes the phenylalanine-specific transport system of Escherichia coli. J Bacteriol 173:3622–3629.
252. Pi J, Wookey PJ, Pittard AJ. 1993. Site-directed mutagenesis reveals the importance of conserved charged residues for the transport activity of the PheP permease of Escherichia coli. J Bacteriol 175:7500–7504.
253. Zhang S, Wilson DB, Ganem B. 2000. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain. Biochemistry 39:4722–4728.
254. Koyanagi T, Katayama T, Suzuki H, Kumagai H. 2004. Identification of the LIV-I/LS system as the third phenylalanine transporter in Escherichia coli K-12. J Bacteriol 186(2):343–350. [CrossRef]
255. White PJ, Millar G, Coggins Jr. 1988. The overexpression, purification and complete amino acid sequence of chorismate synthase from Escherichia coli K12 and its comparison with the enzyme from Neurospora crassa. Biochem J 251:313–322.
256. Sarsero JP, Pittard AJ. 1995. Membrane topology analysis of Escherichia coli K-12 Mtr permease byalkaline phosphatase and β-galactosidase fusions. J Bacteriol 177:297–306.
257. Wilson TJ, Maroudas P, Howlett GJ, Davidson BE. 1994. Ligand-induced self-association of the Escherichia coli regulatory protein TyrR. J Mol Biol 238:309–318.
258. Andrews AE, Lawley B, Pittard AJ. 1991. Mutational analysis of repression and activation of the tyrP gene in Escherichia coli. J Bacteriol 173:5068–5078. [PubMed]
259. Heatwole VM, Somerville RL. 1991. The tryptophan-specific permease gene, mtr, is differentially regulated by the tryptophan and tyrosine repressors in Escherichia coli K-12. J Bacteriol 173:3601–3604. [PubMed]
260. Sarsero JP, Pittard AJ. 1991. Molecular analysis of the TyrR protein-mediated activation of mtr gene expression in Escherichia coli K-12. J Bacteriol 173:7701–7704.
261. Sarsero JP, Wookey PJ, Pittard AJ. 1991. Regulation of expression of the Escherichia coli K-12 mtr gene by TyrR protein and Trp repressor. J Bacteriol 173:4133–4143.
262. Weiss U, Mingioli E. 1955. Aromatic biosynthesis. XV. The isolation and identification of shikimic acid 5-phosphate. J Am Chem Soc 78:2894–2898.
263. Marger MD, Saier MHJ. 1993. A major superfamily of transmembrane facilitators that catalyze uniport, symport and antiport. Trends Biochem Sci 18:13–20.
264. Rose JK, Yanofsky C. 1972. Metabolic regulation of the tryptophan operon of Escherichia coli: repressor-independent regulation of transcription initiation frequency. J Mol Biol 69:103–118.
265. Tribe DE, Pittard J. 1979. Hyperproduction of tryptophan by Escherichia coli: genetic manipulation of the pathways leading to tryptophan formation. Appl Environ Microbiol 38:181–190.
266. Camakaris H, Pittard J. 1982. Autoregulation of the tyrR gene. J Bacteriol 150:70–75. [PubMed]
267. Camakaris H, Pittard J. 1973. Regulation of tyrosine and phenylalanine biosynthesis in Escherichia coli K-12: properties of the tyrR gene product. J Bacteriol 115:1135–1144. [PubMed]
268. Gollub EG, Sprinson DB. 1973. A regulatory mutation in tyrosine biosynthesis. Biochem Biophys Res Commun 35:389–395. [CrossRef]
269. Im SW, Pittard J. 1973. Tyrosine and phenylalanine biosynthesis in Escherichia coli K-12: complementation between different tyrR alleles. J Bacteriol 115:1145–1150. [PubMed]
270. Mattern IE, Pittard J. 1971. Regulation of tyrosine biosynthesis in Escherichia coli K-12: isolation and characterization of operator mutants. J Bacteriol 107:8–15.
271. Muday GK, Johnson DI, Somerville RL, Herrmann KM. 1991. The tyrosine repressor negatively regulates aroH expression in Escherichia coli. J Bacteriol 173:3930–3932.
