1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biosynthesis of Histidine

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Malcolm E. Winkler1, and Smirla Ramos-Montañez
  • Editor: Valley Stewart2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biology, Indiana University, Bloomington, IN 47405; 2: University of California, Davis, Davis, CA
  • Received 18 June 2008 Accepted 29 September 2008 Published 04 September 2009
  • Address correspondence to Malcolm E. Winkler mwinkler@bio.indiana.edu.
image of Biosynthesis of Histidine
    Preview this reference work article:
    Zoom in
    Zoomout

    Biosynthesis of Histidine, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/2/3_6_1_9_module-1.gif /docserver/preview/fulltext/ecosalplus/3/2/3_6_1_9_module-2.gif
  • Abstract:

    The biosynthesis of histidine in and has been an important model system for the study of relationships between the flow of intermediates through a biosynthetic pathway and the control of the genes encoding the enzymes that catalyze the steps in a pathway. This article provides a comprehensive review of the histidine biosynthetic pathway and enzymes, including regulation of the flow of intermediates through the pathway and mechanisms that regulate the amounts of the histidine biosynthetic enzymes. In addition, this article reviews the structure and regulation of the histidine () biosynthetic operon, including transcript processing, Rho-factor-dependent “classical” polarity, and the current model of operon attenuation control. Emphasis is placed on areas of recent progress. Notably, most of the enzymes that catalyze histidine biosynthesis have recently been crystallized, and their structures have been determined. Many of the histidine biosynthetic intermediates are unstable, and the histidine biosynthetic enzymes catalyze some chemically unusual reactions. Therefore, these studies have led to considerable mechanistic insight into the pathway itself and have provided deep biochemical understanding of several fundamental processes, such as feedback control, allosteric interactions, and metabolite channeling. Considerable recent progress has also been made on aspects of operon regulation, including the mechanism of pp(p)Gpp stimulation of operon transcription, the molecular basis for transcriptional pausing by RNA polymerase, and pathway evolution. The progress in these areas will continue as sophisticated new genomic, metabolomic, proteomic, and structural approaches converge in studies of the histidine biosynthetic pathway and mechanisms of control of biosynthetic genes in other bacterial species.

  • Citation: Winkler M, Ramos-Montañez S. 2009. Biosynthesis of Histidine, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.1.9

Key Concept Ranking

Aromatic Amino Acid Biosynthesis
0.4590675
Aromatic Amino Acids
0.4434579
Transcription Elongation Factors
0.31562474
Histidine Biosynthesis
0.30028984
0.4590675

