1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biosynthesis of Hemes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Author: Samuel I. Beale1
  • Editor: Tadhg P. Begley2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Biology and Medicine, Brown University, Providence, RI 02912; 2: Texas A&M University, College Station, Texas
  • Received 30 May 2007 Accepted 13 August 2007 Published 18 October 2007
  • Address correspondence to Samuel I. Beale sib@brown.edu
image of Biosynthesis of Hemes
    Preview this reference work article:
    Zoom in
    Zoomout

    Biosynthesis of Hemes, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/2/3_6_3_11_module-1.gif /docserver/preview/fulltext/ecosalplus/2/2/3_6_3_11_module-2.gif
  • Abstract:

    This review is concerned specifically with the structures and biosynthesis of hemes in and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of HO. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.

  • Citation: Beale S. 2007. Biosynthesis of Hemes, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.6.3.11

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.38600373
0.38600373

References

1. Berlyn MKB. 1998. Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62:814–984.[PubMed]
2. Sanderson KE, Hessel A, Rudd KE. 1995. Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev 59:241–303.[PubMed]
3. Avissar YJ, Ormerod JG, Beale SI. 1989. Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151:513–519. [PubMed][CrossRef]
4. Oh-hama T, Stolowich NJ, Scott AI. 1993. 5-Aminolevulinic acid biosynthesis in Propionibacterium shermanii and Halobacterium salinarium. Distribution of the two pathways of 5-aminolevulinic acid biosynthesis in prokaryotes. J Gen Appl Microbiol 39:513–519. [CrossRef]
5. Hoober JK, Kahn A, Ash D, Gough S, Kannangara CG. 1988. Biosynthesis of δ-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun 53:11–25. [PubMed][CrossRef]
6. Jordan PM, Cheung K-M, Sharma RP, Warren MJ. 1993. 5-Amino-6-hydroxy-3,4,5,6-tetrahydropyran-2-one (HAT). A stable, cyclic form of glutamate 1-semialdehyde, the natural precursor for tetrapyrroles. Tetrahedron Lett 34:1177–1180. [CrossRef]
7. Breu V, Dörnemann D. 1988. Formation of 5-aminolevulinate via glutamate-1-semialdehyde and 4,5-dioxovalerate with participation of an RNA component in Scenedesmus obliquus mutant C-2A′. Biochim Biophys Acta 967:135–140.[PubMed]
8. Huang DD, Wang W-Y, Gough SP, Kannangara CG. 1984. δ-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225:1482–1484. [PubMed][CrossRef]
9. Kannangara CG, Gough SP, Oliver RP, Rasmussen SK. 1984. Biosynthesis of δ-aminolevulinate in greening barley leaves. VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun 49:417–437. [CrossRef]
10. Rieble S, Ormerod JG, Beale SI. 1989. Transformation of glutamate to δ-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme. J Bacteriol 171:3782–3787.[PubMed]
11. Weinstein JD, Beale SI. 1985. RNA is required for enzymatic conversion of glutamate to δ-aminolevulinic acid by extracts of Chlorella vulgaris. Arch Biochem Biophys 239:87–93. [PubMed][CrossRef]
12. Schneegurt MA, Beale SI. 1988. Characterization of the RNA required for biosynthesis of δ-aminolevulinic acid from glutamate. Purification by anticodon-based affinity chromatography and determination that the UUC glutamate anticodon is a general requirement for function in ALA biosynthesis. Plant Physiol 86:497–504. [PubMed][CrossRef]
13. Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Söll D. 1986. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature (London) 322:281–284. [PubMed][CrossRef]
14. Schneegurt MA, Rieble S, Beale SI. 1988. The tRNA required for in vitro δ-aminolevulinic acid formation from glutamate in Synechocystis extracts. Determination of activity in a Synechocystis in vitro protein synthesizing system. Plant Physiol 88:1358–1366. [PubMed][CrossRef]
15. Sylvers LA, Rogers KC, Shimizu M, Ohtsuka E, Söll D. 1993. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32:3836–3841. [PubMed][CrossRef]
16. Bruyant P, Kannangara CG. 1987. Biosynthesis of δ-aminolevulinate in greening barley leaves. VIII. Purification and characterization of the glutamate-tRNA ligase. Carlsberg Res Commun 52:99–109. [CrossRef]
17. Rieble S, Beale SI. 1991. Separation and partial characterization of enzymes catalyzing δ-aminolevulinic acid formation in Synechocystis sp. PCC 6803. Arch Biochem Biophys 289:289–297. [PubMed][CrossRef]
18. Kern D, Poitier S, Boulanger Y, Lapointe J. 1979. The monomeric glutamyl-tRNA synthetase of Escherichia coli. Purification and relation between its structural and catalytic properties. J Biol Chem 254:518–524.[PubMed]
19. Powers DM, Ginsburg A. 1978. Monomeric structure of glutamyl-tRNA synthetase in Escherichia coli. Arch Biochem Biophys 191:673–679. [PubMed][CrossRef]
20. Breton R, Sanfaçon H, Papayannopoulos I, Biemann K, Lapointe J. 1986. Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. J Biol Chem 261:10610–10617.[PubMed]
21. Sanfaçon H, Levasseur S, Roy PH, Lapointe J. 1983. Cloning of the gene for Escherichia coli glutamyl-tRNA synthetase. Gene 22:175–180. [PubMed][CrossRef]
22. Liu J, Lin S-X, Blochet J-E, Pézolet M, Lapointe J. 1993. The glutamyl-tRNA synthetase of Escherichia coli contains one atom of zinc essential for its native conformation and its catalytic activity. Biochemistry 32:11390–11396. [PubMed][CrossRef]
23. Lapointe J, Söll D. 1972. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. I. Purification and properties. J Biol Chem 247:4966–4974.[PubMed]
24. Lapointe J, Söll D. 1972. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. III. Influence of the 46K protein on the affinity of the 56K glutamyl transfer ribonucleic acid synthetase for its substrates. J Biol Chem 247:4982–4985.[PubMed]
25. Willick GE, Kay CM. 1976. Circular dichroism study of the interaction of glutamyl-tRNA synthetase with tRNAGlu2. Biochemistry 15:4347–4352. [PubMed][CrossRef]
26. Proulx M, Duplain L, Lacoste L, Yaguchi M, Lapointe J. 1983. The monomeric glutamyl-tRNA synthetase from Bacillus subtilis 168 and its regulatory factor. Their purification, characterization, and the study of their interaction. J Biol Chem 258:753–759.[PubMed]
27. Gendron N, Breton R, Champagne N, Lapointe J. 1992. Adenylosuccinate lyase of Bacillus subtilis regulates the activity of the glutamyl-tRNA synthetase. Proc Natl Acad Sci USA 89:5389–5392. [PubMed][CrossRef]
28. Jahn D. 1992. Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas. FEBS Lett 314:77–80. [PubMed][CrossRef]
29. Huang D-D, Wang W-Y. 1986. Chlorophyll synthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. J Biol Chem 261:13451–13455.[PubMed]
30. Avissar YJ, Beale SI. 1988. Biosynthesis of tetrapyrrole pigment precursors. Formation and utilization of glutamyl-tRNA for δ-aminolevulinic acid synthesis by isolated enzyme fractions from Chlorella vulgaris. Plant Physiol 88:879–886. [PubMed][CrossRef]