272. Yang J, Hwang JS, Camakaris H, IW, Ishihama A, Pittard J. 2004. Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli. Mol Microbiol 52:243–256.
273. Pittard AJ, Davidson BE. 1991. TyrR protein of Escherichia coli and its role as repressor and activator. Mol Microbiol 5:1585–1592.
274. Pittard J, Camakaris H, Yang J. 2005. The TyrR regulon. Mol Microbiol 55:16–26.
275. Cornish EC, Argyropoulos VP, Pittard J, Davidson BE. 1986. Structure of the Escherichia coli K12 regulatory gene tyrR. Nucleotide sequence and sites of initiation of transcription and translation. J Biol Chem 261:403–410. [PubMed]
276. Cornish EC, Davidson BE, Pittard J. 1982. Cloning and characterization of Escherichia coli K-12 regulator gene tyrR. J Bacteriol 152:1276–1279. [PubMed]
277. Yang J, Camakaris H, Pittard AJ. 1993. Mutations in the tyrR gene of Escherichia coli which affect TyrR-mediated activation but not TyrR-mediated repression. J Bacteriol 175:6372–6375.
278. Argaet VP, Wilson TJ, Davidson BE. 1994. Purification of the Escherichia coli regulatory protein TyrR and analysis of its interactions with ATP, tyrosine, phenylalanine, and tryptophan. J Biol Chem 269:5171–5178. [PubMed]
279. Cui J, Somerville RL. 1993. The TyrR protein of Escherichia coli, analysis by limited proteolysis of domain structure and ligand-mediated conformational changes. J Biol Chem 268:5040–5047. [PubMed]
280. Andrews AE, Dickson B, Lawley B, Cobbett C, Pittard AJ. 1991. Importance of the position of TYR R boxes for repression and activation of the tyrP and aroF genes in Escherichia coli. J Bacteriol 173:5079–5085.
281. Dixon MP, Pau RN, Howlett GJ, Dunstan DE, Sawyer WH, Davidson BE. 2002. The central domain of Escherichia coli TyrR is responsible for hexamerization associated with tyrosine-mediated repression of gene expression. J Biol Chem 277:23186–23192. [PubMed][CrossRef]
282. Kwok T. 1998. The domain structure of the regulatory protein TyrR from Escherichia coli K-12. Ph.D. thesis. University of Melbourne, Victoria, Australia.
283. MacPherson KH, Carr PD, Verger D, Kwok T, Davidson BE, Ollis DL. 1999. Crystallization of the N-terminal domain of the Escherichia coli regulatory protein TyrR. Acta Crystallogr D Biol Crystallogr 55:1923–1924.
284. Cui J, Somerville RL. 1993. A mutational analysis of the structural basis for transcriptional activation and monomer-monomer interaction in the TyrR system of Escherichia coli K-12. J Bacteriol 175:1777–1784. [PubMed]
285. Cui J, Somerville RL. 1993. Mutational uncoupling of the transcriptional activation function of the TyrR protein of Escherichia coli K-12 from the repression function. J Bacteriol 175:303–306. [PubMed]
286. Yang J, Camakaris H, Pittard AJ. 1996. In vitro transcriptional analysis of TyrR-mediated activation of the mtr and tyrP+3 promoters of Escherichia coli. J Bacteriol 178:6389–6393.
287. Yang J, Camakaris H, Pittard J. 2002. Molecular analysis of tyrosine-and phenylalanine-mediated repression of the tyrB promoter by the TyrR protein of Escherichia coli. Mol Microbiol 45:1407–1419.
288. Yang J. 1989. Molecular studies on the tyrB gene of Escherichia coli K-12. Ph.D. thesis. University of Melbourne, Victoria, Australia.
289. Aravind L, Koonin EV. 1999. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol 287:1023–1040. [PubMed][CrossRef]
290. Ettema TJG, Brinkman AB, Tani TH, Rafferty JB, van der Oost J. 2002. A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes. J Biol Chem 277:37464–37468. [PubMed][CrossRef]
291. Ishihama A. 1993. Protein-protein communication within the transcription apparatus. J Bacteriol 175:2483–2489. [PubMed]
292. Lawley B, Fujita N, Ishihama A, Pittard AJ. 1995. The TyrR protein of Escherichia coli is a class I transcription activator. J Bacteriol 177:238–241.