References

1. Kasai T. 1974. Regulation of the expression of the histidine operon in Salmonella typhimurium. Nature 249:523–527. [PubMed][CrossRef]
2. Ames BN, Durston WE, Yamasaki E, Lee FD. 1973. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70:2281–2285. [PubMed][CrossRef]
3. Gee P, Maron DM, Ames BN. 1994. Detection and classification of mutagens: a set of base-specific Salmonella tester strains. Proc Natl Acad Sci USA 91:11606–11610. [PubMed][CrossRef]
4. Brenner M, Ames BN. 1971. The histidine operon and its regulation, p 349–387. In Vogel HJ (ed), Metabolic Pathways, vol. 5. Academic Press, New York, NY.
5. Blasi F, Bruni CB. 1981. Regulation of the histidine operon: translation-controlled transcription termination (a mechanism common to several biosynthetic operons). Curr Top Cell Regul 19:1–45.[PubMed]
6. Artz SW, Holzschu D. 1983. Histidine biosynthesis and its regulation, p 379–404. In Herrmann KM and Somerville RL (ed), Amino Acids: Biosynthesis and Genetic Regulation. Addison-Wesley Publishing Co., Reading, MA.
7. Alifano P, Fani R, Lio P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB. 1996. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 60:44–69.[PubMed]
8. Fani R, Brilli M, Fondi M, Lio P. 2007. The role of gene fusions in the evolution of metabolic pathways: the histidine biosynthesis case. BMC Evol Biol 7(Suppl. 2):S4. [PubMed][CrossRef]
9. Fani R, Brilli M, Lio P. 2005. The origin and evolution of operons: the piecewise building of the proteobacterial histidine operon. J Mol Evol 60:378–390. [PubMed][CrossRef]
10. Fani R, Mori E, Tamburini E, Lazcano A. 1998. Evolution of the structure and chromosomal distribution of histidine biosynthetic genes. Orig Life Evol Biosph 28:555–570. [PubMed][CrossRef]
11. Muralla R, Sweeney C, Stepansky A, Leustek T, Meinke D. 2007. Genetic dissection of histidine biosynthesis in Arabidopsis. Plant Physiol 144:890–903. [PubMed][CrossRef]
12. Price MN, Alm EJ, Arkin AP. 2006. The histidine operon is ancient. J Mol Evol 62:807–808. [PubMed][CrossRef]
13. Stepansky A, Leustek T. 2006. Histidine biosynthesis in plants. Amino Acids 30:127–142. [PubMed][CrossRef]
14. Nagai A, Ward E, Beck J, Tada S, Chang JY, Scheidegger A, Ryals J. 1991. Structural and functional conservation of histidinol dehydrogenase between plants and microbes. Proc Natl Acad Sci USA 88:4133–4137. [PubMed][CrossRef]
15. Sonenshein AL. 1993. Introduction to metabolic pathways, p 127–132. In Sonenshein AL, Hoch JA, and Losick R (ed), Bacillus subtilis and Other Gram-Positive Bacteria. American Society for Microbiology, Washington, DC.
16. Ohashi Y, Hirayama A, Ishikawa T, Nakamura S, Shimizu K, Ueno Y, Tomita M, Soga T. 2008. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol Biosyst 4:135–147. [PubMed][CrossRef]
17. Klem TJ, Davisson VJ. 1993. Imidazole glycerol phosphate synthase: the glutamine amidotransferase in histidine biosynthesis. Biochemistry 32:5177–5186. [PubMed][CrossRef]
18. Johnston HM, Roth JR. 1979. Histidine mutants requiring adenine: selection of mutants with reduced hisG expression in Salmonella typhimurium. Genetics 92:1–15.[PubMed]
19. Johnson MS, Taylor BL. 1993. Comparison of methods for specific depletion of ATP in Salmonella typhimurium. Appl Environ Microbiol 59:3509–3512.[PubMed]
20. Pons FW, Neubert U, Muller P. 1988. Evidence for frameshift mutations in the hisH gene of Escherichia coli causing synthesis of a partially active glutamine amidotransferase. Genetics 120:657–665.[PubMed]
21. Allen S, Zilles JL, Downs DM. 2002. Metabolic flux in both the purine mononucleotide and histidine biosynthetic pathways can influence synthesis of the hydroxymethyl pyrimidine moiety of thiamine in Salmonella enterica. J Bacteriol 184:6130–6137. [PubMed][CrossRef]
22. Dall-Larsen T. 1988. Stopped flow kinetic studies of adenosine triphosphate phosphoribosyl transferase, the first enzyme in the histidine biosynthesis of Escherichia coli. Int J Biochem 20:811–815. [PubMed][CrossRef]
23. Morton DP, Parsons SM. 1976. Biosynthetic direction substrate kinetics and product inhibition studies on the first enzyme of histidine biosynthesis, adenosine triphosphate phosphoribosyltransferase. Arch Biochem Biophys 175:677–686. [PubMed][CrossRef]
24. Morton DP, Parsons SM. 1977. Inhibition of ATP phosphoribosyltransferase by AMP and ADP in the absence and presence of histidine. Arch Biochem Biophys 181:643–648. [PubMed][CrossRef]
25. Morton DP, Parsons SM. 1977. Synergistic inhibition of ATP phosphoribosyltransferase by guanosine tetraphosphate and histidine. Biochem Biophys Res Commun 74:172–177. [PubMed][CrossRef]
26. Sterboul CC, Kleeman JE, Parsons SM. 1977. Purification and characterization of a mutant ATP phosphoribosyltransferase hypersensitive to histidine feedback inhibition. Arch Biochem Biophys 181:632–642. [PubMed][CrossRef]
27. Tebar AR, Ballesteros AO. 1976. Kinetic properties of ATP phosphoribosyltransferase of Escherichia coli. Mol Cell Biochem 11:131–136. [PubMed][CrossRef]
28. Grubmeyer CT, Gray WR. 1986. A cysteine residue (cysteine-116) in the histidinol binding site of histidinol dehydrogenase. Biochemistry 25:4778–4784. [PubMed][CrossRef]
29. Loper JC, Adams E. 1965. Purification and properties of histidinol dehydrogenase from Salmonella typhimurium. J Biol Chem 240:788–795.[PubMed]
30. Teng H, Grubmeyer C. 1999. Mutagenesis of histidinol dehydrogenase reveals roles for conserved histidine residues. Biochemistry 38:7363–7371. [PubMed][CrossRef]
31. Teng H, Segura E, Grubmeyer C. 1993. Conserved cysteine residues of histidinol dehydrogenase are not involved in catalysis. Novel chemistry required for enzymatic aldehyde oxidation. J Biol Chem 268:14182–14188.[PubMed]
32. Albritton WL, Levin AP. 1970. Some comparative kinetic data on the enzyme imidazoleacetol phosphate:L-glutamate aminotransferase derived from mutant strains of Salmonella typhimurium. J Biol Chem 245:2525–2528.[PubMed]
33. Hsu LC, Okamoto M, Snell EE. 1989. L-Histidinol phosphate aminotransferase from Salmonella typhimurium. Kinetic behavior and sequence at the pyridoxal-P binding site. Biochimie 71:477–489. [PubMed][CrossRef]
34. Brady DR, Houston LL. 1973. Some properties of the catalytic sites of imidazoleglycerol phosphate dehydratase-histidinol phosphate phosphatase, a bifunctional enzyme from Salmonella typhimurium. J Biol Chem 248:2588–2592.[PubMed]
35. Glynn SE, Baker PJ, Sedelnikova SE, Davies CL, Eadsforth TC, Levy CW, Rodgers HF, Blackburn GM, Hawkes TR, Viner R, Rice DW. 2005. Structure and mechanism of imidazoleglycerol-phosphate dehydratase. Structure 13:1809–1817. [PubMed][CrossRef]
36. Rangarajan ES, Proteau A, Wagner J, Hung MN, Matte A, Cygler M. 2006. Structural snapshots of Escherichia coli histidinol phosphate phosphatase along the reaction pathway. J Biol Chem 281:37930–37941. [PubMed][CrossRef]
37. Schweitzer BA, Loida PJ, Chott C A, CaJacob RC, Collantes EM, Hegde SG, Mosier PD, Profeta S. 2002. Discovery of imidazole glycerol phosphate dehydratase inhibitors through 3-D database searching. Bioorg Med Chem Lett 12:1743–1746. [PubMed][CrossRef]
38. Chittur SV, Klem TJ, Shafer CM, Davisson VJ. 2001. Mechanism for acivicin inactivation of triad glutamine amidotransferases. Biochemistry 40:876–887. [PubMed][CrossRef]
39. Smulski DR, Huang LL, McCluskey MP, Reeve MJ, Vollmer AC, Van Dyk TK, LaRossa RA. 2001. Combined, functional genomic-biochemical approach to intermediary metabolism: interaction of acivicin, a glutamine amidotransferase inhibitor, with Escherichia coli K-12. J Bacteriol 183:3353–3364. [PubMed][CrossRef]
40. Henn-Sax M, Thoma R, Schmidt S, Hennig M, Kirschner K, Sterner R. 2002. Two (beta-alpha)(8)-barrel enzymes of histidine and tryptophan biosynthesis have similar reaction mechanisms and common strategies for protecting their labile substrates. Biochemistry 41:12032–12042. [PubMed][CrossRef]
41. D’Ordine RL, Klem TJ, Davisson VJ. 1999. N1-(5′-phosphoribosyl) adenosine-5′-monophosphate cyclohydrolase: purification and characterization of a unique metalloenzyme. Biochemistry 38:1537–1546. [PubMed][CrossRef]
42. Brenner M, De Lorenzo F, Ames BN. 1970. Energy charge and protein synthesis. Control of aminoacyl transfer ribonucleic acid synthetases. J Biol Chem 245:450–452.[PubMed]
43. Brenner M, Lewis JA, Straus DS, De Lorenzo F, Ames BN. 1972. Histidine regulation in Salmonella typhimurium. XIV. Interaction of the histidyl transfer ribonucleic acid synthetase with histidine transfer ribonucleic acid. J Biol Chem 247:4333–4339.[PubMed]
44. Bruni CB, Musti AM, Frunzio R, Blasi F. 1980. Structural and physiological studies of the Escherichia coli histidine operon inserted into plasmid vectors. J Bacteriol 142:32–42.[PubMed]