31. Stange-Thomann N, Thomann H-U Lloyd AJ, Lyman H, Söll D. 1994. A point mutation in Euglena gracilis chloroplast tRNAGlu uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci USA 91:7947–7951. [PubMed][CrossRef]
32. Willows RD, Kannangara CG, Pontoppidan B. 1995. Nucleotides of tRNA (Glu) involved in recognition by barley chloroplast glutamyl-tRNA synthetase and glutamyl-tRNA reductase. Biochim Biophys Acta 1263:228–234.[PubMed]
33. Randau L, Schauer S, Ambrogelly A, Salazar JC, Moser J, Sekine S, Yokoyama S, Söll D, Jahn D. 2004. tRNA recognition by glutamyl-tRNA reductase. J Biol Chem 279:34931–34937. [PubMed][CrossRef]
34. Drolet M, Péloquin L, Echelard Y, Cousineau L, Sasarman A. 1989. Isolation and nucleotide sequence of the hemA gene of Escherichia coli K12. Mol Gen Genet 216:347–352. [PubMed][CrossRef]
35. Elliott T. 1989. Cloning, genetic characterization, and nucleotide sequence of the hemA-prfA operon of Salmonella typhimurium. J Bacteriol 171:3948–3960.[PubMed]
36. Ilag LL, Kumar AM, Söll D. 1994. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6:265–275. [PubMed][CrossRef]
37. Li J-M, Russell CS, Cosloy SD. 1989. The structure of the Escherichia coli hemB gene. Gene 75:177–184. [PubMed][CrossRef]
38. Majumdar D, Avissar YJ, Wyche JH, Beale SI. 1991. Structure and expression of the Chlorobium vibrioforme hemA gene. Arch Microbiol 156:281–289. [PubMed][CrossRef]
39. Petricek M, Rutberg L, Schröder I, Hederstedt L. 1990. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J Bacteriol 172:2250–2258.[PubMed]
40. Verkamp E, Chelm BK. 1989. Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. J Bacteriol 171:4728–4735.[PubMed]
41. Schröder I, Hederstedt L, Kannangara CG, Gough SP. 1992. Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Biochem J 281:843–850.[PubMed]
42. Pontoppidan B, Kannangara CG. 1994. Purification and partial characterization of barley glutamyl-tRNAGlu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225:529–537. [PubMed][CrossRef]
43. Chen M-W, Jahn D, Schön A, O’Neill GP, Söll D. 1990. Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in δ-aminolevulinic acid formation during chlorophyll biosynthesis. J Biol Chem 265:4058–4063.[PubMed]
44. Srivastava A, Lake V, Nogaj LA, Mayer SM, Willows RD, Beale SI. 2005. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-tRNA reductase: structure of the gene and properties of the expressed enzyme. Plant Mol Biol 58:643–658. [PubMed][CrossRef]
45. Sasarman A, Letowski J, Czaika G, Ramirez V, Nead MA, Jacobs JM, Morais R. 1993. Nucleotide sequence of the hemG gene involved in the protoporphyrinogen oxidase activity of Escherichia coli K12. Can J Microbiol 39:1155–1161.[PubMed]
46. Sasarman A, Nepveu A, Echelard Y, Dymetryszyn J, Drolet M, Goyer C. 1987. Molecular cloning and sequencing of the hemD gene of Escherichia coli K-12 and preliminary data on the Uro operon. J Bacteriol 169:4257–4262.[PubMed]
47. Verkamp E, Backman VM, Björnsson JM, Söll D, Eggertsson G. 1993. The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli. J Bacteriol 175:1452–1456.[PubMed]
48. Avissar YJ, Beale SI. 1989. Identification of the enzymatic basis for δ-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J Bacteriol 171:2919–2924.[PubMed]
49. Avissar YJ, Beale SI. 1990. Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J Bacteriol 172:1656–1659.[PubMed]
50. Verkamp E, Jahn M, Jahn D, Kumer AM, Söll D. 1992. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. J Biol Chem 267:8275–8280.[PubMed]
51. Mayer SM, Rieble S, Beale SI. 1994. Metal requirements of the enzymes catalyzing conversion of glutamate to δ-aminolevulinic acid in extracts of Chlorella vulgaris and Synechocystis sp. PCC 6803. Arch Biochem Biophys 312:203–209. [PubMed][CrossRef]
52. Vothknecht UC, Kannangara CG, von Wettstein D. 1996. Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc Natl Acad Sci USA 93:9287–9291. [PubMed][CrossRef]
53. Srivastava A, Beale SI. 2005. Glutamyl-tRNA Reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit. J Bacteriol 187:4444–4450. [PubMed][CrossRef]
54. Moser J, Schubert WD, Beier V, Bringemeier I, Jahn D, Heinz DW. 2001. V-shaped structure of glutamyl-tRNA reductase, and first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 20:6583–6590. [PubMed][CrossRef]
55. Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert W-D, Nakayashiki T, Murai M, Wall K, Thomann H-U, Hieinz DW, Inokuchi H, Söll D, Jahn D. 2002. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J Biol Chem 277:48658–48663. [CrossRef]
56. Gough SP, Kannangara CG, Bock K. 1989. A new method for the synthesis of glutamate 1-semialdehyde. Characterization of its structure in solution by NMR spectroscopy. Carlsberg Res Commun 54:99–108. [CrossRef]
57. Houen G, Gough SP, Kannangara CG. 1983. δ-Aminolevulinate synthesis in greening barley. V. The structure of glutamate 1-semialdehyde. Carlsberg Res Commun 48:567–572. [CrossRef]
58. Kannangara CG, Gough SP. 1978. Biosynthesis of δ-aminolevulinate in greening barley leaves. Glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun 43:185–194. [CrossRef]
59. Kannangara CG, Schouboe A. 1985. Biosynthesis of δ-aminolevulinate in greening barley leaves. VII. Glutamate 1-semialdehyde accumulation in gabaculine treated leaves. Carlsberg Res Commun 50:179–191. [CrossRef]
60. Nakayashiki T, Nishimura K, Inokuchi H. 1995. Cloning and sequencing of a previously unidentified gene that is involved in the biosynthesis of heme in Escherichia coli. Gene 153:67–70. [PubMed][CrossRef]
61. Avissar YJ, Beale SI. 1989. Biosynthesis of tetrapyrrole pigment precursors. Pyridoxal requirement of the aminotransferase step in the formation of δ-aminolevulinate from glutamate in extracts of Chlorella vulgaris. Plant Physiol 89:852–859. [PubMed][CrossRef]
62. Bull AD, Breu V, Kannangara CG, Rogers LJ, Smith AJ. 1990. Cyanobacterial glutamate 1-semialdehyde aminotransferase. Requirement for pyridoxamine phosphate. Arch Microbiol 154:56–59. [CrossRef]
63. Mau Y-HL, Wang W-Y. 1988. Biosynthesis of δ-aminolevulinic acid in Chlamydomonas reinhardtii. Study of the transamination mechanism using specifically labeled glutamate. Plant Physiol 86:793–797. [PubMed][CrossRef]
64. Mayer SM, Gawlita E, Avissar YJ, Anderson VE, Beale SI. 1993. Intermolecular nitrogen transfer in the enzymatic conversion of glutamate to δ-aminolevulinic acid by extracts of Chlorella vulgaris. Plant Physiol 101:1029–1038. [PubMed][CrossRef]
65. Smith MA, Kannangara CG, Grimm B. 1992. Glutamate 1-semialdehyde aminotransferase. Anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 31:11249–11254. [PubMed][CrossRef]
66. Friedmann HC, Duban ME, Valasinas A, Frydman B. 1992. The enantioselective participation of (S)- and (R)-diaminovaleric acids in the formation of δ-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 185:60–68. [PubMed][CrossRef]
67. Bull AD, Pakes JF, Hoult RC, Rogers LJ, Smith AJ. 1989. Tetrapyrrole biosynthesis in a gabaculin-tolerant mutant of Synechococcus 6301. Biochem Soc Trans 17:911–912.