293. Wilmanns M, Priestle JP, Niermann T, Jansonius JN. 1992. Three-dimensional structure of the bifunctional enzyme phosphoribosylanthranilate isomerase: indoleglycerolphosphate synthase from Escherichia coli refined at 2.0 Å resolution. J Mol Biol 223:477–507.
294. Austin S, Kundrot C, Dixon R. 1991. Influence of a mutation in the putative nucleotide binding site of the nitrogen regulatory protein NtrC on its positive control function. Nucleic Acids Res 19:2281–2287. [PubMed][CrossRef]
295. Wang Y, Hoover TR. 1997. Alterations within the activation domain of the σ54-dependent activator DctD that prevent transcriptional activation. J Bacteriol 179:5812–5819.
296. Wilson TJ, Argaet VP, Howlett GJ, Davidson BE. 1995. Evidence for two aromatic amino acid-binding sites, one ATP-dependent and the other ATP-independent, in the Escherichia coli regulatory protein TyrR. Mol Microbiol 17:483–492.
297. Kwok T, Yang J, Pittard AJ, Wilson TJ, Davidson BE. 1995. Analysis of an Escherichia coli mutant TyrR protein with impaired capacity for tyrosine-mediated repression, but still able to activate at σ70 promoters. Mol Microbiol 17:471–481. [PubMed][CrossRef]
298. Cui J, Ni L, Somerville RL. 1993. ATPase activity of TyrR, a transcriptional regulatory protein for σ70 RNA polymerase. J Biol Chem 268:13023–13025. [PubMed]
299. Austin S, Dixon R. 1992. The prokaryotic enhancer-binding protein NtrC has an ATPase activity which is phosphorylation and DNA dependent. EMBO J 11(6):2219–2228.
300. Bertoni G, Marques S, de Lorenzo V. 1998. Activation of the toluene-responsive regulator XylR causes atranscriptional switch between σ54 and σ70 promoters at the divergent Pr/Ps region of the TOL plasmid. Mol Microbiol 27:651–659. [PubMed][CrossRef]
301. Zhang W, Bogdanov M, Pi J, Pittard AJ, Dowhan W. 2003. Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J Biol Chem 278:50128–50135.
302. Morrett E, Segovia L. 1993. The bacteria enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175:6067–6074.
303. Song J, Jensen RA. 1996. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa. Mol Microbiol 22:497–507.
304. González V, Olvera L, Soberón X, Morett E. 1998. In vivo studies on the positive control function of NifA: a conserved hydrophobic amino acid patch at the central domain involved in transcriptional activation. Mol Microbiol 28:55–68. [PubMed][CrossRef]
305. Wang P, Yang J, Pittard AJ. 1997. Promoters and transcripts associated with the aroP gene of Escherichia coli. J Bacteriol 179:4206–4212.
306. Hwang JS, Yang J, Pittard AJ. 1997. Critical base pairs and amino acid residues for protein-DNA interaction between the TyrR protein and tyrP operator of Escherichia coli. J Bacteriol 179:1051–1058. [PubMed]
307. Hwang JS, Yang J, Pittard AJ. 1999. Specific contacts between the residues in the DNA-binding domain of the TyrR protein and the bases in the operator of the tyrP gene of Escherichia coli. J Bacteriol 181:2338–2345. [PubMed]
308. Andrews AE. 1988. Molecular analysis of the interaction between operator sites and the TyrR repressor in Escherichia coli K-12. Ph.D. thesis. University of Melbourne, Victoria, Australia.
