1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Author: Andrei Osterman1
  • Editor: Tadhg P. Begley2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Burnham Institute for Medical Research, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, and Fellowship for Interpretation of Genomes; 2: Texas A&M University, College Station, Texas
  • Received 06 February 2008 Accepted 05 May 2008 Published 13 February 2009
  • Address correspondence to Andrei Osterman osterman@burnham.org
image of Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor
    Preview this reference work article:
    Zoom in
    Zoomout

    Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/2/3_6_3_10_module-1.gif /docserver/preview/fulltext/ecosalplus/3/2/3_6_3_10_module-2.gif
  • Abstract:

    Universal and ubiquitous redox cofactors, nicotinamide adenine dinucleotide (NAD) and its phosphorylated analog (NADP), collectively contribute to approximately 12% of all biochemical reactions included in the metabolic model of K-12. A homeostasis of the NAD pool faithfully maintained by the cells results from a dynamic balance in a network of NAD biosynthesis, utilization, decomposition, and recycling pathways that is subject to tight regulation at various levels. A brief overview of NAD utilization processes is provided in this review, including some examples of nonredox utilization. The review focuses mostly on those aspects of NAD biogenesis and utilization in and that emerged within the past 12 years. The first pyridine nucleotide cycle (PNC) originally identified in mammalian systems and termed the Preiss-Handler pathway includes a single-step conversion of niacin (Na) to NaMN by nicotinic acid phosphoribosyltransferase (PncB). In and many other prokaryotes, this enzyme, together with nicotinamide deamidase (PncA), compose the major pathway for utilization of the pyridine ring in the form of amidated (Nm) or deamidated (Na) precursors. The existence of various regulatory mechanisms and checkpoints that control the NAD biosynthetic machinery reflects the importance of maintaining NAD homeostasis in a variety of growth conditions. Among the most important regulatory mechanisms at the level of individual enzymes are a classic feedback inhibition of NadB, the first enzyme of NAD de novo biosynthesis, by NAD and a metabolic regulation of NadK by reduced cofactors.

  • Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10

Key Concept Ranking

Coenzyme A
0.47162393
Bacteria and Archaea
0.42288578
Horizontal Gene Transfer
0.38138875
Programmed Cell Death
0.34101826
Saccharomyces cerevisiae
0.33514494
0.47162393