68. Elich TD, Lagarias JC. 1988. 4-Amino-5-hexynoic acid: a potent inhibitor of tetrapyrrole biosynthesis in plants. Plant Physiol 88:747–751. [PubMed][CrossRef]
69. Gardner G, Gorton HL, Brown SA. 1988. Inhibition of phytochrome synthesis by the transaminase inhibitor, 4-amino-5-fluoropentanoic acid. Plant Physiol 87:8–10. [PubMed][CrossRef]
70. O’Neill GP, Chen M-W, Söll D. 1989. δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Lett 60:255–260. [CrossRef]
71. Grimm B, Bull A, Breu V. 1991. Structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in a cyanobacterium and Escherichia coli. Mol Gen Genet 225:1–10. [PubMed][CrossRef]
72. Elliott T, Avissar YJ, Rhie G, Beale SI. 1990. Cloning and sequence of the Salmonella typhimurium hemL gene and identification of the missing enzyme in hemL mutants as glutamate-1-semialdehyde aminotransferase. J Bacteriol 172:7071–7084.[PubMed]
73. Matters GL, Beale SI. 1994. Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme, glutamate-1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol 24:617–629. [PubMed][CrossRef]
74. Grimm B, Smith MA, von Wettstein D. 1992. The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. Eur J Biochem 206:579–585. [PubMed][CrossRef]
75. Ilag LL, Jahn D. 1992. Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry 31:7143–7151. [PubMed][CrossRef]
76. Tong H, Davis L. 1994. 2-Amino-3-ketobutyrate-CoA ligase from beef liver mitochondria. Purification and partial sequence. J Biol Chem 269:4057–4064.[PubMed]
77. Mehta PK, Christen P. 1994. Homology of 1-aminocyclopropane-1-carboxylate synthase, 8-amino-7-oxononanoate synthase, 2-amino-6-caprolactam racemase, 2,2-dialkylglycine decarboxylase, glutamate-1-semialdehyde 2,1-aminomutase and isopenicillin-N-epimerase with aminotransferases. Biochem Biophys Res Commun 198:138–143. [PubMed][CrossRef]
78. Murakami K, Hashimoto Y, Murooka Y. 1993. Cloning and characterization of the gene encoding glutamate 1-semialdehyde 2,1-aminomutase, which is involved in δ-aminolevulinic acid synthesis in Propionibacterium freudenreichii. Appl Environ Microbiol 59:347–350.[PubMed]
79. Elliott T, Roth JR. 1989. Heme-deficient mutants of Salmonella typhimurium. Two genes required for ALA synthesis. Mol Gen Genet 216:303–314. [PubMed][CrossRef]
80. Ilag LL, Jahn D, Eggertsson G, Söll D. 1991. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J Bacteriol 173:3408–3413.[PubMed]
81. Grimm B, Bull A, Welinder KG, Gough SP, Kannangara CG. 1989. Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and Synechococcus. Carlsberg Res Commun 54:67–79. [PubMed][CrossRef]
82. McPhalen, CA, Vincent MG, Jansonius JN. 1992. X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase. J Mol Biol 225:495–517. [PubMed][CrossRef]
83. Hennig M, Grimm B, Contestabile R, John RA, Jansonius JN. 1997. Crystal structure of glutamate-1-semialdehyde aminomutase: an a 2-dimeric vitamin-B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 94:4866–4871. [PubMed][CrossRef]
84. Hennig M, Grimm B, Jenny M, Müller R, Jansonius JN. 1994. Crystallization and preliminary X-ray analysis of wild-type and K272A mutant glutamate 1-semialdehyde aminotransferase from Synechococcus. J Mol Biol 242:591–594. [PubMed][CrossRef]
85. Lüer C, Schauer S, Möbius K, Schulze J, Schubert W-D, Heinz DW, Jahn D, Moser J. 2005. Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during initial reactions of porphyrin biosynthesis. J Biol Chem 280:18568–18572. [CrossRef]
86. Nogaj LA, Beale SI. 2005. Physical and kinetic interactions between glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase of Chlamydomonas reinhardtii. J Biol Chem 280:24301–24307. [PubMed][CrossRef]
87. Jordan PM, Seehra JS. 1980. Mechanism of action of 5-aminolevulinic acid dehydratase. Stepwise order of addition of the two molecules of 5-aminolevulinic acid in the enzymic synthesis of porphobilinogen. J Chem Soc Chem Commun 1980:240–242. [CrossRef]
88. Spencer P, Jordan PM. 1993. Purification and characterization of 5-aminolevulinic acid dehydratase from Escherichia coli and a study of the reactive thiols at the metal-binding domain. Biochem J 290:279–287.[PubMed]
89. Abboud MM, Akhtar M. 1976. Stereochemistry of hydrogen elimination in the enzymatic formation of the C-2–C-3 double bond of porphobilinogen. J Chem Soc Chem Commun 1976:1007–1008. [CrossRef]
90. Echelard Y, Dymetryszyn J, Drolet M, Sasarman A. 1988. Nucleotide sequence of the hemB gene of Escherichia coli K12. Mol Gen Genet 214:503–508. [PubMed][CrossRef]
91. Li J-M, Umanoff H, Proenca R, Russell CS, Cosloy SD. 1988. Cloning of the Escherichia coli K-12 hemB gene. J Bacteriol 170:1021–1025.[PubMed]
92. Erskine PT, Senior N, Awan S, Lambert R, Lewis G, Tickle IJ, Sarwar M, Spencer P, Thomas P, Warren MJ, Shoolingin-Jordan PM, Wood SP, Cooper JB. 1997. X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase. Nat Struct Biol 4:1025–1031. [PubMed][CrossRef]
93. Jaffe EK. 1993. Predicting the Zn(II) ligands in metalloproteins: case study, porphobilinogen synthase. Comments Inorg Chem 15:67–92. [CrossRef]
94. Jaffe EK. 1995. Porphobilinogen synthase, the first source of heme’s asymmetry. J Bioenerg Biomembr 27:169–179. [PubMed][CrossRef]
95. Jones MC, Jenkins JM, Smith AG, Howe CJ. 1994. Cloning and characterization of genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2. Plant Mol Biol 24:435–448. [PubMed][CrossRef]
96. Jordan PM. 1991. The biosynthesis of 5-aminolaevulinic acid and its transformation into uroporphyrinogen III, p 1–66. In Jordan PM (ed), Biosynthesis of Tetrapyrroles. Elsevier, Amsterdam, The Netherlands.
97. Mitchell LW, Jaffe EJ. 1993. Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch Biochem Biophys 300:169–177. [PubMed][CrossRef]
98. Breinig S, Kervinen J, Stith L, Wasson AS, Fairman R, Wlodawer A, Zdanov A, Jaffe EK. 2003. Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase. Nat Struct Biol 10:757–763. [PubMed][CrossRef]
99. Nandi DL, Shemin D. 1968. δ-Aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. III. Mechanism of porphobilinogen synthesis. J Biol Chem 243:1236–1242.[PubMed]
100. Ebert PS, Hess RA, Frykholm BC, Tschudy DP. 1979. Succinylacetone, a potent inhibitor of heme biosynthesis. Effect on cell growth, heme content and δ-aminolevulinic acid dehydratase activity of malignant murine erythroleukemia cells. Biochem Biophys Res Commun 88:1382–1390. [PubMed][CrossRef]
101. Sassa S, Kappas A. 1983. Hereditary tyrosinemia and the heme biosynthetic pathway. Profound inhibition of δ-aminolevulinic acid dehydratase activity by succinylacetone. J Clin Invest 71:625–634. [PubMed][CrossRef]
102. Brumm PJ, Friedmann HC. 1981. Succinylacetone pyrrole, a powerful inhibitor of vitamin B12 biosynthesis. Effect on δ-aminolevulinic acid dehydratase. Biochem Biophys Res Commun 102:854–859. [PubMed][CrossRef]
103. Beale SI. 1970. The biosynthesis of δ-aminolevulinic acid in Chlorella. Plant Physiol 45:504–506. [PubMed][CrossRef]
104. Beale SI, Castelfranco PA. 1974. The biosynthesis of δ-aminolevulinic acid in higher plants. I. Accumulation of δ-aminolevulinic acid in greening plant tissues. Plant Physiol 53:291–296. [PubMed][CrossRef]
105. Beale SI, Castelfranco PA. 1974. The biosynthesis of δ-aminolevulinic acid in higher plants. II. Formation of 14C-δ-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol 53:297–303. [PubMed][CrossRef]
106. Beale SI, Gough SP, Granick S. 1975. The biosynthesis of δ-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci USA 72:2719–2723. [PubMed][CrossRef]
107. Kipe-Nolt JA, Stevens SE, Jr. 1980. Biosynthesis of δ-aminolevulinic acid from glutamate in Agmenellum quadruplicatum. Plant Physiol 65:126–128. [PubMed][CrossRef]
108. Meller E, Belkin S, Harel E. 1975. The biosynthesis of δ-aminolevulinic acid in greening maize leaves. Phytochemistry 14:2399–2402. [CrossRef]
109. Battersby AR, Fookes CJR, Matcham GWJ, McDonald E, Gustafson-Potter KE. 1979. Biosynthesis of the natural porphyrins. Experiments on the ring-closure steps with the hydroxy-analogue of porphobilinogen. J Chem Soc Chem Commun 1979:316–319. [CrossRef]