45. Francklyn C, Adams J, Augustine J. 1998. Catalytic defects in mutants of class II histidyl-tRNA synthetase from Salmonella typhimurium previously linked to decreased control of histidine biosynthesis regulation. J Mol Biol 280:847–858. [PubMed][CrossRef]
46. Francklyn C, Schimmel P. 1990. Enzymatic aminoacylation of an eight-base-pair microhelix with histidine. Proc Natl Acad Sci USA 87:8655–8659. [PubMed][CrossRef]
47. Kalousek F, Konigsberg WH. 1974. Purification and characterization of histidyl transfer ribonucleic acid synthetase of Escherichia coli. Biochemistry 13:999–1006. [PubMed][CrossRef]
48. Cortese R, Kammen HO, Spengler SJ, Ames BN. 1974. Biosynthesis of pseudouridine in transfer ribonucleic acid. J Biol Chem 249:1103–1108.[PubMed]
49. Huang L, Pookanjanatavip M, Gu X, Santi DV. 1998. A conserved aspartate of tRNA pseudouridine synthase is essential for activity and a probable nucleophilic catalyst. Biochemistry 37:344–351. [PubMed][CrossRef]
50. Carlomagno MS, Chiariotti L, Alifano P, Nappo AG, Bruni CB. 1988. Structure and function of the Salmonella typhimurium and Escherichia coli K-12 histidine operons. J Mol Biol 203:585–606. [PubMed][CrossRef]
51. Freedman R, Schimmel P. 1981. In vitro transcription of the histidine operon. Identification of the his promoter and leader and readthrough transcripts. J Biol Chem 256:10747–10750.[PubMed]
52. Arps PJ, Marvel CC, Rubin BC, Tolan DA, Penhoet EE, Winkler ME. 1985. Structural features of the hisT operon of Escherichia coli K-12. Nucleic Acids Res 13:5297–5315. [PubMed][CrossRef]
53. Grubmeyer C, Skiadopoulos M, Senior AE. 1989. L-Histidinol dehydrogenase, a Zn2+-metalloenzyme. Arch Biochem Biophys 272:311–317. [PubMed][CrossRef]
54. Henderson GB, Snell EE. 1973. Crystalline L-histidinol phosphate aminotransferase from Salmonella typhimurium. Purification and subunit structure. J Biol Chem 248:1906–1911.[PubMed]
55. Lang D, Thoma R, Henn-Sax M, Sterner R, Wilmanns M. 2000. Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289:1546–1550. [PubMed][CrossRef]
56. Arnez JG, Harris DC, Mitschler A, Rees B, Francklyn CS, Moras D. 1995. Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate. EMBO J 14:4143–4155.[PubMed]
57. De Lorenzo F, Di Natale P, Schechter AN. 1974. Chemical and physical studies on the structure of the histidyl transfer ribonucleic acid synthetase from Salmonella typhimurium. J Biol Chem 249:908–913.[PubMed]
58. Foster PG, Huang L, Santi DV, Stroud RM. 2000. The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I. Nat Struct Biol 7:23–27. [PubMed][CrossRef]
59. Champagne KS, Sissler M, Larrabee Y, Doublie S, Francklyn CS. 2005. Activation of the hetero-octameric ATP phosphoribosyl transferase through subunit interface rearrangement by a tRNA synthetase paralog. J Biol Chem 280:34096–340104. [PubMed][CrossRef]
60. Cho Y, Sharma V, Sacchettini JC. 2003. Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis. J Biol Chem 278:8333–8339. [PubMed][CrossRef]
61. Lohkamp B, McDermott G, Campbell SA, Coggins JR, Lapthorn AJ. 2004. The structure of Escherichia coli ATP-phosphoribosyltransferase: identification of substrate binding sites and mode of AMP inhibition. J Mol Biol 336:131–144. [PubMed][CrossRef]
62. Barbosa JA, Sivaraman J, Li Y, Larocque R, Matte A, Schrag JD, Cygler M. 2002. Mechanism of action and NAD+-binding mode revealed by the crystal structure of L-histidinol dehydrogenase. Proc Natl Acad Sci USA 99:1859–1864. [PubMed][CrossRef]
63. Haruyama K, Nakai T, Miyahara I, Hirotsu K, Mizuguchi H, Hayashi H, Kagamiyama H. 2001. Structures of Escherichia coli histidinol-phosphate aminotransferase and its complexes with histidinol-phosphate and N-(5′-phosphopyridoxyl)-L-glutamate: double substrate recognition of the enzyme. Biochemistry 40:4633–4644. [PubMed][CrossRef]
64. Sivaraman J, Li Y, Larocque R, Schrag JD, Cygler M, Matte A. 2001. Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5′-phosphate and L-histidinol phosphate. J Mol Biol 311:761–776. [PubMed][CrossRef]
65. Sinha SC, Chaudhuri BN, Burgner JW, Yakovleva G, Davisson VJ, Smith JL. 2004. Crystal structure of imidazole glycerol-phosphate dehydratase: duplication of an unusual fold. J Biol Chem 279:15491–15498. [PubMed][CrossRef]
66. Amaro RE, Sethi A, Myers RS, Davisson VJ, Luthey-Schulten ZA. 2007. A network of conserved interactions regulates the allosteric signal in a glutamine amidotransferase. Biochemistry 46:2156–2173. [PubMed][CrossRef]
67. Chaudhuri BN, Lange SC, Myers RS, Davisson VJ, Smith JL. 2003. Toward understanding the mechanism of the complex cyclization reaction catalyzed by imidazole glycerolphosphate synthase: crystal structures of a ternary complex and the free enzyme. Biochemistry 42:7003–7012. [PubMed][CrossRef]
68. Douangamath A, Walker M, Beismann-Driemeyer S, Vega-Fernandez MC, Sterner R, Wilmanns M. 2002. Structural evidence for ammonia tunneling across the (beta alpha)(8) barrel of the imidazole glycerol phosphate synthase bienzyme complex. Structure 10:185–193. [PubMed][CrossRef]
69. Myers RS, Jensen JR, Deras IL, Smith JL, Davisson VJ. 2003. Substrate-induced changes in the ammonia channel for imidazole glycerol phosphate synthase. Biochemistry 42:7013–7022. [PubMed][CrossRef]
70. Sivaraman J, Myers RS, Boju L, Sulea T, Cygler M, Jo Davisson V, Schrag JD. 2005. Crystal structure of Methanobacterium thermoautotrophicum phosphoribosyl-AMP cyclohydrolase HisI. Biochemistry 44:10071–10080. [PubMed][CrossRef]
71. Arnez JG, Augustine JG, Moras D, Francklyn CS. 1997. The first step of aminoacylation at the atomic level in histidyl-tRNA synthetase. Proc Natl Acad Sci USA 94:7144–7149. [PubMed][CrossRef]
72. Guth EC, Francklyn CS. 2007. Kinetic discrimination of tRNA identity by the conserved motif 2 loop of a class II aminoacyl-tRNA synthetase. Mol Cell 25:531–242. [PubMed][CrossRef]
73. Hur S, Stroud RM. 2007. How U38, 39, and 40 of many tRNAs become the targets for pseudouridylation by TruA. Mol Cell 26:189–203. [PubMed][CrossRef]
74. Martin RG, Berberich B, Ames BN, Davis WW, Goldberger RF, Yourno JD. 1971. Enzymes and intermediates of histidine biosynthesis in Salmonella typhimurium. Methods Enzymol 17B:3–44. [CrossRef]
75. Kleeman J, Parsons SM. 1975. A sensitive assay for the reverse reaction of the first histidine biosynthetic enzyme. Anal Biochem 68:236–241. [PubMed][CrossRef]
76. Kronenberg HM, Vogel T, Goldberger RF. 1975. A new and highly sensitive assay for the ATP phosphoribosyltransferase that catalyzes the first step of histidine biosynthesis. Anal Biochem 65:380–388. [PubMed][CrossRef]
77. Ciesla Z, Salvatore F, Broach JR, Artz SW, Ames BN. 1975. Histidine regulation in Salmonella typhimurium. XVI. A sensitive radiochemical assay for histidinol dehydrogenase. Anal Biochem 63:44–55. [PubMed][CrossRef]
78. Toone WM, Rudd KE, Friesen JD. 1991. deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase, can suppress a mutation in rpsB, the gene encoding ribosomal protein S2. J Bacteriol 173:3291–3302.[PubMed]
79. Brady DR, Houston LL. 1972. New assay for histidinol phosphate phosphatase using a coupled reaction. Anal Biochem 48:480–482. [PubMed][CrossRef]
80. Ely B. 1974. Physiological studies of Salmonella histidine operator-promoter mutants. Genetics 78:593–606.[PubMed]
81. Di Natale P, Cimino F, De Lorenzo F. 1974. The pyrophosphate exchange reaction of histidyl-tRNA synthetase from Salmonella typhimurium: reaction parameters and inhibition by transfer ribonucleic acid. FEBS Lett 46:175–179. [PubMed][CrossRef]
82. Fishman SE, Kerchief KR, Parker J. 1979. Specialized lambda transducing bacteriophage which carries hisS, the structural gene for histidyl-transfer ribonucleic acid synthetase. J Bacteriol 139:404–410.[PubMed]
83. Marvel CC, Arps PJ, Rubin BC, Kammen HO, Penhoet EE, Winkler ME. 1985. hisT is part of a multigene operon in Escherichia coli K-12. J Bacteriol 161:60–71.[PubMed]
84. Henry CS, Jankowski MD, Broadbelt LJ, Hatzimanikatis V. 2006. Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys J 90:1453–1461. [PubMed][CrossRef]
85. Smith DW, Ames BN. 1964. Intermediates in the early steps of histidine biosynthesis. J Biol Chem 239:1848–1855.[PubMed]
86. Amaro RE, Myers RS, Davisson VJ, Luthey-Schulten ZA. 2005. Structural elements in IGP synthase exclude water to optimize ammonia transfer. Biophys J 89:475–487. [PubMed][CrossRef]
87. Klem TJ, Chen Y, Davisson VJ. 2001. Subunit interactions and glutamine utilization by Escherichia coli imidazole glycerol phosphate synthase. J Bacteriol 183:989–996. [PubMed][CrossRef]