References

1. Reed JL, Vo TD, Schilling CH, Palsson BO. 2003. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4:R54. [CrossRef]
2. Cheng W, Roth J. 1995. Isolation of NAD cycle mutants defective in nicotinamide mononucleotide deamidase in Salmonella typhimurium. J Bacteriol 177:6711–6717.[PubMed]
3. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol [Online.] 2:msb4100050-E1–msb4100050-E11. [CrossRef]
4. Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL. 2003. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684.[PubMed][CrossRef]
5. Kornberg A. 1948. The participation of inorganic pyrophosphate in the reversible enzymatic synthesis of diphosphopyridine nucleotide. J Biol Chem 176:1475.
6. Preiss J, Handler P. 1958. Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem 233:493–500.[PubMed]
7. Penfound T, Foster JW. 1996. Biosynthesis and recycling of NAD, p 721–730. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, DC.
8. Tritz G. 1987. NAD biosynthesis and recycling, p 557–563. In Neidhardt F, Ingraham J, Low KB, Magasanik B, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, DC.
9. Gerdes SY, Scholle MD, D'Souza M, Bernal A, Baev MV, Farrell M, Kurnasov OV, Daugherty MD, Mseeh F, Polanuyer BM, Campbell JW, Anantha S, Shatalin KY, Chowdhury SA, Fonstein MY, Osterman AL. 2002. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol 184:4555–4572. [PubMed][CrossRef]
10. Osterman AL, Begley TP. 2007. A subsystems-based approach to the identification of drug targets in bacterial pathogens. Prog Drug Res 64:131, 133–170. [CrossRef]
11. Begley TP, Kinsland C, Mehl RA, Osterman A, Dorrestein P. 2001. The biosynthesis of nicotinamide adenine dinucleotides in bacteria. Vitam Horm 61:103–119. [PubMed][CrossRef]
12. Belenky P, Bogan KL, Brenner C. 2007. NAD+ metabolism in health and disease. Trends Biochem Sci 32:12–19. [PubMed][CrossRef]
13. Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S. 1999. Enzymology of NAD+ synthesis. Adv Enzymol Relat Areas Mol Biol 73:135–182. [PubMed][CrossRef]
14. Rizzi M, Schindelin H. 2002. Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis. Curr Opin Struct Biol 12:709–720. [PubMed][CrossRef]
15. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1,000 genomes. Nucleic Acids Res 33:5691–5702. [PubMed][CrossRef]
16. Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC. 2007. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem 282:30239–30245. [PubMed][CrossRef]
17. Osterman A, Overbeek R. 2003. Missing genes in metabolic pathways: a comparative genomics approach. Curr Opin Chem Biol 7:238–251.[PubMed][CrossRef]
18. Kawai S, Mori S, Mukai T, Hashimoto W, Murata K. 2001. Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem 268:4359–4365. [PubMed][CrossRef]
19. Mehl RA, Kinsland C, Begley TP. 2000. Identification of the Escherichia coli nicotinic acid mononucleotide adenylyltransferase gene. J Bacteriol 182:4372–434. [PubMed][CrossRef]
20. Kurnasov O, Goral V, Colabroy K, Gerdes S, Anantha S, Osterman A, Begley TP. 2003. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chem Biol 10:1195–1204. [PubMed][CrossRef]
21. Rodionov DA, Li X, Rodionova IA, Yang C, Sorci L, Dervyn E, Martynowski D, Zhang H, Gelfand MS, Osterman AL. 2008. Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon. Nucleic Acids Res 36:2032–2046. [PubMed][CrossRef]
22. Rossolillo P, Marinoni I, Galli E, Colosimo A, Albertini AM. 2005. YrxA is the transcriptional regulator that represses de novo NAD biosynthesis in Bacillus subtilis. J Bacteriol 187:7155–7160. [CrossRef]
23. Prunier AL, Schuch R, Fernandez RE, Maurelli AT. 2007. Genetic structure of the nadA and nadB antivirulence loci in Shigella spp. J Bacteriol 189:6482–6486. [PubMed][CrossRef]
24. Prunier AL, Schuch R, Fernandez RE, Mumy KL, Kohler H, McCormick BA, Maurelli AT. 2007. nadA and nadB of Shigella flexneri 5a are antivirulence loci responsible for the synthesis of quinolinate, a small molecule inhibitor of Shigella pathogenicity. Microbiology 153:2363–2372. [PubMed][CrossRef]
25. Bergthorsson U, Roth JR. 2005. Natural isolates of Salmonella enterica serovar Dublin carry a single nadA missense mutation. J Bacteriol 187:400–403. [PubMed][CrossRef]
26. Mortarino M, Negri A, Tedeschi G, Simonic T, Duga S, Gassen HG, Ronchi S. 1996. L-Aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition. Eur J Biochem 239:418–426. [PubMed][CrossRef]
27. Tedeschi G, Negri A, Mortarino M, Ceciliani F, Simonic T, Faotto L, Ronchi S. 1996. L-Aspartate oxidase from Escherichia coli. II. Interaction with C4 dicarboxylic acids and identification of a novel L-aspartate: fumarate oxidoreductase activity. Eur J Biochem 239:427–433. [PubMed][CrossRef]
28. Flachmann R, Kunz N, Seifert J, Gutlich M, Wientjes FJ, Laufer A, Gassen HG. 1988. Molecular biology of pyridine nucleotide biosynthesis in Escherichia coli. Cloning and characterization of quinolinate synthesis genes nadA and nadB. Eur J Biochem 175:221–228. [PubMed][CrossRef]
29. Seifert J, Kunz N, Flachmann R, Laufer A, Jany KD, Gassen HG. 1990. Expression of the E. coli nadB gene and characterization of the gene product L-aspartate oxidase. Biol Chem Hoppe Seyler 371:239–348.[PubMed]
30. Nasu S, Wicks FD, Gholson RK. 1982. L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase. J Biol Chem 257:626–632.[PubMed]