110. Battersby AR, Fookes CJR, Matcham GWJ, McDonald E. 1979. Order of assembly of the four pyrrole rings during biosynthesis of the natural porphyrins. J Chem Soc Chem Commun 1979:539–541. [CrossRef]
111. Jordan PM, Seehra JS. 1979. The biosynthesis of uroporphyrinogen. III. Order of assembly of the four porphobilinogen molecules in the formation of the tetrapyrrole ring. FEBS Lett 104:364–366. [PubMed][CrossRef]
112. Battersby AR, Fookes CJR, Matcham GWJ, McDonald E, Hollenstein R. 1983. Biosynthesis of porphyrins and related molecules. Part 20. Purification of deaminase and studies on its mode of action. J Chem Soc Perkin Trans I 1983:3031–3040. [CrossRef]
113. Jordan PM, Berry A. 1981. Mechanism of action of porphobilinogen deaminase. The participation of stable enzyme substrate covalent intermediates between porphobilinogen and the porphobilinogen deaminase from Rhodopseudomonas spheroides. Biochem J 195:177–181.[PubMed]
114. Scott AI, Burton G, Jordan PM, Matsumoto H, Fagerness PE, Pryde LM. 1980. N.M.R. spectroscopy as a probe for the study of enzyme-catalysed reactions Further observations of preuroporphyrinogen, a substrate for uroporphyrinogen III cosynthetase. J Chem Soc Chem Commun 1980:384–387. [CrossRef]
115. Umanoff H, Russell CS, Cosloy SD. 1988. Availability of porphobilinogen controls appearance of porphobilinogen deaminase activity in Escherichia coli K-12. J Bacteriol 170:4969–4971.[PubMed]
116. Bhaya D, Castelfranco PA. 1985. Chlorophyll biosynthesis and assembly into chlorophyll-protein complexes in isolated developing chloroplasts. Proc Natl Acad Sci USA 82:5370–5374. [PubMed][CrossRef]
117. Bhaya D, Castelfranco PA. 1986. Synthesis of a putative c-type cytochrome by intact, isolated pea chloroplasts. Plant Physiol 81:960–964. [PubMed][CrossRef]
118. Hart GJ, Miller AD, Leeper FJ, Battersby AR. 1987. Biosynthesis of natural porphyrins. Proof that hydroxymethylbilane synthase (porphobilinogen deaminase) uses a novel binding group in its catalytic action. J Chem Soc Chem Commun 1987:1762–1765. [CrossRef]
119. Jordan PM, Warren MJ. 1987. Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett 225:87–92. [PubMed][CrossRef]
120. Shoolingin-Jordan PM, Warren MJ, Awan SJ. 1996. Discovery that the assembly of the dipyrromethane cofactor of porphobilinogen deaminase holoenzyme proceeds initially by the reaction of preuroporphyrinogen with the apoenzyme. Biochem J 316:373–376.[PubMed]
121. Warren MJ, Jordan PM. 1988. Investigation into the nature of substrate binding to the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase. Biochemistry 27:9020–9030. [PubMed][CrossRef]
122. Hart GJ, Miller AD, Battersby AR. 1988. Evidence that the pyrromethane cofactor of hydroxymethylbilane synthase (porphobilinogen deaminase) is bound through the sulphur atom of a cysteine residue. Biochem J 252:909–912.[PubMed]
123. Scott AI, Roessner CA, Stolowich NJ, Karuso P, Williams HJ, Grant SK, Gonzales MD, Hoshino T. 1988. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase. Biochemistry 27:7984–7990. [PubMed][CrossRef]
124. Scott AI, Stolowich NJ, Williams HJ, Gonzales MD, Roessner CA, Grant SK, Pichon C. 1988. Concerning the catalytic site of porphobilinogen deaminase. J Am Chem Soc 110:5898–5900. [CrossRef]
125. Schauder J-R, Jendrezejewski S, Abell AA, Hart GJ, Battersby AR. 1987. Stereochemistry of formation of the hydroxymethyl group of hydroxymethylbilane, the precursor of Uro’gen-III. J Chem Soc Chem Commun 1987:436–438. [CrossRef]
126. Castelfranco PA, Thayer SS, Wilkinson JQ, Bonner BA. 1988. Labeling of porphobilinogen deaminase by radioactive 5-aminolevulinic acid in isolated developing pea chloroplasts. Arch Biochem Biophys 266:219–226. [PubMed][CrossRef]
127. Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Malashkevich VN, Hadener A, Warren MJ, Shoolingin-Jordan PM. 1996. The three-dimensional structure of Escherichia coli porphobilinogen deaminase at 1.76-Å resolution. Proteins 25:48–78. [PubMed][CrossRef]
128. Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Warren MJ, Woodcock SC, Jordan PM. 1992. Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site. Nature (London) 359:33–39. [PubMed][CrossRef]
129. Hädener A, Alefounder PR, Hart GJ, Abell C, Battersby AR. 1990. Investigation of putative active-site lysine residues in hydroxymethylbilane synthase. Preparation and characterization of mutants in which (a) Lys-55, (b) Lys-59 and (c) both Lys-55 and Lys-59 have been replaced by glutamine. Biochem J 271:487–491.[PubMed]
130. Crockett N, Alefounder PR, Battersby AR, Abell C. 1991. Uroporphyrinogen III synthase. Studies on its mechanism of action, molecular biology and biochemistry. Tetrahedron 47:6003–6014. [CrossRef]
131. Petersen PM, Hawker CJ, Stamford NPJ, Leeper FJ, Battersby AR. 1998. Biosynthesis of porphyrins and related macrocycles. Part 50. Synthesis of the N-formyl-dihydro analogue of the spiro-intermediate and its interaction with uroporphyrinogen III synthase. J Chem Soc Perkin Trans I 1998:1531–1539. [CrossRef]
132. Stark WM, Hawker CJ, Hart GJ, Philippides A, Petersen PM, Lewis JD, Leeper FJ, Battersby AR. 1993. Biosynthesis of porphyrins and related macrocycles. Part 40. Synthesis of a spiro-lactam related to the proposed spiro-intermediate for porphyrin biosynthesis: inhibition of cosynthetase. J Chem Soc Perkin Trans I 1993:2875–2892. [CrossRef]
133. Alwan AF, Mgbeje BI, Jordan PM. 1989. Purification and properties of uroporphyrinogen III synthase (co-synthase) from an overproducing recombinant strain of Escherichia coli K-12. Biochem J 264:397–402.[PubMed]
134. Alefounder PR, Abell C, Battersby AR. 1988. The sequence of the hemC, hemD and two additional E. coli genes. Nucleic Acids Res 16:9871. [CrossRef]
135. Jordan PM, Mgbeje BIA, Thomas SD, Alwan AF. 1988. Nucleotide sequence for the hemD gene of Escherichia coli encoding uroporphyrinogen III synthase and initial evidence for a hem operon. Biochem J 249:613–616.[PubMed]
136. Săsărman A, Sanderson KE, Surdeanu M, Sonea S. 1970. Hemin-deficient mutants of Salmonella typhimurium. J Bacteriol 102:531–536.[PubMed]
137. Săsărman A, Surdeanu M, Szégli G, Horodniceanu T, Greceanu V, Dumitrescu A. 1968. Hemin-deficient mutants of Escherichia coli K-12. J Bacteriol 96:570–572.[PubMed]
138. Jordan PM, Mgbeje BIA, Alwan AF, Thomas SD. 1987. Nucleotide sequence of hemD, the second gene in the hem operon of Escherichia coli K-12. Nucleic Acids Res 24:10583. [CrossRef]
139. Mathews MAA, Schubert HL, Whitby FG, Alexander KJ, Schadick K, Bergonia HA, Phillips JD, Hill CP. 2001. Crystal structure of human uroporphyrinogen III synthase. EMBO J 20:5832–5839. [PubMed][CrossRef]
140. Kohashi M, Clement RP, Tse J, Piper WN. 1984. Rat hepatic uroporphyrinogen III co-synthase. Purification and evidence for a bound folate coenzyme participating in the biosynthesis of uroporphyrinogen III. Biochem J 220:755–765.[PubMed]
141. Higuchi M, Bogorad L. 1975. The purification and properties of uroporphyrinogen I synthases and uroporphyrinogen III cosynthase. Interactions between the enzymes. Ann N Y Acad Sci 244:401–418. [PubMed][CrossRef]
142. Rosé S, Frydman RB, de los Santos C, Sburlati A, Valasinas A, Frydman B. 1988. Spectroscopic evidence for a porphobilinogen deaminase-tetrapyrrole complex that is an intermediate in the biosynthesis of uroporphyrinogen III. Biochemistry 27:4871–4879. [PubMed][CrossRef]
143. Murphy MJ, Siegel LM. 1973. Siroheme and sirohydrochlorin. The basis for a new type of porphyrin-related prosthetic group common to both assimilatory and dissimilatory sulfite reductases. J Biol Chem 248:6911–6919.[PubMed]
144. Murphy MJ, Siegel LM, Kamin H, Rosenthal D. 1973. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. II. Identification of a new class of heme prosthetic group: an iron-tetrahydroporphyrin (isobacteriochlorin type) with eight carboxylic acid groups. J Biol Chem 248:2801–2814.[PubMed]
145. Siegel LM. 1978. Structure and function of siroheme and the siroheme enzymes, p 201–214. In Singer TP and Ondarza RN (ed), Developmental Biochemistry, vol. 1. Elsevier, Amsterdam, The Netherlands.