309. Chye M-L, Pittard J. 1987. Transcription control of the aroP gene in Escherichia coli K-12: analysis of operator mutants. J Bacteriol 169:386–393. [PubMed]
310. Cobbett CS, Delbridge ML. 1987. Regulatory mutants of the aroF-tyrA operon of Escherichia coli K-12. J Bacteriol 169:2500–2506. [PubMed]
311. Garner CC, Herrmann KM. 1985. Operator mutations of the Escherichia coli aroF gene. J Biol Chem 260:3820–3825. [PubMed]
312. Kasian PA, Davidson BE, Pittard J. 1986. Molecular analysis of the promoter operator region of the Escherichia coli K-12 tyrP gene. J Bacteriol 167:556–561. [PubMed]
313. Lawley B, Pittard AJ. 1994. Regulation of aroL expression by TyrR protein and Trp repressor in Escherichia coli K-12. J Bacteriol 176:6921–6930.
314. Wookey PJ, Pittard J, Forrest SM, Davidson BE. 1984. Cloning of the tyrP gene and further characterization of the tyrosine-specific transport system in Escherichia coli K-12. J Bacteriol 160:169–174.
315. Hudson GS, Davidson BE. 1984. Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K-12. J Mol Biol 180:1023–1051. [PubMed][CrossRef]
316. Yang J, Ogawa Y, Camakaris H, Shimada T, Ishihama A, Pittard AJ. 2007. folA, a new member of the TyrR regulon in Escherichia coli K-12. J Bacteriol 189:6080–6084.
317. Heatwole VM, Somerville RL. 1991. Cloning, nucleotide sequence, and characterization of mtr, the structural gene for a tryptophan-specific permease of Escherichia coli K-12. J Bacteriol 173:108–115. [PubMed]
318. Baseggio N, Davies WD, Davidson BE. 1990. Identification of the promoter, operator, and the 5′ and 3′ ends of the mRNA of the Escherichia coli K-12 gene aroG. J Bacteriol 172:2547–2557. [PubMed]
319. Wallace BJ, Pittard J. 1969. Regulator gene controlling enzymes concerned in tyrosine biosynthesis in Escherichia coli. J Bacteriol 97:1234–1241.
320. Wang P, Yang J, Lawley B, Pittard AJ. 1997. Repression of the aroP gene of Escherichia coli involves activation of a divergent promoter. J Bacteriol 179:4213–4218.
321. Wang P, Yang J, Pittard AJ. 1998. Demonstration that the TyrR protein and RNA polymerase complex formed at the divergent P3 promoter inhibits binding of RNA polymerase to the major promoter, P1, of the aroP gene of Escherichia coli. J Bacteriol 180:5466–5472.
322. DeFeyter RC, Pittard J. 1986. Genetic and molecular analysis of aroL, the gene for shikimate kinase II in Escherichia coli K-12. J Bacteriol 165:226–232. [PubMed]
323. Heatwole VM, Somerville RL. 1992. Synergism between the Trp repressor and Tyr repressor in repression of the aroL promoter of Escherichia coli K-12. J Bacteriol 174:331–335. [PubMed]
324. Yang J, Ganesan S, Sarsero J, Pittard AJ. 1993. A genetic analysis of various functions of the TyrR protein of Escherichia coli. J Bacteriol 175:1767–1776.
325. Yang J, Gunasekera A, Lavoie TA, Jin L, Lewis DE, Carey J. 1996. In vivo and in vitro studies of TrpR-DNA interactions. J Mol Biol 258:37–52.
326. Campbell EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zedlitz ML, Darst SA. 2002. Structure of the bacterial RNA polymerase promoter specificity σ subunit. Mol Cell 9:527–539. [PubMed][CrossRef]
327. Yang J, Camakaris H, Pittard AJ. 1996. Further genetic analysis of the activation function of the TyrR regulatory protein of Escherichia coli. J Bacteriol 178:1120–1125.
328. Baseggio N. 1992. Regulation studies on the Escherichia coli gene aroG. Ph.D. thesis. University of Melbourne, Victoria, Australia.
329. Argyropoulos VP. 1989. Studies on the regulatory protein TyrR from Escherichia coli. Ph.D. thesis. University of Melbourne, Victoria, Australia.