31. Tedeschi G, Negri A, Ceciliani F, Mattevi A, Ronchi S. 1999. Structural characterization of L-Aspartate oxidase and identification of an interdomain loop by limited proteolysis. Eur J Biochem 260:896–903. [PubMed][CrossRef]
32. Messner KR, Imlay JA. 2002. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem 277:42563–42571. [PubMed][CrossRef]
33. Mattevi A, Tedeschi G, Bacchella L, Coda A, Negri A, Ronchi S. 1999. Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family. Structure 7:745–756. [PubMed][CrossRef]
34. Bossi RT, Negri A, Tedeschi G, Mattevi A. 2002. Structure of FAD-bound L-aspartate oxidase: insight into substrate specificity and catalysis. Biochemistry 41:3018–3024. [PubMed][CrossRef]
35. Yang Z, Savchenko A, Yakunin A, Zhang R, Edwards A, Arrowsmith C, Tong L. 2003. Aspartate dehydrogenase, a novel enzyme identified from structural and functional studies of TM1643. J Biol Chem 278:8804–8808. [PubMed][CrossRef]
36. Katoh A, Uenohara K, Akita M, Hashimoto T. 2006. Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 141:851–857. [PubMed][CrossRef]
37. Ceciliani F, Caramori T, Ronchi S, Tedeschi G, Mortarino M, Galizzi A. 2000. Cloning, overexpression, and purification of Escherichia coli quinolinate synthetase. Protein Expr Purif 18:64–70. [CrossRef]
38. Loiseau L, Ollagnier-de Choudens S, Lascoux D, Forest E, Fontecave M, Barras F. 2005. Analysis of the heteromeric CsdA-CsdE cysteine desulfurase, assisting Fe-S cluster biogenesis in Escherichia coli. J Biol Chem 280:26760–26769. [PubMed][CrossRef]
39. Ollagnier-de Choudens S, Sanakis Y, Abdel-Ghany SE, Rousset C, Ye H, Fontecave M, Pilon-Smits EA, Pilon M. 2007. Characterization of Arabidopsis thaliana SufE2 and SufE3: functions in chloroplast iron-sulfur cluster assembly and Nad synthesis. J Biol Chem 282:18254–18264. [PubMed][CrossRef]
40. Ollagnier-de Choudens S, Loiseau L, Sanakis Y, Barras F, Fontecave M. 2005. Quinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesis. FEBS Lett 579:3737–3743. [PubMed][CrossRef]
41. Sakuraba H, Tsuge H, Yoneda K, Katunuma N, Ohshima T. 2005. Crystal structure of the NAD biosynthetic enzyme quinolinate synthase. J Biol Chem 280:26645–26648. [PubMed][CrossRef]
42. Hughes KT, Dessen A, Gray JP, Grubmeyer C. 1993. The Salmonella typhimurium nadC gene: sequence determination by use of Mud-P22 and purification of quinolinate phosphoribosyltransferase. J Bacteriol 175:479–486.[PubMed]
43. Hughes KT, Roth JR, Olivera BM. 1991. A genetic characterization of the nadC gene of Salmonella typhimurium. Genetics 127:657–670.[PubMed]
44. Eads JC, Ozturk D, Wexler TB, Grubmeyer C, Sacchettini JC. 1997. A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase. Structure 5:47–58. [PubMed][CrossRef]
45. Kim MK, Kang GB, Song WK, Eom SH. 2007. The role of Phe181 in the hexamerization of Helicobacter pylori quinolinate phosphoribosyltransferase. Protein J 26:517–521. [PubMed][CrossRef]
46. Schwarzenbacher R, Jaroszewski L, von Delft F, Abdubek P, Ambing E, Biorac T, Brinen LS, Canaves JM, Cambell J, Chiu HJ, Dai X, Deacon AM, DiDonato M, Elsliger MA, Eshagi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Hampton E, Karlak C, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Lesley SA, Levin I, McMullan D, McPhillips TM, Miller MD, Morse A, Moy K, Ouyang J, Page R, Quijano K, Robb A, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, Wang X, West B, Wolf G, Xu Q, Hodgson KO, Wooley J, Wilson IA. 2004. Crystal structure of a type II quinolic acid phosphoribosyltransferase (TM1645) from Thermotoga maritima at 2.50 Å resolution. Proteins 55:768–771. [PubMed][CrossRef]
47. Sharma V, Grubmeyer C, Sacchettini JC. 1998. Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential TB drug target. Structure 6:1587–1599. [PubMed][CrossRef]
48. Bhatia R, Calvo KC. 1996. The sequencing expression, purification, and steady-state kinetic analysis of quinolinate phosphoribosyl transferase from Escherichia coli. Arch Biochem Biophys 325:270–278. [PubMed][CrossRef]
49. Cao H, Pietrak BL, Grubmeyer C. 2002. Quinolinate phosphoribosyltransferase: kinetic mechanism for a type II PRTase. Biochemistry 41:3520–3528. [PubMed][CrossRef]
50. Liu H, Woznica K, Catton G, Crawford A, Botting N, Naismith JH. 2007. Structural and kinetic characterization of quinolinate phosphoribosyltransferase (hQPRTase) from homo sapiens. J Mol Biol 373:755–763. [PubMed][CrossRef]
51. Maggio-Hall LA, Escalante-Semerena JC. 1999. In vitro synthesis of the nucleotide loop of cobalamin by Salmonella typhimurium enzymes. Proc Natl Acad Sci USA 96:11798–11803. [PubMed][CrossRef]
52. Haferkamp I, Schmitz-Esser S, Linka N, Urbany C, Collingro A, Wagner M, Horn M, Neuhaus HE. 2004. A candidate NAD+ transporter in an intracellular bacterial symbiont related to chlamydiae. Nature 432:622–625. [PubMed][CrossRef]
53. Hughes KT, Ladika D, Roth JR, Olivera BM. 1983. An indispensable gene for NAD biosynthesis in Salmonella typhimurium. J Bacteriol 155:213–221.[PubMed]
54. Gerdes SY, Kurnasov OV, Shatalin K, Polanuyer B, Sloutsky R, Vonstein V, Overbeek R, Osterman AL. 2006. Comparative genomics of NAD biosynthesis in cyanobacteria. J Bacteriol 188:3012–3023. [PubMed][CrossRef]