146. McRee DE, Richardson DC, Richardson JS, Siegel LM. 1986. The heme and Fe4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase. J Biol Chem 261:10277–10281.[PubMed]
147. Wang H, Gunsalus RP. 2000. The nrfA and nirB nitrite reductase operons in Escherichia coli are expressed differently in response to nitrate than to nitrite. J Bacteriol 182:5813–5822. [PubMed][CrossRef]
148. Raux E, Leech HK, Beck R, Schubert HL, Santander PJ, Roessner CA, Scott AI, Martens JH, Jahn D, Thermes C, Rambach A, Warren MJ. 2003. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem J 370:505–516. [PubMed][CrossRef]
149. Hansson M, von Wachenfeldt C. 1993. Heme b (protoheme IX) is a precursor of heme a and heme d in Bacillus subtilis. FEMS Microbiol Lett 107:121–126. [PubMed][CrossRef]
150. Xu K, Delling J, Elliott T. 1992. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation. J Bacteriol 174:3953–3963.[PubMed]
151. Anderson PJ, Entsch B, McKay DB. 2001. A gene, cobA + hemD, from Selenomonas ruminantium encodes a bifunctional enzyme involved in the synthesis of vitamin B12. Gene 281:63–70. [PubMed][CrossRef]
152. Fujino E, Fujino T, Karita S, Sakka K, Ohmiya K. 1995. Cloning and sequencing of some genes responsible for porphyrin biosynthesis from the anaerobic bacterium Clostridium josui. J Bacteriol 177:5169–5175.[PubMed]
153. Raux E, McVeigh T, Peters SE, Leustek T, Warren MJ. 1999. The role of Saccharomyces cerevisiae Met1p and Met8p in sirohaem and cobalamin biosynthesis. Biochem J 338:701–708. [PubMed][CrossRef]
154. Stroupe ME, Leech HK, Daniels DS, Warren MJ, Getzoff ED. 2003. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat Struct Biol 10:1064–1073. [PubMed][CrossRef]
155. Woodcock SC, Raux E, Levillayer F, Thermes C, Rambach A, Warren MJ. 1998. Effect of mutations in the transmethylase and dehydrogenase/chelatase domains of sirohaem synthase (CysG) on sirohaem and cobalamin biosynthesis. Biochem J 330:121–129.[PubMed]
156. Jeter RM, Olivera BM, Roth JR. 1984. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol 159:206–213.[PubMed]
157. Woodcock SC, Warren MJ. 1996. Evidence for a covalent intermediate in the S-adenosyl-L-methionine-dependent transmethylation reaction catalysed by sirohaem synthase. Biochem J 313:415–421.[PubMed]
158. Brunt RD, Leeper FJ, Grgurina I, Battersby AR. 1989. Biosynthesis of vitamin B12. Synthesis of (±)-[5-13C]Faktor-1 ester: determination of the oxidation state of precorrin-1. J Chem Soc Chem Commun 1989:428–431. [CrossRef]
159. Deeg R, Kriemler H-P, Bergmenn K-H, Müller G. 1977. Zue Cobyrinsäure-Biosynthese. Neuartige, methylierte Hydroporphyrine und deren Bedeutung bei der Cobyrinsäure-Bildung. Hoppe-Seyler’s Z Physiol Chem 358:339–352.
160. Scott AI, Irwin AJ, Siegel LM, Shoolery JN. 1978. Sirohydrochlorin. Prosthetic group of sulfite and nitrite reductases and its role in the biosynthesis of vitamin B12. J Am Chem Soc 100:7987–7994. [CrossRef]
161. Luo J, Lim CK. 1993. Order of uroporphyrinogen III decarboxylation on incubation of porphobilinogen and uroporphyrinogen III with erythrocyte uroporphyrinogen decarboxylase. Biochem J 289:529–532.[PubMed]
162. Jones RM, Jordan PM. 1993. Purification and properties of the uroporphyrinogen decarboxylase from Rhodobacter sphaeroides. Biochem J 293:703–712.[PubMed]
163. Barnard GF, Akhtar M. 1975. Stereochemistry of porphyrinogen carboxy-lyase reaction in haem biosynthesis. J Chem Soc Chem Commun 1975:494–496. [CrossRef]
164. Koopman GE, Juknat de Geralink AA, del AM Batlle C. 1986. Porphyrin biosynthesis in Rhodopseudomonas palustris. V. Purification of porphyrinogen decarboxylase and some unusual properties. Int J Biochem 18:935–944. [CrossRef]
165. Kawanishi S, Seki Y, Sano S. 1983. Uroporphyrinogen decarboxylase. Purification, properties, and inhibition by polychlorinated biphenyl isomers. J Biol Chem 258:4285–4292.[PubMed]
166. Chelstowska A, Zoladek T, Garey J, Kushner J, Rytka J, Labbe-Bois R. 1992. Identification of amino acid changes affecting yeast uroporphyrinogen decarboxylase activity by sequence analysis of hem12 mutant alleles. Biochem J 288:753–757.[PubMed]
167. Nishimura K, Nakayashiki T, Inokuchi H. 1993. Cloning and sequencing of the hemE gene encoding uroporphyrinogen III decarboxylase (UPD) from Escherichia coli K-12. Gene 133:109–113. [PubMed][CrossRef]
168. Ineichen G, Biel AJ. 1993. Location of the hemE gene on the physical map of Escherichia coli. J Bacteriol 175:7749–7750.[PubMed]
169. Martins BM, Grimm B, Mock HP, Huber R, Messerschmidt A. 2001. Crystal structure and substrate binding modeling of the uroporphyrinogen-III decarboxylase from Nicotiana tabacum. Implications for the catalytic mechanism. J Biol Chem 276:44108–44116. [PubMed][CrossRef]
170. Phillips JD, Whitby FG, Kushner JP, Hill CP. 2003. Structural basis for tetrapyrrole coordination by uroporphyrinogen decarboxylase. EMBO J 22:6225–6233. [PubMed][CrossRef]
171. Whitby FG, Phillips JD, Kushner JP, Hill CP. 1998. Crystal structure of human uroporphyrinogen decarboxylase. EMBO J 17:2463–2471. [PubMed][CrossRef]
172. Xu K, Elliott T. 1993. An oxygen-dependent coproporphyrinogen oxidase encoded by the hemF gene of Salmonella typhimurium. J Bacteriol 175:4990–4999.[PubMed]
173. Xu K, Elliott T. 1994. Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase. J Bacteriol 176:3196–3203.[PubMed]
174. Mombelli L, McDonald E, Battersby AR. 1976. Enzymatic formation of a tricarboxylic porphyrin and protoporphyrin-XIII from coprogen-IV. Tetrahedron Lett 1976:1037–1040. [CrossRef]
175. Elder GH, Evans JO, Jackson JR, Jackson AH. 1978. Factors determining the sequence of oxidative decarboxylation of the 2- and 4-propionate substituents of coproporphyrinogen III by coproporphyrinogen oxidase in rat liver. Biochem J 169:215–223.[PubMed]
176. Cavaleiro JAS, Kenner GW, Smith KM. 1974. Pyrroles and related compounds. XXXII. Biosynthesis of protoporphyrin-IX from coproporphyrinogen-III. J Chem Soc Perkin Trans I 1974:1188–1194. [CrossRef]
177. Battersby AR, Baldas J, Collins J, Grayson DH, James RJ, McDonald E. 1972. Mechanism of biosynthesis of the vinyl groups of protoporphyrin-IX. J Chem Soc Chem Commun 1972:1265–1266. [CrossRef]
178. Zaman Z, Abboud MM, Akhtar M. 1972. Mechanism and stereochemistry of vinyl-group formation in haem biosynthesis. J Chem Soc Chem Commun 1972:1263–1264. [CrossRef]
179. Zaman Z, Akhtar M. 1976. Mechanism and stereochemistry of vinyl-group formation in haem biosynthesis. Eur J Biochem 61:215–223. [PubMed][CrossRef]
180. Breckau D, Mahlitz E, Sauerwald A, Layer G, Jahn D. 2003. Oxygen-dependent coproporphyrinogen III oxidase (HemF) from Escherichia coli is stimulated by manganese. J Biol Chem 278:46625–46631. [PubMed][CrossRef]
181. Phillips JD, Whitby FG, Warby CA, Labbe P, Yan C, Pflugrath JW, Ferrara JD, Robinson H, Kushner JP, Hill CP. 2004. Crystal structure of the oxygen-dependent coproporphyrinogen oxidase (Hem13p) of Saccharomyces cerevisiae. J Biol Chem 279:38960–38968. [PubMed][CrossRef]
182. Troup B, Jahn M, Hungerer C, Jahn D. 1994. Isolation of the hemF operon containing the gene for the Escherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeast HEM13 mutant. J Bacteriol 176:673–680.[PubMed]
183. Kohno H, Furukawa T, Tokunaga R, Taketani S, Yoshinaga T. 1996. Mouse coproporphyrinogen oxidase is a copper-containing enzyme: expression in Escherichia coli and site-directed mutagenesis. Biochim Biophys Acta 1292:156–162.[PubMed]
184. Medlock AE, Dailey HA. 1996. Human coproporphyrinogen oxidase is not a metalloprotein. J Biol Chem 271:32507–32510. [PubMed][CrossRef]
185. Coomber SA, Jones RM, Jordan PM, Hunter CN. 1992. A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. I. Molecular cloning, transposon mutagenesis and sequence analysis of the gene. Mol Microbiol 6:3159–3169. [PubMed][CrossRef]