88. Myers RS, Amaro RE, Luthey-Schulten ZA, Davisson VJ. 2005. Reaction coupling through interdomain contacts in imidazole glycerol phosphate synthase. Biochemistry 44:11974–11985. [PubMed][CrossRef]
89. Bochner BR, Ames BN. 1982. ZTP (5-amino 4-imidazole carboxamide riboside 5′-triphosphate): a proposed alarmone for 10-formyl-tetrahydrofolate deficiency. Cell 29:929–937. [PubMed][CrossRef]
90. Flores A, Fox M, Casadesus J. 1993. The pleiotropic effects of his overexpression in Salmonella typhimurium do not involve AICAR-induced mutagenesis. Mol Gen Genet 240:360–364.[PubMed]
91. Fox M, Frandsen N, D’Ari R. 1993. AICAR is not an endogenous mutagen in Escherichia coli. Mol Gen Genet 240:355–359.[PubMed]
92. Grubmeyer C, Teng H. 1999. Mechanism of Salmonella typhimurium histidinol dehydrogenase: kinetic isotope effects and pH profiles. Biochemistry 38:7355–7362. [PubMed][CrossRef]
93. Hoppe I, Johnston HM, Biek D, Roth JR. 1979. A refined map of the hisG gene of Salmonella typhimurium. Genetics 92:17–26.[PubMed]
94. Sheppard DE. 1964. Mutants of Salmonella typhimurium resistant to feedback inhibition by L-histidine. Genetics 50:611–623.[PubMed]
95. O’Donovan GA, Ingraham JL. 1965. Cold-sensitive mutants of Escherichia coli resulting from increased feedback inhibition. Proc Natl Acad Sci USA 54:451–457. [PubMed][CrossRef]
96. Tebar AR, Fernandez VM, Martin Del Rio R, Ballesteros AO. 1973. Studies on the quaternary structure of the first enzyme for histidine biosynthesis. Experientia 29:1477–1479. [PubMed][CrossRef]
97. Kryvi H. 1973. Thermal stability of phosphoribosyladenosine triphosphate synthetase as reflected in its circular dichroism and activity properties. Effect of inhibitors. Biochim Biophys Acta 317:123–130.[PubMed]
98. Klungsoyr L, Hagemen JH, Fall L, Atkinson DE. 1968. Interaction between energy charge and product feedback in the regulation of biosynthetic enzymes. Aspartokinase, phosphoribosyladenosine triphosphate synthetase, and phosphoribosyl pyrophosphate synthetase. Biochemistry 7:4035–4040. [PubMed][CrossRef]
99. Ames GF. 1964. Uptake of amino acids by Salmonella typhimurium. Arch Biochem Biophys 104:1–18. [PubMed][CrossRef]
100. Neidhardt FC, Umbarger HE. 1996. Chemical composition of Escherichia coli, p 13–16. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC.
101. Lewis JA, Ames BN. 1972. Histidine regulation in Salmonella typhimurium. XI. The percentage of transfer RNA His charged in vivo and its relation to the repression of the histidine operon. J Mol Biol 66:131–142. [PubMed][CrossRef]
102. Winkler ME, Roth DJ, Hartman PE. 1978. Promoter- and attenuator-related metabolic regulation of the Salmonella typhimurium histidine operon. J Bacteriol 133:830–843.[PubMed]
103. Ames GF. 1972. Components of histidine transport, p 409–426. In Fox CF (ed), Membrane Research. Academic Press, Inc., New York, NY.
104. Bochner BR, Ames BN. 1982. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem 257:9759–9769.[PubMed]
105. De Lorenzo F, Ames BN. 1970. Histidine regulation in Salmonella typhimurium. VII. Purification and general properties of the histidyl transfer ribonucleic acid synthetase. J Biol Chem 245:1710–1716.[PubMed]
106. Sissler M, Delorme C, Bond J, Ehrlich SD, Renault P, Francklyn C. 1999. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc Natl Acad Sci USA 96:8985–8990. [PubMed][CrossRef]
107. Bovee ML, Champagne KS, Demeler B, Francklyn CS. 2002. The quaternary structure of the HisZ-HisG N-1-(5′-phosphoribosyl)-ATP transferase from Lactococcus lactis. Biochemistry 41:11838–11846. [PubMed][CrossRef]
108. Martin RG. 1963. The first enzyme in histidine biosynthesis: the nature of feedback inhibition by histidine. J Biol Chem 238:257–268.
109. Alifano P, Piscitelli C, Blasi V, Rivellini F, Nappo AG, Bruni CB, Carlomagno MS. 1992. Processing of a polycistronic mRNA requires a 5′ cis element and active translation. Mol Microbiol 6:787–798. [PubMed][CrossRef]
110. Chan CL, Landick R. 1989. The Salmonella typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site. Mechanistic implications of the effect on pausing of altered RNA hairpins. J Biol Chem 264:20796–20804.[PubMed]
111. Frunzio R, Bruni CB, Blasi F. 1981. In vivo and in vitro detection of the leader RNA of the histidine operon of Escherichia coli K-12. Proc Natl Acad Sci USA 78:2767–2771. [PubMed][CrossRef]
112. Alifano P, Rivellini F, Limauro D, Bruni CB, Carlomagno MS. 1991. A consensus motif common to all Rho-dependent prokaryotic transcription terminators. Cell 64:553–563. [PubMed][CrossRef]
113. Batchelor RA, Alifano P, Biffali E, Hull SI, Hull RA. 1992. Nucleotide sequences of the genes regulating O-polysaccharide antigen chain length (rol) from Escherichia coli and Salmonella typhimurium: protein homology and functional complementation. J Bacteriol 174:5228–5236.[PubMed]
114. Carlomagno MS, Riccio A, Bruni CB. 1985. Convergently functional, Rho-independent terminator in Salmonella typhimurium. J Bacteriol 163:362–368.[PubMed]
115. Hulton CS, Higgins CF, Sharp PM. 1991. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834. [PubMed][CrossRef]
116. Stern MJ, Ames GF, Smith NH, Robinson EC, Higgins CF. 1984. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37:1015–1026. [PubMed][CrossRef]
117. Riggs DL, Mueller RD, Kwan HS, Artz SW. 1986. Promoter domain mediates guanosine tetraphosphate activation of the histidine operon. Proc Natl Acad Sci USA 83:9333–9337. [PubMed][CrossRef]
118. Shand RF, Blum PH, Mueller RD, Riggs DL, Artz SW. 1989. Correlation between histidine operon expression and guanosine 5′-diphosphate-3′-diphosphate levels during amino acid downshift in stringent and relaxed strains of Salmonella typhimurium. J Bacteriol 171:737–743.[PubMed]
119. Stephens JC, Artz SW, Ames BN. 1975. Guanosine 5′-diphosphate 3′-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Natl Acad Sci USA 72:4389–4393. [PubMed][CrossRef]
120. Winkler ME, Zawodny RV, Hartman PE. 1979. Mutation spoT of Escherichia coli increases expression of the histidine operon deleted for the attenuator. J Bacteriol 139:993–1000.[PubMed]
121. Johnston HM, Barnes WM, Chumley FG, Bossi L, Roth JR. 1980. Model for regulation of the histidine operon of Salmonella. Proc Natl Acad Sci USA 77:508–512. [PubMed][CrossRef]
122. Johnston HM, Roth JR. 1981. DNA sequence changes of mutations altering attenuation control of the histidine operon of Salmonella typhimurium. J Mol Biol 145:735–756. [PubMed][CrossRef]
123. O’Byrne CP, Ni Bhriain N, Dorman CJ. 1992. The DNA supercoiling-sensitive expression of the Salmonella typhimurium his operon requires the his attenuator and is modulated by anaerobiosis and by osmolarity. Mol Microbiol 6:2467–2476.[PubMed]
124. Schramm G, Zapatka M, Eils R, Konig R. 2007. Using gene expression data and network topology to detect substantial pathways, clusters and switches during oxygen deprivation of Escherichia coli. BMC Bioinformatics 8:149. [PubMed][CrossRef]
125. Figueroa N, Wills N, Bossi L. 1991. Common sequence determinants of the response of a prokaryotic promoter to DNA bending and supercoiling. EMBO J 10:941–949.[PubMed]
126. Rudd KE, Menzel R. 1987. his operons of Escherichia coli and Salmonella typhimurium are regulated by DNA supercoiling. Proc Natl Acad Sci USA 84:517–521. [PubMed][CrossRef]
127. Jurgens C, Strom A, Wegener D, Hettwer S, Wilmanns M, Sterner R. 2000. Directed evolution of a (beta alpha)8-barrel enzyme to catalyze related reactions in two different metabolic pathways. Proc Natl Acad Sci USA 97:9925–9930. [PubMed][CrossRef]
128. Leopoldseder S, Claren J, Jurgens C, Sterner R. 2004. Interconverting the catalytic activities of (beta alpha)(8)-barrel enzymes from different metabolic pathways: sequence requirements and molecular analysis. J Mol Biol 337:871–879. [PubMed][CrossRef]
129. Hidalgo M, Rodriguez G, Kuhn JG, Brown T, Weiss G, MacGovren JP, Von Hoff DD, Rowinsky EK. 1998. A Phase I and pharmacological study of the glutamine antagonist acivicin with the amino acid solution aminosyn in patients with advanced solid malignancies. Clin Cancer Res 4:2763–2770.[PubMed]
130. Gibert I, Casadesus J. 1990. sulA-independent division inhibition in his-constitutive strains of Salmonella typhimurium. FEMS Microbiol Lett 57:205–210. [PubMed][CrossRef]
131. Murray ML, Hartman PE. 1972. Overproduction of hisH and hisF gene products leads to inhibition of cell cell division in Salmonella. Can J Microbiol 18:671–681.[PubMed]
132. Frandsen N, D’Ari R. 1993. Excess histidine enzymes cause AICAR-independent filamentation in Escherichia coli. Mol Gen Genet 240:348–354.[PubMed]