55. Han S, Forman MD, Loulakis P, Rosner MH, Xie Z, Wang H, Danley DE, Yuan W, Schafer J, Xu Z. 2006. Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Staphyloccocus aureus: structural basis for NaAD interaction in functional dimer. J Mol Biol 360:814–825. [PubMed][CrossRef]
56. Olland AM, Underwood KW, Czerwinski RM, Lo MC, Aulabaugh A, Bard J, Stahl ML, Somers WS, Sullivan FX, Chopra R. 2002. Identification, characterization, and crystal structure of Bacillus subtilis nicotinic acid mononucleotide adenylyltransferase. J Biol Chem 277:3698–3707. [PubMed][CrossRef]
57. Yoon HJ, Kim HL, Mikami B, Suh SW. 2005. Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Pseudomonas aeruginosa in its Apo and substrate-complexed forms reveals a fully open conformation. J Mol Biol 351:258–265. [PubMed][CrossRef]
58. Zhang H, Zhou T, Kurnasov O, Cheek S, Grishin NV, Osterman A. 2002. Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD. Structure (Camb.) 10:69–79. [PubMed][CrossRef]
59. Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S. 2004. Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem 11:873–885. [PubMed][CrossRef]
60. Aravind L, Anantharaman V, Koonin EV. 2002. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA. Proteins 48:1–14. [PubMed][CrossRef]
61. Grose JH, Bergthorsson U, Roth JR. 2005. Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J Bacteriol 187:2774–2782. [PubMed][CrossRef]
62. Kurnasov OV, Polanuyer BM, Ananta S, Sloutsky R, Tam A, Gerdes SY, Osterman AL. 2002. Ribosylnicotinamide kinase domain of NadR protein: identification and implications in NAD biosynthesis. J Bacteriol 184:6906–6917. [PubMed][CrossRef]
63. Raffaelli N, Lorenzi T, Mariani PL, Emanuelli M, Amici A, Ruggieri S, Magni G. 1999. The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity. J Bacteriol 181:5509–5511.[PubMed]
64. Huang N, Sorci L, Zhang X, Brautigam CA, Li X, Raffaelli N, Magni G, Grishin NV, Osterman AL, Zhang H. 2008. Bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase: structure and function in bacterial NAD metabolism. Structure 16:196–209. [PubMed][CrossRef]
65. Raffaelli N, Lorenzi T, Amici A, Emanuelli M, Ruggieri S, Magni G. 1999. Synechocystis sp. slr0787 protein is a novel bifunctional enzyme endowed with both nicotinamide mononucleotide adenylyltransferase and “Nudix” hydrolase activities. FEBS Lett 444:222–226. [PubMed][CrossRef]
66. Hughes KT, Olivera BM, Roth JR. 1988. Structural gene for NAD synthetase in Salmonella typhimurium. J Bacteriol 170:2113–2120.[PubMed]
67. Willison JC, Tissot G. 1994. The Escherichia coli efg gene and the Rhodobacter capsulatus adgA gene code for NH3-dependent NAD synthetase. J Bacteriol 176:3400–3402.[PubMed]
68. Ozment C, Barchue J, DeLucas LJ, Chattopadhyay D. 1999. Structural study of Escherichia coli NAD synthetase: overexpression, purification, crystallization, and preliminary crystallographic analysis. J Struct Biol 127:279–282. [PubMed][CrossRef]
69. Jauch R, Humm A, Huber R, Wahl MC. 2005. Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements. J Biol Chem 280:15131–15140. [PubMed][CrossRef]
70. Rizzi M, Bolognesi M, Coda A. 1998. A novel deamido-NAD+-binding site revealed by the trapped NAD-adenylate intermediate in the NAD+ synthetase structure. Structure 6:1129–1140. [PubMed][CrossRef]
71. Symersky J, Devedjiev Y, Moore K, Brouillette C, DeLucas L. 2002. NH3-dependent NAD+ synthetase from Bacillus subtilis at 1 Å resolution. Acta Crystallogr D Biol Crystallogr 58:1138–1146. [PubMed][CrossRef]
72. Zalkin H. 1983. Structure, function, and regulation of amidophosphoribosyltransferase from prokaryotes. Adv Enzyme Regul 21:225–237. [PubMed][CrossRef]
73. Bieganowski P, Pace HC, Brenner C. 2003. Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem 278:33049–33055. [PubMed][CrossRef]
74. Bellinzoni M, Buroni S, Pasca MR, Guglierame P, Arcesi F, De Rossi E, Riccardi G. 2005. Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain. Res Microbiol 156:173–177.[PubMed]
75. Schneider BL, Reitzer LJ. 1998. Salmonella typhimurium nit is nadE: defective nitrogen utilization and ammonia-dependent NAD synthetase. J Bacteriol 180:4739–4741.[PubMed]
76. Cheng W, Roth JR. 1994. Evidence for two NAD kinases in Salmonella typhimurium. J Bacteriol 176:4260–4268.[PubMed]
77. Zerez CR, Moul DE, Gomez EG, Lopez VM, Andreoli AJ. 1987. Negative modulation of Escherichia coli NAD kinase by NADPH and NADH. J Bacteriol 169:184–188.[PubMed]
78. Kawai S, Mori S, Mukai T, Suzuki S, Yamada T, Hashimoto W, Murata K. 2000. Inorganic polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem Biophys Res Commun 276:57–63. [PubMed][CrossRef]
79. Garavaglia S, Galizzi A, Rizzi M. 2003. Allosteric regulation of Bacillus subtilis NAD kinase by quinolinic acid. J Bacteriol 185:4844–4850. [PubMed][CrossRef]
80. Liu J, Lou Y, Yokota H, Adams PD, Kim R, Kim SH. 2005. Crystal structures of an NAD kinase from Archaeoglobus fulgidus in complex with ATP, NAD, or NADP. J Mol Biol 354:289–303. [PubMed][CrossRef]
81. Poncet-Montange G, Assairi L, Arold S, Pochet S, Labesse G. 2007. NAD kinases use substrate-assisted catalysis for specific recognition of NAD. J Biol Chem 282:33925–33934. [PubMed][CrossRef]