186. Tait GH. 1972. Coproporphyrinogenase activities in extracts of Rhodopseudomonas spheroides and Chromatium strain D. Biochem J 128:1159–1169.[PubMed]
187. Poulson R, Polglase WJ. 1974. Aerobic and anaerobic coproporphyrinogenase activities in extracts from Saccharomyces cerevisiae. J Biol Chem 249:6367–6371.[PubMed]
188. Keithly JH, Nadler KD. 1983. Protoporphyrin formation in Rhizobium japonicum. J Bacteriol 154:838–845.[PubMed]
189. Seehra JS, Jordan PM, Akhtar M. 1983. Anaerobic and aerobic coproporphyrinogen III oxidases of Rhodopseudomonas spheroides. Mechanism and stereochemistry of vinyl group formation. Biochem J 209:709–718.[PubMed]
190. Troup B, Hungerer C, Jahn D. 1995. Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. J Bacteriol 177:3326–3331.[PubMed]
191. Layer G, Verfürth K, Mahlitz E, Jahn D. 2002. Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J Biol Chem 277:34136–34142. [PubMed][CrossRef]
192. Layer G, Moser J, Heinz DW, Jahn D, Schuber W-D. 2003. Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes. EMBO J 22:6214–6224. [PubMed][CrossRef]
193. Layer G, Grage K, Teschner T, Schünemann V, Breckau D, Masoumi A, M, Heathcote P, Trautwein AX, Jahn D. 2005. Radical S-adenosylmethionine enzyme coproporphyrinogen III oxidase HemN. Functional features of the [4Fe-4S] cluster and the two bound S-adenosyl-L-methionines. J Biol Chem 280:29038–29046. [PubMed][CrossRef]
194. Layer G, Pierik AJ, Trost M, Rigby SE, Leech HK, Grage K, Breckau D, Astner I, Jänsch L, Heathcote P, Warren MJ, Heinz DW, Jahn D. 2006. The substrate radical of Escherichia coli oxygen-independent coproporphyrinogen III oxidase HemN. J Biol Chem 281:15727–15734. [PubMed][CrossRef]
195. Jacobs NJ, Jacobs JM. 1981. Protoporphyrinogen oxidation in Rhodopseudomonas spheroides, a step in heme and bacteriochlorophyll synthesis. Arch Biochem Biophys 211:305–311. [PubMed][CrossRef]
196. Jacobs NJ, Jacobs JM. 1976. Evidence for involvement of the electron transport system at a late step of anaerobic microbial heme synthesis. Biochim Biophys Acta 459:141–144. [CrossRef]
197. Jacobs NJ, Jacobs JM. 1977. Nitrate, fumarate, and oxygen as electron acceptors for a late step in microbial heme synthesis. Biochim Biophys Acta 449:1–9. [CrossRef]
198. Jacobs JM, Jacobs NJ. 1984. Protoporphyrinogen oxidation, an enzymatic step in heme and chlorophyll synthesis. Partial characterization of the reaction in plant organelles and comparison with mammalian and bacterial systems. Arch Biochem Biophys 229:312–319. [PubMed][CrossRef]
199. Klemm DJ, Barton LL. 1987. Purification and properties of protoporphyrinogen oxidase from an anaerobic bacterium, Desulfovibrio gigas. J Bacteriol 169:5209–5215.[PubMed]
200. Dailey TA, Meissner P, Dailey HA. 1994. Expression of a cloned protoporphyrinogen oxidase. J Biol Chem 269:813–815.[PubMed]
201. Heurgué-Hamard V, Champ S, Å. Engström, Ehrenberg M, Buckingham RH. 2002. The hemK gene in Escherichia coli encodes the N5-glutamine methyltransferase that modifies peptide release factors. EMBO J 21:769–778. [PubMed][CrossRef]
202. Săsărman A, Chartrand P, Lavoie M, Tardif D, Proschek R, Lapointe C. 1979. Mapping of a new hem gene in Escherichia coli K12. J Gen Microbiol 113:297–303.[PubMed]
203. Narita S, Taketani S, Inokuchi H. 1999. Oxidation of protoporphyrinogen IX in Escherichia coli is mediated by the aerobic coproporphyrinogen oxidase. Mol Gen Genet 261:1012–1020. [PubMed][CrossRef]
204. Săsărman A, Desrochers M. 1976. Uroporphyrinogen III cosynthase-deficient mutant of Salmonella typhimurium LT2. J Bacteriol 128:717–721.[PubMed]
205. Poulson R, Whitlow KJ, Polglase WJ. 1976. Catabolite repression of protoporphyrin IX biosynthesis in Escherichia coli K-12. FEBS Lett 62:351–353. [PubMed][CrossRef]
206. Jones C, Jordan PM, Chaudhry AG, Akhtar M. 1979. Stereospecificity of hydrogen removal from the four methylene bridges in haem biosynthesis: specific incorporation of the 11pro-S hydrogen of porphobilinogen into haem. J Chem Soc Chem Commun 1979:96–97. [CrossRef]
207. Koch M, Breithaupt C, Kiefersauer R, Freigang J, Huber R, Messerschmidt A. 2004. Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J 23:1720–1728. [PubMed][CrossRef]
208. Corradi HR, Corrigall AV, Boix E, Mohan CG, Sturrock ED, Meissner PN, Acharya KR. 2006. Crystal structure of protoporphyrinogen oxidase from Myxococcus xanthus and its complex with the inhibitor acifluorfen. J Biol Chem 281:38625–38633. [PubMed][CrossRef]
209. Jacobs JM, Jacobs NJ, Borotz SE, Guerinot ML. 1990. Effects of the photobleaching herbicide, acifluorfen-methyl, on protoporphyrinogen oxidation in barley organelles, soybean root mitochondria, soybean root nodules, and bacteria. Arch Biochem Biophys 280:369–375. [PubMed][CrossRef]
210. Camadro J-M, Matringe M, Scalla R, Labbe P. 1991. Kinetic studies on protoporphyrinogen oxidase inhibition by diphenyl ether herbicides. Biochem J 277:17–21.[PubMed]
211. Săsărman A, Surdeanu M, Horodniceanu T. 1968. Locus determining the synthesis of δ-aminolevulinic acid in Escherichia coli K-12. J Bacteriol 96:1882–1884.[PubMed]
212. Jones MS, Jones OTG. 1970. Ferrochelatase of Rhodopseudomonas spheroides. Biochem J 119:453–462.[PubMed]
213. Posnett SJ, Oosthuizen MMJ, Cantrell AC, Myburgh JA. 1988. Properties of membrane bound ferrochelatase purified from baboon liver mitochondria. Int J Biochem 20:845–855. [PubMed][CrossRef]
214. Dailey HA. 1982. Purification and characterization of membrane-bound ferrochelatase from Rhodopseudomonas sphaeroides. J Biol Chem 257:14714–14718.[PubMed]
215. Hansson M, Hederstedt L. 1992. Cloning and characterization of the Bacillus subtilis hemEHY gene cluster, which encodes protoheme IX biosynthetic enzymes. J Bacteriol 174:8081–8093.[PubMed]
216. Rossi E, Attwood PV, Garcia-Webb P, Costin KA. 1990. Inhibition of human lymphocyte ferrochelatase activity by hemin. Biochim Biophys Acta 1038:375–381.[PubMed]
217. Al-Karadaghi S, Hansson M, Nikonov S, Jonsson B, Hederstedt L. 1997. Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. Structure 51:1501–1510. [CrossRef]
218. Wu C-K, Dailey HA, Rose JP, Burden A, Sellers VM, Wang B-C. 2001. The 2-Å structure of human ferrochelatase, the terminal enzyme of heme biosynthesis. Nat Struct Biol 8:156–160. [PubMed][CrossRef]
219. Miyamoto K, Nakahigashi K, Nishimura K, Inokuchi H. 1991. Isolation and characterization of visible light-sensitive mutants of Escherichia coli K12. J Mol Biol 219:393–398. [PubMed][CrossRef]
220. Miyamoto K, Nishimura K, Masuda T, Tsuji H, Inokuchi H. 1992. Accumulation of protoporphyrin IX in light-sensitive mutants of Escherichia coli. FEBS Lett 310:246–248. [PubMed][CrossRef]
221. Nakahigashi K, Nishimura K, Miyamoto K, Inokuchi H. 1991. Photosensitivity of a protoporphyrin-accumulating, light-sensitive mutant (visA) of Escherichia coli K-12. Proc Natl Acad Sci USA 88:10520–10524. [PubMed][CrossRef]
222. Frustaci JM, O’Brian MR. 1993. The Escherichia coli visA gene encodes ferrochelatase, the final enzyme of the heme biosynthetic pathway. J Bacteriol 175:2154–2156.[PubMed]
223. De Matteis F, Gibbs AH, Smith AG. 1980. Inhibition of protohaem ferro-lyase by N-substituted porphyrins. Biochem J 189:645–648.[PubMed]
224. Ortiz de Montellano PR, Kunze KL, Cole SPC, Marks GS. 1980. Inhibition of hepatic ferrochelatase by the four isomers of N-methylprotoporphyrin IX. Biochem Biophys Res Commun 97:1436–1442. [PubMed][CrossRef]
225. Ortiz de Montellano PR, Kunze KL, Cole SPC, Marks GS. 1981. Differential inhibition of hepatic ferrochelatase by the four isomers of N-ethylprotoporphyrin IX. Biochem Biophys Res Commun 103:581–586. [PubMed][CrossRef]
226. Beale SI, Chen NC. 1983. N-Methyl mesoporphyrin IX inhibits phycocyanin, but not chlorophyll synthesis in Cyanidium caldarium. Plant Physiol 71:263–268. [PubMed][CrossRef]
227. Meyer TE, Cusanovich MA. 1989. Structure, function and distribution of soluble bacterial redox proteins. Biochim Biophys Acta 975:1–28. [PubMed][CrossRef]