133. Cano DA, Mouslim C, Ayala JA, Garcia-del Portillo F, Casadesus J. 1998. Cell division inhibition in Salmonella typhimurium histidine-constitutive strains: an ftsI-like defect in the presence of wild-type penicillin-binding protein 3 levels. J Bacteriol 180:5231–5234.[PubMed]
134. Henry T, Garcia-Del Portillo F, Gorvel JP. 2005. Identification of Salmonella functions critical for bacterial cell division within eukaryotic cells. Mol Microbiol 56:252–267. [PubMed][CrossRef]
135. Brilli M, Fani R. 2004. Molecular evolution of hisB genes. J Mol Evol 58:225–237. [PubMed][CrossRef]
136. Mizuguchi H, Hayashi H, Miyahara I, Hirotsu K, Kagamiyama H. 2003. Characterization of histidinol phosphate aminotransferase from Escherichia coli. Biochim Biophys Acta 1647:321–324.[PubMed]
137. Cheong CG, Bauer CB, Brushaber KR, Escalante-Semerena JC, Rayment I. 2002. Three-dimensional structure of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica. Biochemistry 41:4798–4808. [PubMed][CrossRef]
138. Cheong CG, Escalante-Semerena JC, Rayment I. 2002. Structural studies of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica: the apo, substrate, and product-aldimine complexes. Biochemistry 41:9079–9089. [PubMed][CrossRef]
139. Fernandez FJ, Vega MC, Lehmann F, Sandmeier E, Gehring H, Christen P, Wilmanns M. 2004. Structural studies of the catalytic reaction pathway of a hyperthermophilic histidinol-phosphate aminotransferase. J Biol Chem 279:21478–21488. [PubMed][CrossRef]
140. Alifano P, Carlomagno MS, Bruni CB. 1992. Location of the hisGDCBHAFI operon on the physical map of Escherichia coli. J Bacteriol 174:3830–3831.[PubMed]
141. Martin RG. 1963. The one operon-one messenger theory of transcription. Cold Spring Harbor Symp Quant Biol 28:357–361.
142. Choy HE. 2000. The study of guanosine 5′-diphosphate 3′-diphosphate-mediated transcription regulation in vitro using a coupled transcription-translation system. J Biol Chem 275:6783–6789. [PubMed][CrossRef]
143. Paul BJ, Berkmen MB, Gourse RL. 2005. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc Natl Acad Sci USA 102:7823–7828. [PubMed][CrossRef]
144. Barnes WM. 1978. DNA sequence from the histidine operon control region: seven histidine codons in a row. Proc Natl Acad Sci USA 75:4281–4285. [PubMed][CrossRef]
145. Di Nocera PP, Blasi F, Di Lauro R, Frunzio R, Bruni CB. 1978. Nucleotide sequence of the attenuator region of the histidine operon of Escherichia coli K-12. Proc Natl Acad Sci USA 75:4276–4280. [PubMed][CrossRef]
146. Da Costa XJ, Artz SW. 1997. Mutations that render the promoter of the histidine operon of Salmonella typhimurium insensitive to nutrient-rich medium repression and amino acid downshift. J Bacteriol 179:5211–5217.[PubMed]
147. Verde P, Frunzio R, di Nocera PP, Blasi F, Bruni CB. 1981. Identification, nucleotide sequence and expression of the regulatory region of the histidine operon of Escherichia coli K-12. Nucleic Acids Res 9:2075–2086. [PubMed][CrossRef]
148. Prival MJ, Cebula TA. 1992. Sequence analysis of mutations arising during prolonged starvation of Salmonella typhimurium. Genetics 132:303–310.[PubMed]
149. Parsons SM, Koshland DE, Jr. 1974. A rapid isolation of phosphoribosyladenosine triphosphate synthetase and comparison to native enzyme. J Biol Chem 249:4104–4109.[PubMed]
150. Grisolia V, Riccio A, Bruni CB. 1983. Structure and function of the internal promoter (hisBp) of the Escherichia coli K-12 histidine operon. J Bacteriol 155:1288–1296.[PubMed]
151. Schmid MB, Roth JR. 1983. Internal promoters of the his operon in Salmonella typhimurium. J Bacteriol 153:1114–1119.[PubMed]
152. Ely B, Ciesla Z. 1974. Internal promoter P2 of the histidine operon of Salmonella typhimurium. J Bacteriol 120:984–986.[PubMed]
153. Yanofsky C, Platt T, Crawford IP, Nichols BP, Christie GE, Horowitz H, VanCleemput M, Wu AM. 1981. The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res 9:6647–6668. [PubMed][CrossRef]
154. Piszkiewicz D, Tilley BE, Rand-Meir T, Parsons SM. 1979. Amino acid sequence of ATP phosphoribosyltransferase of Salmonella typhimurium. Proc Natl Acad Sci USA 76:1589–1592. [CrossRef]
155. Carlomagno MS, Blasi F, Bruni CB. 1983. Gene organization in the distal part of the Salmonella typhimurium histidine operon and determination and sequence of the operon transcription terminator. Mol Gen Genet 191:413–420. [PubMed][CrossRef]
156. Grisolia V, Carlomagno MS, Nappo AG, Bruni CB. 1985. Cloning, structure, and expression of the Escherichia coli K-12 hisC gene. J Bacteriol 164:1317–1323.[PubMed]
157. Riggs D, Artz S. 1984. The hisD-hisC gene border of the Salmonella typhimurium histidine operon. Mol Gen Genet 196:526–529. [PubMed][CrossRef]
158. Higgins CF, Ames GF, Barnes WM, Clement JM, Hofnung M. 1982. A novel intercistronic regulatory element of prokaryotic operons. Nature 298:760–762. [PubMed][CrossRef]
159. Shyamala V, Schneider E, Ames GF. 1990. Tandem chromosomal duplications: role of REP sequences in the recombination event at the join-point. EMBO J 9:939–946.[PubMed]
160. Whitfield HJ Jr, Gutnick DL, Margolies MN, Martin RG, Rechler MM, Voll MJ. 1970. Relative translation frequencies of the cistrons of the histidine operon. J Mol Biol 49:245–249. [PubMed][CrossRef]
161. Berberich MA, Kovach JS, Goldberger RF. 1967. Chain initiation in a polycistronic message: sequential versus simultaneous derepression of the enzymes for histidine biosynthesis in Salmonella typhimurium. Proc Natl Acad Sci USA 57:1857–1864. [PubMed][CrossRef]
162. Vitreschak AG, Lyubetskaya EV, Shirshin MA, Gelfand MS, Lyubetsky VA. 2004. Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis. FEMS Microbiol Lett 234:357–370. [PubMed][CrossRef]
163. Alifano P, Rivellini F, Nappo AG, Bruni CB, Carlomagno MS. 1994. Alternative patterns of his operon transcription and mRNA processing generated by metabolic perturbation. Gene 146:15–21. [PubMed][CrossRef]
164. Alifano P, Rivellini F, Piscitelli C, Arraiano CM, Bruni CB, Carlomagno MS. 1994. Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Dev 8:3021–3031. [PubMed][CrossRef]
165. Li Y, Altman S. 2003. A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs. Proc Natl Acad Sci USA 100:13213–13218. [PubMed][CrossRef]
166. Alifano P, Ciampi MS, Nappo AG, Bruni CB, Carlomagno MS. 1988. In vivo analysis of the mechanisms responsible for strong transcriptional polarity in a “sense” mutant within an intercistronic region. Cell 55:351–360. [PubMed][CrossRef]
167. Fink GR, Martin RG. 1967. Translation and polarity in the histidine operon. II. Polarity in the histidine operon. J Mol Biol 30:97–107. [PubMed][CrossRef]
168. Carlomagno MS, Nappo A. 2001. The antiterminator NusB enhances termination at a sub-optimal Rho site. J Mol Biol 309:19–28. [PubMed][CrossRef]
169. Carlomagno MS, Nappo A. 2003. NusA modulates intragenic termination by different pathways. Gene 308:115–128. [PubMed][CrossRef]
170. Carrano L, Alifano P, Corti E, Bucci C, Donadio S. 2003. A new inhibitor of the transcription-termination factor Rho. Biochem Biophys Res Commun 302:219–225. [PubMed][CrossRef]
171. Carrano L, Bucci C, De Pascalis R, Lavitola A, Manna F, Corti E, Bruni CB, Alifano P. 1998. Effects of bicyclomycin on RNA- and ATP-binding activities of transcription termination factor Rho. Antimicrob Agents Chemother 42:571–578.[PubMed]
172. Pease AJ, Roa BR, Luo W, Winkler ME. 2002. Positive growth rate-dependent regulation of the pdxA, ksgA, and pdxB genes of Escherichia coli K-12. J Bacteriol 184:1359–1369. [PubMed][CrossRef]
173. Rudd KE, Bochner BR, Cashel M, Roth JR. 1985. Mutations in the spoT gene of Salmonella typhimurium: effects on his operon expression. J Bacteriol 163:534–542.[PubMed]
174. Riccio A, Bruni CB, Rosenberg M, Gottesman M, McKenney K, Blasi F. 1985. Regulation of single and multicopy his operons in Escherichia coli. J Bacteriol 163:1172–1179.[PubMed]
175. Cashel M, Rudd KE. 1987. Stringent response, p 1410–1438. In Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC.
176. Durfee T, Hansen AM, Zhi H, Blattner FR, Jin DJ. 2008. Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 190:1084–1096. [PubMed][CrossRef]
177. Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. 1991. Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266:5980–5990.[PubMed]
178. Barker MM, Gaal T, Gourse RL. 2001. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J Mol Biol 305:689–702. [PubMed][CrossRef]
179. Barker MM, Gaal T, Josaitis CA, Gourse RL. 2001. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 305:673–688. [PubMed][CrossRef]
180. Vrentas CE, Gaal T, Ross W, Ebright RH, Gourse RL. 2005. Response of RNA polymerase to ppGpp: requirement for the omega subunit and relief of this requirement by DksA. Genes Dev 19:2378–2387. [PubMed][CrossRef]