82. Sakuraba H, Kawakami R, Ohshima T. 2005. First archaeal inorganic polyphosphate/ATP-dependent NAD kinase, from hyperthermophilic archaeon Pyrococcus horikoshii: cloning, expression, and characterization. Appl Environ Microbiol 71:4352–4358. [PubMed][CrossRef]
83. Grose JH, Joss L, Velick SF, Roth JR. 2006. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci USA 103:7601–7606. [PubMed][CrossRef]
84. Magni G, Orsomando G, Raffaelli N. 2006. Structural and functional properties of NAD kinase, a key enzyme in NADP biosynthesis. Mini Rev Med Chem 6:739–746. [PubMed][CrossRef]
85. Mori S, Yamasaki M, Maruyama Y, Momma K, Kawai S, Hashimoto W, Mikami B, Murata K. 2005. NAD-binding mode and the significance of intersubunit contact revealed by the crystal structure of Mycobacterium tuberculosis NAD kinase-NAD complex. Biochem Biophys Res Commun 327:500–508. [PubMed][CrossRef]
86. Raffaelli N, Finaurini L, Mazzola F, Pucci L, Sorci L, Amici A, Magni G. 2004. Characterization of Mycobacterium tuberculosis NAD kinase: functional analysis of the full-length enzyme by site-directed mutagenesis. Biochemistry 43:7610–7617. [CrossRef]
87. Labesse G, Douguet D, Assairi L, Gilles AM. 2002. Diacylglyceride kinases, sphingosine kinases and NAD kinases: distant relatives of 6-phosphofructokinases. Trends Biochem Sci 27:273–275. [PubMed][CrossRef]
88. Merdanovic M, Sauer E, Reidl J. 2005. Coupling of NAD+ biosynthesis and nicotinamide ribosyl transport: characterization of NadR ribonucleotide kinase mutants of Haemophilus influenzae. J Bacteriol 187:4410–4420. [PubMed][CrossRef]
89. Belenky P, Racette FG, Bogan KL, McClure JM, Smith JS, Brenner C. 2007. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129:473–484. [PubMed][CrossRef]
90. Bieganowski P, Brenner C. 2004. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 117:495–502. [PubMed][CrossRef]
91. Tempel W, Rabeh WM, Bogan KL, Belenky P, Wojcik M, Seidle HF, Nedyalkova L, Yang T, Sauve AA, Park HW, Brenner C. 2007. Nicotinamide riboside kinase structures reveal new pathways to NADt+. PLoS Biol 5:e263. [CrossRef]
92. Grose JH, Bergthorsson U, Xu Y, Sterneckert J, Khodaverdian B, Roth JR. 2005. Assimilation of nicotinamide mononucleotide requires periplasmic AphA phosphatase in Salmonella enterica. J Bacteriol 187:4521–4530. [PubMed][CrossRef]
93. Martin PR, Shea RJ, Mulks MH. 2001. Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J Bacteriol 183:1168–1174. [PubMed][CrossRef]
94. Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, Andris F. 2002. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol 32:3225–3234. [PubMed][CrossRef]
95. Rowe JJ, Lemmon RD, Tritz GJ. 1985. Nicotinic acid transport in Escherichia coli. Microbios 44:169–184.[PubMed]
96. Colovos C, Cascio D, Yeates TO. 1998. The 1.8 Å crystal structure of the ycaC gene product from Escherichia coli reveals an octameric hydrolase of unknown specificity. Structure 6:1329–1337. [PubMed][CrossRef]
97. Foster JW, Kinney DM, Moat AG. 1979. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide. J Bacteriol 137:1165–1175.[PubMed]
98. Frothingham R, Meeker-O'Connell WA, Talbot EA, George JW, Kreuzer KN. 1996. Identification, cloning, and expression of the Escherichia coli pyrazinamidase and nicotinamidase gene, pncA. Antimicrob Agents Chemother 40:1426–1431.
99. Singh P, Mishra AK, Malonia SK, Chauhan DS, Sharma VD, Venkatesan K, Katoch VM. 2006. The paradox of pyrazinamide: an update on the molecular mechanisms of pyrazinamide resistance in mycobacteria. J Commun Dis 38:288–298.[PubMed]
100. Du X, Wang W, Kim R, Yakota H, Nguyen H, Kim SH. 2001. Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry 40:14166–14172. [CrossRef]
101. Vinitsky A, Teng H, Grubmeyer CT. 1991. Cloning and nucleic acid sequence of the Salmonella typhimurium pncB gene and structure of nicotinate phosphoribosyltransferase. J Bacteriol 173:536–540.[PubMed]
102. Wubbolts MG, Terpstra P, van Beilen JB, Kingma J, Meesters HA, Witholt B. 1990. Variation of cofactor levels in Escherichia coli. Sequence analysis and expression of the pncB gene encoding nicotinic acid phosphoribosyltransferase. J Biol Chem 265:17665–17672.[PubMed]
103. Gross J, Rajavel M, Segura E, Grubmeyer C. 1996. Energy coupling in Salmonella typhimurium nicotinic acid phosphoribosyltransferase: identification of His-219 as site of phosphorylation. Biochemistry 35:3917–3924. [PubMed][CrossRef]
104. Gross JW, Rajavel M, Grubmeyer C. 1998. Kinetic mechanism of nicotinic acid phosphoribosyltransferase: implications for energy coupling. Biochemistry 37:4189–4199. [PubMed][CrossRef]
105. Grubmeyer CT, Gross JW, Rajavel M. 1999. Energy coupling through molecular discrimination: nicotinate phosphoribosyltransferase. Methods Enzymol 308:28–48. [PubMed][CrossRef]
106. Vinitsky A, Grubmeyer C. 1993. A new paradigm for biochemical energy coupling. Salmonella typhimurium nicotinate phosphoribosyltransferase. J Biol Chem 268:26004–26010.[PubMed]
107. Chappie JS, Canaves JM, Han GW, Rife CL, Xu Q, Stevens RC. 2005. The structure of a eukaryotic nicotinic acid phosphoribosyltransferase reveals structural heterogeneity among type II PRTases. Structure 13:1385–1396. [PubMed][CrossRef]
108. Khan JA, Tao X, Tong L. 2006. Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat Struct Mol Biol 13:582–588. [PubMed][CrossRef]