228. Bragg PD, Hackett NR. 1983. Cytochromes of the trimethylamine N-oxide anaerobic respiratory pathway of Escherichia coli. Biochim Biophys Acta 725:168–177. [PubMed][CrossRef]
229. Iobbi-Nivol C, Crooke H, Griffiths L, Grove J, Hussain H, Pommier J, Mejean V, Cole JA. 1994. A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12. FEMS Microbiol Lett 119:89–94. [PubMed][CrossRef]
230. Eaves DJ, Grove J, Staudenmann W, James P, Poole RK, White SA, Griffiths I, Cole JA. 1998. Involvement of products of the nrfEFG genes in the covalent attachment of haem c to a novel cysteine-lysine motif in the cytochrome c 552 nitrite reductase from Escherichia coli. Mol Microbiol 28:205–226. [PubMed][CrossRef]
231. Kajie S-I, Anraku Y. 1986. Purification of a hexaheme cytochrome c552 from Escherichia coli K12 and its properties as a nitrite reductase. Eur J Biochem 154:457–463. [PubMed][CrossRef]
232. Thöny-Meyer. 2000. Haem-polypeptide interactions during cytochrome c maturation. Biochim Biophys Acta 1459:316–324. [PubMed][CrossRef]
233. Nicholson DW, Köhler H, Neupert W. 1987. Import of cytochrome c into mitochondria. Cytochrome c lyase. Eur J Biochem 164:147–157. [PubMed][CrossRef]
234. Taniuchi H, Basile G, Taniuchi M, Veloso D. 1983. Evidence for formation of two thioether bonds to link heme to apocytochrome c by partially purified cytochrome c synthetase. J Biol Chem 258:10963–10966.[PubMed]
235. Enosawa S, Ohashi A. 1986. Localization of enzyme for heme attachment to apocytochrome c in yeast mitochondria. Biochem Biophys Res Commun 141:1145–1150. [PubMed][CrossRef]
236. Nargang FE, Drygas ME, Kwong PL, Nicholson DW, Neupert W. 1988. A mutant of Neurospora crassa deficient in cytochrome c heme lyase activity cannot import cytochrome c into mitochondria. J Biol Chem 263:9388–9394.[PubMed]
237. Nicholson DW, Neupert W. 1989. Import of cytochrome c into mitochondria. Reduction of heme, mediated by NADH and flavin nucleotides, is obligatory for its covalent linkage to apocytochrome c. Proc Natl Acad Sci USA 86:4340–4344. [PubMed][CrossRef]
238. Drygas ME, Lambowitz AM, Nargang FE. 1989. Cloning and analysis of the Neurospora crassa gene for cytochrome c heme lyase. J Biol Chem 264:17897–17906.[PubMed]
239. Dumont ME, Ernst JF, Hampsey DM, Sherman F. 1987. Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J 6:235–241.[PubMed]
240. Nicholson DW, Stuart RA, Neupert W. 1989. Biogenesis of cytochrome c1. Role of cytochrome c1 heme lyase and of the two proteolytic processing steps during import into mitochondria. J Biol Chem 264:10156–10168.[PubMed]
241. Zollner A, Rödel G, Haid A. 1992. Molecular cloning and characterization of the Saccharomyces cerevisiae CYT2 gene encoding cytochrome-c1-heme lyase. Eur J Biochem 207:1093–1100. [PubMed][CrossRef]
242. Xie Z, Culler D, Dreyfuss BW, Kuras R, Wollman F-A, Girard-Bascou J, Merchant S. 1998. Genetic analysis of chloroplast c-type cytochrome assembly in Chlamydomonas reinhardtii: one chloroplast locus and at least four nuclear loci are required for heme attachment. Genetics 148:681–692.[PubMed]
243. Ren Q, Ahuja U, Thöny-Meyer L. 2002. A bacterial cytochrome c heme lyase. CcmF forms a complex with the heme chaperone CcmE and CcmH but not with apocytochrome c. J Biol Chem 277:7657–7663. [PubMed][CrossRef]
244. Schulz H, Fabianek RA, Pellicioli EC, Hennecke H, Thöny-Meyer L. 1999. Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB. Proc Natl Acad Sci USA 96:6462–6467. [PubMed][CrossRef]
245. Lee D, Pervushin K, Bischof D, Braun M, Thöny-Meyer L. 2005. Unusual heme-histidine bond in the active site of a chaperone. J Am Chem Soc 127:3716–3717. [PubMed][CrossRef]
246. Stevens JM, Uchida T, Daltrop O, Ferguson SJ. 2005. Covalent cofactor attachment to proteins: cytochrome c biogenesis. Biochem Soc Trans 33:792–795. [PubMed][CrossRef]
247. Hamel PP, Dreyfuss BW, Xie Z, Gabilly ST, Merchant S. 2003. Essential histidine and tryptophan residues in CcsA, a System II polytopic cytochrome c biogenesis protein. J Biol Chem 278:2593–2603. [PubMed][CrossRef]
248. Daltrop O, Stevens JM, Higham CW, Ferguson SJ. 2002. The CcmE protein of the c-type cytochrome biogenesis system: unusual in vitro heme incorporation into apo-CcmE and transfer from holo-CcmE to apocytochrome. Proc Natl Acad Sci USA 99:9703–9708. [PubMed][CrossRef]
249. Deforce L, Tomizawa K-I, Ito N, Farrens D, Song P-S. 1991. In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin. Proc Natl Acad Sci USA 88:10392–10396. [PubMed][CrossRef]
250. Elich TD, Lagarias JC. 1989. Formation of a photoreversible phycocyanobilin-apophytochrome adduct in vitro. J Biol Chem 264:12902–12908.[PubMed]
251. Lagarias JC, Lagarias DM. 1989. Self-assembly of synthetic phytochrome holoprotein in vitro. Proc Natl Acad Sci USA 86:5778–5780. [PubMed][CrossRef]
252. Sanbongi Y, Yang J-H, Igarashi Y, Kodama T. 1991. Cloning, nucleotide sequence and expression of the cytochrome c-552 gene from Hydrogenobacter thermophilus. Eur J Biochem 198:7–12. [PubMed][CrossRef]
253. Timkovich R, Bergmann D, Arciero DM, Hooper AB. 1998. Primary sequence and solution conformation of ferrocytochrome c-552 from Nitrosomonas europaea. Biophys J 75:1964–1972. [PubMed][CrossRef]
254. Kranz RG, Gennis RB. 1985. Immunological investigation of the distribution of cytochromes related to the two terminal oxidases of Escherichia coli in other gram-negative bacteria. J Bacteriol 161:709–713.[PubMed]
255. Saiki K, Mogi T, Anraku Y. 1992. Heme o biosynthesis in Escherichia coli. The cyoE gene in the cytochrome BO operon encodes a protoheme IX farnesyltransferase. Biochem Biophys Res Commun 189:1491–1497. [PubMed][CrossRef]
256. Puustinen A, Wikström M. 1991. The heme groups of cytochrome o from Escherichia coli. Proc Natl Acad Sci USA 88:6122–6126. [PubMed][CrossRef]
257. Wu W, Chang CK, Varotsis C, Babcock GT, Puustinen A, Wikström M. 1992. Structure of the heme o prosthetic group from the terminal quinol oxidase of Escherichia coli. J Am Chem Soc 114:1182–1187. [CrossRef]
258. Svensson B, Lübben M, Hederstedt L. 1993. Bacillus subtilis CtaA and CtaB function in haem A biosynthesis. Mol Microbiol 10:193–201. [PubMed][CrossRef]
259. Poole RK, Baines BS, Curtis SJ, Williams HD, Wood PM. 1984. Haemoprotein b-590 (Escherichia coli); redesignation of a bacterial ‘cytochrome a1’. J Gen Microbiol 130:3055–3058.[PubMed]
260. Saiki K, Mogi T, Ogura K, Anraku Y. 1993. In vitro heme o synthesis by the cyoE gene product from Escherichia coli. J Biol Chem 268:26041–26045.[PubMed]
261. Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen A, Iwata S, Wikström M. 2000. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat Struct Biol 7:910–917. [PubMed][CrossRef]
262. Yamashita E, Aoyama H, Yao M, Muramoto K, Shinzawa-Itoh K, Yoshikawa S, Tsukihara T. 2005. Absolute configuration of the hydroxyfarnesylethyl group of haem A, determined by X-ray structural analysis of bovine heart cytochrome c oxidase using methods applicable at 2.8 Å resolution. Acta Crystallogr D 61:1373–1377. [PubMed][CrossRef]
263. Sotiriou C, Chang CK. 1988. Synthesis of the heme d prosthetic group of bacterial terminal oxidase. J Am Chem Soc 110:2264–2270. [CrossRef]
264. Timkovich R, Cork MS, Gennis RB, Johnson PY. 1985. Proposed structure of heme d, a prosthetic group of bacterial terminal oxidases. J Am Chem Soc 107:6069–6075. [CrossRef]
265. Chiu JT, Loewen PC, Switala J, Gennis RB, Timkovich R. 1989. Proposed structure for the prosthetic group of catalase HPII from Escherichia coli. J Am Chem Soc 111:7046–7050. [CrossRef]
266. Murshudov GN, Grebenko AI, Barynin V, Dauter Z, Wilson KS, Vainshtein BK, Melik-Adamyan W, Bravo J, Ferrán JM, Ferrer JC, Switala J, Loewen PC, Fitaf I. 1998. Structure of the heme d of Penicillium vitale and Escherichia coli catalases. J Biol Chem 271:8863–8868.