181. Barnes WM, Tuley E. 1983. DNA sequence changes of mutations in the histidine operon control region that decrease attenuation. J Mol Biol 165:443–459. [PubMed][CrossRef]
182. Lee F, Yanofsky C. 1977. Transcription termination at the trp operon attenuators of Escherichia coli and Salmonella typhimurium: RNA secondary structure and regulation of termination. Proc Natl Acad Sci USA 74:4365–4369. [PubMed][CrossRef]
183. Chan CL, Landick R. 1993. Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin. J Mol Biol 233:25–42. [PubMed][CrossRef]
184. Chan CL, Landick R. 1997. Effects of neutral salts on RNA chain elongation and pausing by Escherichia coli RNA polymerase. J Mol Biol 268:37–53. [PubMed][CrossRef]
185. Chan CL, Wang D, Landick R. 1997. Multiple interactions stabilize a single paused transcription intermediate in which hairpin to 3′ end spacing distinguishes pause and termination pathways. J Mol Biol 268:54–68. [PubMed][CrossRef]
186. Lee DN, Landick R. 1992. Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. J Mol Biol 228:759–777. [PubMed][CrossRef]
187. Landick R. 2006. The regulatory roles and mechanism of transcriptional pausing. Biochem Soc Trans 34:1062–1066. [PubMed][CrossRef]
188. Toulokhonov I, Zhang J, Palangat M, Landick R. 2007. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell 27:406–419. [PubMed][CrossRef]
189. Schimmel P, Giege R, Moras D, Yokoyama S. 1993. An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768. [PubMed][CrossRef]
190. Artz SW, Broach JR. 1975. Histidine regulation in Salmonella typhimurium: an activator attenuator model of gene regulation. Proc Natl Acad Sci USA 72:3453–3457. [PubMed][CrossRef]
191. Elf J, Ehrenberg M. 2005. What makes ribosome-mediated transcriptional attenuation sensitive to amino acid limitation? PLoS Comput Biol 1:e2. [PubMed][CrossRef]
192. Meyers M, Levinthal M, Goldberger RF. 1975. trans-Recessive mutation in the first structural gene of the histidine operon that results in constitutive expression of the operon. J Bacteriol 124:1227–1235.[PubMed]
193. Goldberger RF. 1974. Autogenous regulation of gene expression. Science 183:810–816. [PubMed][CrossRef]
194. Scott JF, Roth JR, Artz SW. 1975. Regulation of histidine operon does not require hisG enzyme. Proc Natl Acad Sci USA 72:5021–5025. [PubMed][CrossRef]
195. Kleeman JE, Parsons SM. 1977. Inhibition of histidyl-tRNA-adenosine triphosphate phosphoribosyltransferase complex formation by histidine and by guanosine tetraphosphate. Proc Natl Acad Sci USA 74:1535–1537. [CrossRef]
196. Ames BN, Tsang TH, Buck M, Christman MF. 1983. The leader mRNA of the histidine attenuator region resembles tRNAHis: possible general regulatory implications. Proc Natl Acad Sci USA 80:5240–5242. [PubMed][CrossRef]
197. Roth JR, Anton DN, Hartman PE. 1966. Histidine regulatory mutants in Salmonella typhimurium. I. Isolation and general properties. J Mol Biol 22:305–323. [PubMed][CrossRef]
198. Bossi L. 1983. The hisR locus of Salmonella: nucleotide sequence and expression. Mol Gen Genet 192:163–170. [PubMed][CrossRef]
199. Himeno H, Hasegawa T, Ueda T, Watanabe K, Miura K, Shimizu M. 1989. Role of the extra G-C pair at the end of the acceptor stem of tRNA(His) in aminoacylation. Nucleic Acids Res 17:7855–7863. [PubMed][CrossRef]
200. Hsu LM, Klee HJ, Zagorski J, Fournier MJ. 1984. Structure of an Escherichia coli tRNA operon containing linked genes for arginine, histidine, leucine, and proline tRNAs. J Bacteriol 158:934–942.[PubMed]
201. Ow MC, Kushner SR. 2002. Initiation of tRNA maturation by RNase E is essential for cell viability in E coli Genes Dev 16:1102–1115. [PubMed][CrossRef]
202. Bossi L, Smith DM. 1984. Conformational change in the DNA associated with an unusual promoter mutation in a tRNA operon of Salmonella. Cell 39:643–652. [PubMed][CrossRef]
203. Davis L, Williams LS. 1982. Characterization of a cold-sensitive hisW mutant of Salmonella typhimurium. J Bacteriol 151:867–878.[PubMed]
204. Figueroa-Bossi N, Guerin M, Rahmouni R, Leng M, Bossi L. 1998. The supercoiling sensitivity of a bacterial tRNA promoter parallels its responsiveness to stringent control. EMBO J 17:2359–2367. [PubMed][CrossRef]
205. Blanc-Potard AB, Figueroa-Bossi N, Bossi L. 1999. Histidine operon deattenuation in dnaA mutants of Salmonella typhimurium correlates with a decrease in the gene dosage ratio between tRNA(His) and histidine biosynthetic loci. J Bacteriol 181:2938–2941.[PubMed]
206. Di Natale P, Schechter AN, Castronuovo Lepore G, De Lorenzo F. 1976. Histidyl transfer ribonucleic acid synthetase from Salmonella typhimurium. Interaction with substrates and ATP analogues. Eur J Biochem 62:293–298. [PubMed][CrossRef]
207. De Lorenzo F, Straus DS, Ames BN. 1972. Histidine regulation in Salmonella typhimurium. X. Kinetic studies of mutant histidyl transfer ribonucleic acid synthetases. J Biol Chem 247:2302–2307.[PubMed]
208. McGinnis E, Williams LS. 1972. Regulation of histidyl-transfer ribonucleic acid synthetase formation in a histidyl-transfer ribonucleic acid synthetase mutant of Salmonella typhimurium. J Bacteriol 111:739–744.[PubMed]
209. Singer CE, Smith GR, Cortese R, Ames BN. 1972. [Mutant tRNA His ineffective in repression and lacking two pseudouridine modifications.]. Nat New Biol 238:72–74. [PubMed][CrossRef]
210. Turnbough CL Jr, Neill RJ, Landsberg R, Ames BN. 1979. Pseudouridylation of tRNAs and its role in regulation in Salmonella typhimurium. J Biol Chem 254:5111–5119.[PubMed]
211. Limauro D, Avitabile A, Puglia AM, Bruni CB. 1992. Further characterization of the histidine gene cluster of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis of hisD. Res Microbiol 143:683–693. [PubMed][CrossRef]
212. Artz S, Holzschu D, Blum P, Shand R. 1983. Use of M13mp phages to study gene regulation, structure and function: cloning and recombinational analysis of genes of the Salmonella typhimurium histidine operon. Gene 26:147–158. [PubMed][CrossRef]
213. Palmer DT, Blum PH, Artz SW. 1983. Effects of the hisT mutation of Salmonella typhimurium on translation elongation rate. J Bacteriol 153:357–363.[PubMed]
214. Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Bjork GR. 2001. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20:4863–4873. [PubMed][CrossRef]
215. Kitchingman GR, Fournier MJ. 1977. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation. Biochemistry 16:2213–2220. [PubMed][CrossRef]
216. Thomale J, Nass G. 1978. Alteration of the intracellular concentration of aminoacyl-tRNA synthetases and isoaccepting tRNAs during amino-acid limited growth in Escherichia coli. Eur J Biochem 85:407–418. [PubMed][CrossRef]
217. Arps PJ, Winkler ME. 1987. An unusual genetic link between vitamin B6 biosynthesis and tRNA pseudouridine modification in Escherichia coli K-12. J Bacteriol 169:1071–1079.[PubMed]
218. Tsui HC, Arps PJ, Connolly DM, Winkler ME. 1991. Absence of hisT-mediated tRNA pseudouridylation results in a uracil requirement that interferes with Escherichia coli K-12 cell division. J Bacteriol 173:7395–7400.[PubMed]
219. Kammen HO, Marvel CC, Hardy L, Penhoet EE. 1988. Purification, structure, and properties of Escherichia coli tRNA pseudouridine synthase I. J Biol Chem 263:2255–2263.[PubMed]
220. Ames BN. 1972. A bacterial system for detecting mutagens and carcinomas, p 57–66. In Sutton HE and Harris MI (ed), Mutagenic Effects of Environmental Contaminants. Academic Press, Inc., New York, NY.
221. Ames GF. 1986. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 55:397–425. [PubMed][CrossRef]
222. Ames GF, Nikaido K, Wang IX, Liu PQ, Liu CE, Hu C. 2001. Purification and characterization of the membrane-bound complex of an ABC transporter, the histidine permease. J Bioenerg Biomembr 33:79–92. [PubMed][CrossRef]
223. Doige CA, Ames GF. 1993. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol 47:291–319. [PubMed][CrossRef]
224. Liu CE, Ames GF. 1997. Characterization of transport through the periplasmic histidine permease using proteoliposomes reconstituted by dialysis. J Biol Chem 272:859–866. [PubMed][CrossRef]
225. Nikaido K, Liu PQ, Ames GF. 1997. Purification and characterization of HisP, the ATP-binding subunit of a traffic ATPase (ABC transporter), the histidine permease of Salmonella typhimurium. Solubility, dimerization, and ATPase activity. J Biol Chem 272:27745–27752. [PubMed][CrossRef]
ecosalplus.3.6.1.9.citations
ecosalplus/3/2
content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.9
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.1.9
2009-09-04
2017-07-26