109. Brenner C. 2005. Evolution of NAD biosynthetic enzymes. Structure 13:1239–1240. [PubMed][CrossRef]
110. Shin DH, Oganesyan N, Jancarik J, Yokota H, Kim R, Kim SH. 2005. Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum. J Biol Chem 280:18326–18335. [CrossRef]
111. Mushegian A. 1999. The purloined letter: bacterial orthologs of archaeal NMN adenylyltransferase are domains within multifunctional transcription regulator NadR. J Mol Microbiol Biotechnol 1:127–128.[PubMed]
112. Singh SK, Kurnasov OV, Chen B, Robinson H, Grishin NV, Osterman AL, Zhang H. 2002. Crystal structure of Haemophilus influenzae NadR protein. A bifunctional enzyme endowed with NMN adenyltransferase and ribosylnicotinimide kinase activities. J Biol Chem 277:33291–33299. [PubMed][CrossRef]
113. Penfound T, Foster JW. 1999. NAD-dependent DNA-binding activity of the bifunctional NadR regulator of Salmonella typhimurium. J Bacteriol 181:648–655.[PubMed]
114. Gerasimova AV, Gelfand MS. 2005. Evolution of the NadR regulon in Enterobacteriaceae. J Bioinform Comput Biol 3:1007–1019. [PubMed][CrossRef]
115. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E. 2004. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619. [PubMed][CrossRef]
116. McMurry J, Begley T. 2005. The Organic Chemistry of Biological Pathways. Roberts and Co. Publishers, Greenwood Village, Colo.
117. Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, Murzin AG. 2008. Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36:D419–D425. [PubMed][CrossRef]
118. Meuller J, Rydstrom J. 1999. The membrane topology of proton-pumping Escherichia coli transhydrogenase determined by cysteine labeling. J Biol Chem 274:19072–19080. [PubMed][CrossRef]
119. Johansson T, Oswald C, Pedersen A, Tornroth S, Okvist M, Karlsson BG, Rydstrom J, Krengel U. 2005. X-ray structure of domain I of the proton-pumping membrane protein transhydrogenase from Escherichia coli. J Mol Biol 352:299–312. [PubMed][CrossRef]
120. Boonstra B, French CE, Wainwright I, Bruce NC. 1999. The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181:1030–1034.[PubMed]
121. Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC. 2004. A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase. Curr Opin Microbiol 7:115–119. [PubMed][CrossRef]
122. Hochmann H, Pust S, von Figura G, Aktories K, Barth H. 2006. Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins. Biochemistry 45:1271–1277. [PubMed][CrossRef]
123. Saitoh M, Tanaka K, Nishimori K, Makino S, Kanno T, Ishihara R, Hatama S, Kitano R, Kishima M, Sameshima T, Akiba M, Nakazawa M, Yokomizo Y, Uchida I. 2005. The artAB genes encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica serovar Typhimurium DT104. Microbiology 151:3089–3096. [PubMed][CrossRef]
124. Depping R, Lohaus C, Meyer HE, Ruger W. 2005. The mono-ADP-ribosyltransferases Alt and ModB of bacteriophage T4: target proteins identified. Biochem Biophys Res Commun 335:1217–1223. [PubMed][CrossRef]
125. Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS, Ciecko A, Feldblyum TV, White O, Paulsen IT, Nierman WC, Lee J, Szczypinski B, Fraser CM. 2003. Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 185:5220–5233. [PubMed][CrossRef]
126. Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T. 2006. DNA ligases: structure, reaction mechanism, and function. Chem Rev 106:687–699. [PubMed][CrossRef]
127. Wilkinson A, Day J, Bowater R. 2001. Bacterial DNA ligases. Mol Microbiol 40:1241–1248. [PubMed][CrossRef]
128. Nandakumar J, Nair PA, Shuman S. 2007. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Mol Cell 26:257–271. [PubMed][CrossRef]
129. Tsang AW, Escalante-Semerena JC. 1998. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J Biol Chem 273:31788–31794. [PubMed][CrossRef]
130. Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL. 2001. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40:15456–15463. [PubMed][CrossRef]
131. Zhao K, Chai X, Marmorstein R. 2004. Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli. J Mol Biol 337:731–741. [CrossRef]
132. Starai VJ, Escalante-Semerena JC. 2004. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J Mol Biol 340:1005–1012. [PubMed][CrossRef]
133. Gabelli SB, Bianchet MA, Bessman MJ, Amzel LM. 2001. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat Struct Biol 8:467–472. [PubMed][CrossRef]
134. Gabelli SB, Bianchet MA, Ohnishi Y, Ichikawa Y, Bessman MJ, Amzel LM. 2002. Mechanism of the Escherichia coli ADP-ribose pyrophosphatase, a Nudix hydrolase. Biochemistry 41:9279–9285. [PubMed][CrossRef]
135. Moran-Zorzano MT, Viale AM, Munoz FJ, Alonso-Casajus N, Eydallin GG, Zugasti B, Baroja-Fernandez E, Pozueta-Romero J. 2007. Escherichia coli AspP activity is enhanced by macromolecular crowding and by both glucose-1,6-bisphosphate and nucleotide-sugars. FEBS Lett 581:1035–1040. [PubMed][CrossRef]
136. McLennan AG. 2006. The Nudix hydrolase superfamily. Cell Mol Life Sci 63:123–143. [PubMed][CrossRef]
137. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H. 2005. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299. [PubMed][CrossRef]
ecosalplus.3.6.3.10.citations
ecosalplus/3/2
content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.10
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.10
2009-02-13
2017-06-28