330. Cobbett C. 1983. Repression of the aroF promoter by the TyrR repressor of Escherichia coli K-12; role of the upstream operator site. Mol Microbiol 2:377–383. [CrossRef]
331. Gourse RL, Ross W, Gaal T. 2000. Ups and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol 37:687–695. [PubMed][CrossRef]
332. Shimada T, Fujita N, Maeda M, Ishihama A. 2005. Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells 10:907–918.
333. Bai Q, Somerville RL. 1998. Integration host factor and cyclic AMP receptor protein are required for TyrR-mediated activation of tpl in Citrobacter freundii. J Bacteriol 180:6173–6186. [PubMed]
334. Smith HQ, Somerville RL. 1997. The tpl promoter of Citrobacter freundii is activated by the TyrR protein. J Bacteriol 179:5914–5921.
335. Cohen G, Jacob F. 1959. Inhibition of the synthesis of the enzymes participating in the formation of tryptophan in Escherichia coli. C R Acad Sci 248:3490–3492.
336. Gunsalus RP, Zurawski G, Yanofsky C. 1979. Structural and functional analysis of cloned deoxyribonucleic acid containing the trpR-thr region of the Escherichia coli chromosome. J Bacteriol 140:106–113. [PubMed]
337. Roeder W, Somerville RL. 1979. Cloning the trpR gene. Mol Gen Genet 176:361–368.
338. Joachimiak A, Kelley RL, Gunsalis RP, Yanofsky C, Sigler PB. 1983. Purification and characterization of Trp aporepressor. Proc Natl Acad Sci USA 80:668–672. [PubMed][CrossRef]
339. Kelley RL, Yanofsky C. 1985. Mutational studies with the trp repressor of Escherichia coli support the helix-turn-helix model of repressor recognition of operator DNA. Proc Natl Acad Sci USA 82:483–487. [PubMed][CrossRef]
340. Schevitz RW, Otwinowski Z, Joachimiak A, Lawson CL, Sigler PB. 1985. The three-dimensional structure of trp repressor. Nature 317:782–786.
341. Zalkin H. 1973. Anthranilate synthetase. Adv Enzymol 38:1–37.
342. Marmorstein RQ, Sigler PB. 1989. Stereochemical effects of L-tryptophan and its analogues on trp repressor’s affinity for operator-DNA. J Biol Chem 264:9149–9154.
343. Luisi BF, Sigler PB. 1990. The stereochemistry and biochemistry of the Trp repressor-operator complex. Biochim Biophys Acta 1048:113–126.
344. Somerville R. 1992. The Trp repressor, a ligand-activated regulatory protein. Prog Nucleic Acid Res Mol Biol 42:1–38.
345. Bass S, Sugiono P, Arvidso DN, Gunsalus RP, Youderian P. 1987. DNA specificity determinants of Escherichia coli tryptophan repressor binding. Genes Dev 1:565–572. [PubMed][CrossRef]
346. Bennett GN, Yanofsky C. 1978. Sequence analysis of operator constitutive mutants of the tryptophan operon of Escherichia coli. J Mol Biol 121:179–192. [PubMed][CrossRef]
347. Klig SL, Crawford IP, Yanofsky C. 1987. Analysis of Trp repressor-operator interaction by filter binding. Nucleic Acids Res 15:5339–5351. [PubMed][CrossRef]
348. Kumamoto AA, Miller WG, Gunsalus RP. 1987. Escherichia coli tryptophan repressor binds multiple sites within the aroH and trp operators. Genes Dev 1:556–564. [PubMed][CrossRef]
349. Grove CL, Gunsalus RP. 1987. Regulation of the aroH operon of Escherichia coli by the tryptophan repressor. J Bacteriol 169:2158–2164. [PubMed]
350. Bogosian G, Somerville RL, Nishi K, Kano Y, Imamoto F. 1984. Transcription of the trpR gene of Escherichia coli: an autogeneously regulated system studied by direct measurements of mRNA levels in vivo. Mol Gen Genet 193:244–250. [PubMed][CrossRef]
351. Gunsalus RP, Yanofsky C. 1980. Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor. Proc Natl Acad Sci USA 77:7117–7121. [PubMed][CrossRef]
352. Kelley RL, Yanofsky C. 1982. Trp aporepressor production is controlled by autogenous regulation and inefficient translation. Proc Natl Acad Sci USA 79:3120–3124. [PubMed][CrossRef]
353. Joachimiak A, Haran TE, Sigler PB. 1994. Mutagenesis supports water mediated recognition in the trp repressor-operator system. EMBO J 13:367–372. [PubMed]
354. Lawson CL, Zhang RG, Schevitz RW, Otwinowski Z, Joachimiak A, Sigler PB. 1988. Flexibility of the DNA-binding domains of trp repressor. Proteins 3:18–31.