Abstract:

The biosynthesis of histidine in and has been an important model system for the study of relationships between the flow of intermediates through a biosynthetic pathway and the control of the genes encoding the enzymes that catalyze the steps in a pathway. This article provides a comprehensive review of the histidine biosynthetic pathway and enzymes, including regulation of the flow of intermediates through the pathway and mechanisms that regulate the amounts of the histidine biosynthetic enzymes. In addition, this article reviews the structure and regulation of the histidine () biosynthetic operon, including transcript processing, Rho-factor-dependent “classical” polarity, and the current model of operon attenuation control. Emphasis is placed on areas of recent progress. Notably, most of the enzymes that catalyze histidine biosynthesis have recently been crystallized, and their structures have been determined. Many of the histidine biosynthetic intermediates are unstable, and the histidine biosynthetic enzymes catalyze some chemically unusual reactions. Therefore, these studies have led to considerable mechanistic insight into the pathway itself and have provided deep biochemical understanding of several fundamental processes, such as feedback control, allosteric interactions, and metabolite channeling. Considerable recent progress has also been made on aspects of operon regulation, including the mechanism of pp(p)Gpp stimulation of operon transcription, the molecular basis for transcriptional pausing by RNA polymerase, and pathway evolution. The progress in these areas will continue as sophisticated new genomic, metabolomic, proteomic, and structural approaches converge in studies of the histidine biosynthetic pathway and mechanisms of control of biosynthetic genes in other bacterial species.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The steps in the pathway are described in the text, and the enzymes that catalyze the reactions are listed in Table 1 . When the enzymes are bifunctional (C) indicates that the carboxyl terminal is performing the reaction and (N) indicates that the amino terminal is performing the reaction.