Abstract:

Universal and ubiquitous redox cofactors, nicotinamide adenine dinucleotide (NAD) and its phosphorylated analog (NADP), collectively contribute to approximately 12% of all biochemical reactions included in the metabolic model of K-12. A homeostasis of the NAD pool faithfully maintained by the cells results from a dynamic balance in a network of NAD biosynthesis, utilization, decomposition, and recycling pathways that is subject to tight regulation at various levels. A brief overview of NAD utilization processes is provided in this review, including some examples of nonredox utilization. The review focuses mostly on those aspects of NAD biogenesis and utilization in and that emerged within the past 12 years. The first pyridine nucleotide cycle (PNC) originally identified in mammalian systems and termed the Preiss-Handler pathway includes a single-step conversion of niacin (Na) to NaMN by nicotinic acid phosphoribosyltransferase (PncB). In and many other prokaryotes, this enzyme, together with nicotinamide deamidase (PncA), compose the major pathway for utilization of the pyridine ring in the form of amidated (Nm) or deamidated (Na) precursors. The existence of various regulatory mechanisms and checkpoints that control the NAD biosynthetic machinery reflects the importance of maintaining NAD homeostasis in a variety of growth conditions. Among the most important regulatory mechanisms at the level of individual enzymes are a classic feedback inhibition of NadB, the first enzyme of NAD de novo biosynthesis, by NAD and a metabolic regulation of NadK by reduced cofactors.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure ST 1-01
Figure ST 1-01