355. Otwinowski Z, Schevitz RW, Zhang R-G, Lawson CL, Joachimiak A, Marmorstein RQ, Luisi BF, Sigler PB. 1988. Crystal structure of Trp repressor/operator complex at atomic resolution. Nature 355:321–329.
356. Bareket-Samish A, Cohen I, Haran TE. 1997. Repressor assembly at trp binding sites is dependent on the identity of the intervening dinucleotide between the binding half sites. J Mol Biol 267:103–117. [PubMed][CrossRef]
357. Jaseja M, Jeeves M, Hyde EI. 2002. Trp repressor-operator binding: NMR and electrophoretic mobility shift studies of the effect of DNA sequence and corepressor binding on two Trp repressor-operator complexes. Biochemistry 41:14866–14878. [PubMed][CrossRef]
358. Lawson CL, Carey J. 1993. Tandem binding in crystals of a trp repressor/operator half-site complex. Nature 366:178–182.
359. Mackintosh SG, McDermott PF, Hurlburt BK. 1998. Mutational analysis of the NH2-terminal arms of the Trp repressor indicates a multifunctional domain. Mol Microbiol 27:1119–1127.
360. Shan X, Gardner KH, Muhandiram DR, Kay LE, Arrowsmith CH. 1998. Subunit-specific backbone NMR assignments of a 64 kDa Trp repressor/DNA complex: a role for N-terminal residues in tandem binding. J Biomol NMR 11:307–318.
361. Bass S, Sorrells V, Youderian P. 1988. Mutant Trp repressors with new DNA-binding specificities. Science 242:240–245. [PubMed][CrossRef]
362. Staacke D, Walter B, Kisters-Woike B, von Wilcken-Bergmann B, Müller-Hill B. 1990. How Trp repressor binds to its operator. EMBO J 9:1963–1967.
363. Czernik PJ, Shin DS, Hurlburt BK. 1994. Functional selection and characterization of DNA-binding sites for Trp repressor of E. coli. J Biol Chem 269:27869–27875. [PubMed]
364. Grillo AO, Brown MP, Royer CA. 1999. Probing the physical basis for trp repressor-operator recognition. J Mol Biol 287:539–554. [PubMed][CrossRef]
365. Jeeves M, Evans PD, Parslow RA, Jaseja M, Hyde EI. 1999. Studies of the Escherichia coli Trp repressor binding to its five operators and to variant operator sequences. Eur J Biochem 265:919–928. [PubMed][CrossRef]
366. Gunes C, Staacke D, von Wilcken-Bergmann B, Muller-Hill B. 1996. Co-operative binding of two Trp repressor dimers to α- or β-centred trp operators. Mol Microbiol 20:375–384. [PubMed][CrossRef]
367. Hudson GS, Rellos P, Davidson BE. 1991. Two promoters control the aroH gene of Escherichia coli. Gene 102:87–91. [PubMed][CrossRef]
368. Jackson EN, Yanofsky C. 1973. Thr region between the operator and first structural gene of the tryptophan operon of Escherichia coli may have a regulatory function. J Mol Biol 76:89–101. [PubMed][CrossRef]
369. Yanofsky C, Horn V, Bonner M, Stasiowski S. 1971. Polarity and enzyme functions in mutants of the first three genes of the tryptophan operon of Escherichia coli. Genetics 69:409–433.
370. Landick R, Turnbourgh CL Jr. 1992. Transcriptional attenuation, p 407–446. In McKnight SL and Yamamoto KR (ed), Transcriptional Regulation. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
371. Landick R, Yanofsky C. 1987. Transcription attenuation, p 1276–1301. In Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC.