Citation: Winkler M, Ramos-Montañez S. 2009. Biosynthesis of Histidine, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.1.9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

, operon primary promoter; LP, leader peptide; , attenuator; and , operon internal promoters; , terminator at the end of operon; REP is a repetitive extragenic palindromic element that is present between and in serovar Typhimurium but not in ; , promoter of gene. Arrows at the bottom of the figure show the length of the transcripts.

Citation: Winkler M, Ramos-Montañez S. 2009. Biosynthesis of Histidine, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.1.9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The −35 and −10 regions of the promoter and the start point of transcription are indicated. S/D designates the weak and strong Shine-Dalgarno sequences in the translation initiation regions for the leader peptide and polypeptide, respectively. A′, A, B, B′, C, D, E, and F refer to segments of the leader transcript that can base pair to form the alternative, mutually exclusive RNA secondary structures shown in Fig. 4 . The site of pausing by RNA polymerase during in vitro transcription of the leader region is indicated ( 110 ). The major (heavy arrow) and minor (light arrows) are points of transcription termination in the attenuator region. Figure is redrawn from reference 6 .

Citation: Winkler M, Ramos-Montañez S. 2009. Biosynthesis of Histidine, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.1.9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Letters designate segments of the leader transcript that base pair to form secondary structures. Ribosome labeled lines indicate the nucleotides masked by a ribosome stopped at a codon. The model for attenuation is described in the text. (A) Transcription termination configuration caused by translation of the leader transcript to the UAG stop codon. (B) Readthrough transcription configuration caused by ribosome stalling at the fourth histidine codon in the leader transcript. (C) Transcription termination configuration caused by ribosome stalling at the Gln codon in the leader transcript. Configuration C will also occur in the absence of translation of the leader transcript or after rapid dissociation of the ribosome at the translation stop codon. Configuration C also indicates the pause site (arrowhead marked with P) where RNA polymerase temporarily halts elongation after synthesis of A:B ( 101 , 110 , 183 ). The role of pausing in synchronizing the attenuation mechanism is described in the text. Figure modified from reference 122 .

Citation: Winkler M, Ramos-Montañez S. 2009. Biosynthesis of Histidine, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.1.9
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Properties of enzymes encoded by the operon and major regulatory loci

Citation: Winkler M, Ramos-Montañez S. 2009. Biosynthesis of Histidine, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.1.9
Generic image for table
Table 2

Parameters of histidine biosynthesis in wild-type serovar Typhimurium and

Citation: Winkler M, Ramos-Montañez S. 2009. Biosynthesis of Histidine, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.1.9
Generic image for table
Table 3

Parameters of the operon structure and regulation

Citation: Winkler M, Ramos-Montañez S. 2009. Biosynthesis of Histidine, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.1.9

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error