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure ST 1-02
Figure ST 1-02

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1
Figure 1

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Committed metabolites (shaded circles) and functional roles (other shapes) are marked by abbreviations defined in the text and color coded to reflect the main pathways: de novo synthesis of NaMN from -Asp (green), common pathway from NaMN to NAD(P) (red), pyridine salvage (blue), pyridine nucleoside salvage (magenta). Missing genes corresponding to functional roles implicated by substantial experimental data are shown by “?”; the corresponding transformations are shown by dashed arrows. Dashed arrows are also used to reflect undefined groups of transformations involved in NAD(P) utilization.

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Metabolites undergoing recycling to NAD are indicated by arcs.

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Domain structure of NadR protein and a consensus DNA motif are shown above the alignment of representative chromosomal loci containing genes regulated by NadR. In addition to that, two loci containing nonregulated paralogs of and genes are shown. Orthologous genes (or, in the case of NadR, matching domains) are shown by matching colors.

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure ST 2
Figure ST 2

the presence of genes in a set of complete (or nearly complete) genomes integrated in the SEED database (http://pub-3.nmpdr.org/FIG/index.cgi) is shown by gene IDs (genome IDs that should be used for retrieving respective genes in the SEED environment are provided).

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Functional roles and corresponding genes involved in NAD(P) metabolism of K-12

Citation: Osterman A. 2009. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor, EcoSal Plus 2009; doi:10.1128/ecosalplus.3.6.3.10

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error