372. Yanofsky C. 1959. A second reaction catalyzed by the tryptophan synthetase of Escherichia coli. Biochim Biophys Acta 31:408–416.
373. Landick R, Turnbourgh CL Jr, Yanofsky C. 1996. Transcription attenuation, p 1236–1286. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, DC.
374. Yanofsky C, Drapeau GR, Guest JR, Carlton BC. 1967. The complete amino acid sequence of the tryptophan synthetase a protein (α subunit) and its colinear relationship with the genetic map of the A gene. Proc Natl Acad Sci USA 57:296–298.
375. Bliss RD, Painter PR, Marr AG. 1982. Role of feedback inhibition in stabilizing the classical operon. J Theor Biol 97:177–193. [PubMed][CrossRef]
376. Santillan M, Mackey MC. 2001. Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. Proc Natl Acad Sci USA 98:1364–1369.
377. Zhao S, Zhu Q, Somerville RL. 2000. The σ70 transcription factor TyrR has zinc-stimulated phosphatase activity that is inhibited by ATP and tyrosine. J Bacteriol 182:1053–1061.
378. Zurawski G, Brown KD, Killingly D, Yanofsky C. 1978. Nucleotide sequence of the leader region of the phenylalanine operon of Escherichia coli. Proc Natl Acad Sci USA 75:4271–4275.
379. Gavini N, Davidson BE. 1990. pheAo mutants of Escherichia coli have a defective pheA attenuator. J Biol Chem 265:21532–21535. [PubMed]
380. Gavini N, Davidson BE. 1991. Regulation of pheA expression by the pheR product in Escherichia coli is mediated through attenuation of transcription. J Biol Chem 266:7750–7753. [PubMed]
381. Gavini N, Davidson BE. 1990. The pheR gene of Escherichia coli encodes tRNA(Phe), not a repressor protein. J Biol Chem 265:21527–21531. [PubMed]
382. Gollub EG, Liu KP, Sprinson DB. 1973. A regulatory gene of phenylalanine biosynthesis (pheR) in Salmonella typhimurium. J Bacteriol 115:121–128. [PubMed]
383. Gowrishankar J, Pittard J. 1982. Molecular cloning of pheR in Escherichia coli K-12. J Bacteriol 152:1–6. [PubMed]
384. Gowrishankar J, Pittard J. 1982. Regulation of phenylalanine biosynthesis in Escherichia coli K-12: control of transcription of the pheA operon. J Bacteriol 150:1130–1137. [PubMed]
385. Pittard J, Praszkier J, Certoma A, Eggertsson G, Gowrishankar J, Narasaiah G, Whipp MJ. 1990. Evidence that there are only two tRNA(Phe) genes in Escherichia coli. J Bacteriol 172:6077–6083.
ecosalplus.3.6.1.8.citations
ecosalplus/3/1
content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.8
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.8
2008-06-23
2017-05-29

Abstract:

This chapter describes in detail the genes and proteins of involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Numbering of the boxes in each transcriptional unit is from Fig. 6 . Bases shown in boldface are identical to the consensus sequence. Sources of the sequences are as follows: ( 315 ), ( 86 ), ( 312 ), ( 316 ), ( 309 ), ( 275 ), ( 260 , 317 ), ( 318 ), and ( 272 ) (adapted from reference 273 with the kind permission of the publisher).

Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

The bases in bold are those whose substitution affected TrpR-mediated repression. Also shown are the central α-symmetry point and the two secondary β-points of symmetry.

Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Half-boxes are 8 bp apart. The α-point of symmetry and relation to transcription start sites are indicated. Boxes with strong affinity (GNACT) are identified with unbroken lines. Boxes with broken lines vary in affinity from nil (TCGAA) to reduced (GCACC) (adapted from reference 324 with the kind permission of the publisher).

Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

(A) termination conformation; (B) antitermination conformation (adapted from reference 373 with the kind permission of the publisher).

Citation: Pittard J, Yang J. 2008. Biosynthesis of the Aromatic Amino Acids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.1.8
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error