267. Timkovich R, Bondoc LL. 1990. Diversity in the structure of hemes. Adv Biophys Chem 1:203–247.
268. Loewen. PC, Switala J, von Ossowski I, Hillar A, Christie A, Tattrie B, Nicholls P. 1993. Catalase HPII of Escherichia coli catalyzes the conversion of protoheme to cis-heme d. Biochemistry 32:10159–10164. [PubMed][CrossRef]
269. Obinger C, Maj M, Nicholls P, Loewen P. 1997. Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase. Arch Biochem Biophys 342:58–67. [PubMed][CrossRef]
270. Poole RK, Hatch L, Cleeter MWJ, Gibson F, Cox GB, Wu G. 1993. Cytochrome bd biosynthesis in Escherichia coli. The sequences of the cydC and cydD genes suggest that they encode components of an ABC membrane transporter. Mol Microbiol 10:421–430. [PubMed][CrossRef]
271. Georgiou CD, Fang H, Gennis RB. 1987. Identification of the cydC locus required for expression of the functional form of the cytochrome d terminal oxidase complex in Escherichia coli. J Bacteriol 169:2107–2112.[PubMed]
272. Poole RK, Gibson F, Wu G. 1994. The cydD gene product, component of a heterodimeric ABC transporter, is required for assembly of periplasmic cytochrome c and of cytochrome bd in Escherichia coli. FEMS Microbiol Lett 117:217–224. [PubMed][CrossRef]
273. Cruz-Ramos H, Cook GM, Wu G, Cleeter MW, Poole RK. 2004. Membrane topology and mutational analysis of Escherichia coli CydDC, an ABC-type cysteine exporter required for cytochrome assembly. Microbiology 150:3415–3427. [PubMed][CrossRef]
274. Schmitt MP. 1997. Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J Bacteriol 179:838–845.[PubMed]
275. Létoffé, S, Delepelaire P, Wandersman C. 2006. The housekeeping dipeptide permease is the Escherichia coli heme transporter and functions with two optional peptide binding proteins. Proc Natl Acad Sci USA 103:12891–12896. [PubMed][CrossRef]
276. Janzer JJ, Stan-Lotter H, Sanderson KE. 1981. Isolation and characterization of hemin-permeable, envelope-defective mutants of Salmonella typhimurium. Can J Microbiol 27:226–237.[PubMed]
277. McConville M, Charles HP. 1975. Isolation of ‘haemin permeable’ mutants and their use in the study of the genetics of haem biosynthesis in Escherichia coli K12. Proc Soc Gen Microbiol 3:14–15.
278. Law D, Kelly J. 1995. Use of heme and hemoglobin by Escherichia coli O157 and other Shiga-like-toxin-producing E. coli serogroups. Infect Immun 63:700–702.[PubMed]
279. Suits MDL, Pal GP, Nakatsu K, Matte A, Cygler M, Jia Z. 2005. Identification of an Escherichia coli O157:H7 heme oxygenase with tandem functional repeats. Proc Natl Acad Sci USA 102:16955–16960. [PubMed][CrossRef]
280. Elliott T. 1993. Transport of 5-aminolevulinic acid by the dipeptide permease in Salmonella typhimurium. J Bacteriol 175:325–331.[PubMed]
281. Barrett J, Sinclair P. 1967. The cytochrome c (552) of aerobically grown Escherichia coli str. McElroy and its function. Biochim Biophys Acta 143:279–281. [PubMed][CrossRef]
282. Hino S, Ishida A. 1973. Effect of oxygen on heme and cytochrome content in some facultative bacteria. Enzyme 16:42–49.[PubMed]
283. Ishida A, Hino S. 1972. Effect of oxygen on cytochrome pattern and heme synthesis in Escherichia coli. J Gen Appl Microbiol 18:225–237. [CrossRef]
284. Philipp-Dormston WK, Doss M. 1975. Over-production of porphyrins and heme in heterotrophic bacteria. Z Naturforsch Sect C 30:425–426.
285. Chen W, Russell CS, Murooka Y, Cosloy SD. 1994. 5-Aminolevulinic acid synthesis in Escherichia coli requires expression of hemA. J Bacteriol 176:2743–27436.[PubMed]
286. Ishikawa K, Sato M, Yoshida T. 1991. Expression of rat heme oxygenase in Escherichia coli as a catalytically active, full-length form that binds to bacterial membranes. Eur J Biochem 202:161–165. [PubMed][CrossRef]
287. Wilks A, Ortiz de Montellano PR. 1993. Rat liver heme oxygenase. High level expression of a truncated soluble form and nature of the meso-hydroxylating species. J Biol Chem 268:22357–22362.[PubMed]
288. Gough SP, Kannangara CG. 1979. Biosynthesis of δ-aminolevulinate in greening barley leaves. III. The formation of δ-aminolevulinate in tigrina mutants of barley. Carlsberg Res Commun 44:403–416. [CrossRef]
289. Huang D-D, W-Y. Wang. 1986. Genetic control of chlorophyll biosynthesis. Regulation of delta aminolevulinate synthesis in Chlamydomonas. Mol Gen Genet 205:217–220. [CrossRef]
290. Weinstein JD, Beale SI. 1985. Enzymatic conversion of glutamate to δ-aminolevulinate in soluble extracts of the unicellular green alga, Chlorella vulgaris. Arch Biochem Biophys 237:454–464. [PubMed][CrossRef]
291. Rieble S, Beale SI. 1991. Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803. J Biol Chem 266:9740–9744.[PubMed]
292. Burnham BF, Lascelles J. 1963. Control of porphyrin biosynthesis through a negative-feedback mechanism. Studies with preparations of δ-aminolaevulate synthetase and δ-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J 87:462–472.[PubMed]
293. Lascelles J, Hatch TP. 1969. Bacteriochlorophyll and heme synthesis in Rhodopseudomonas spheroides: possible role of heme in regulation of the branched biosynthetic pathway. J Bacteriol 98:712–720.[PubMed]
294. von Wachenfeldt C, Hederstedt L. 1990. Bacillus subtilis holo-cytochrome c-550 can be synthesized in aerobic Escherichia coli. FEBS Lett 270:147–151. [PubMed][CrossRef]
295. Javor GT, Febre EF. 1992. The enzymatic basis of thiol-stimulated secretion of porphyrins by Escherichia coli. J Bacteriol 174:1072–1075.[PubMed]
296. Javor GT, Kim H. 1987. A simple method for screening porphyrin secretion by colonies of Escherichia coli. FEMS Microbiol Lett 56:195–197. [CrossRef]
297. Jahn D, Michelsen U, Söll D. 1991. Two glutamyl-tRNA reductase activities in Escherichia coli. J Biol Chem 266:2542–2548.[PubMed]
298. Wang W-Y, Huang D-D, Stachon D, Gough SP, Kannangara CG. 1984. Purification, characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells. Plant Physiol 74:569–575. [PubMed][CrossRef]
299. Weinstein JD, Howell RW, Leverette RD, Grooms SY, Brignola PS, Mayer SM, Beale SI. 1993. Heme inhibition of δ-aminolevulinic acid synthesis is enhanced by glutathione in cell-free extracts of Chlorella. Plant Physiol 101:657–665.[PubMed]
300. Wang, Elliott LM, Elliott T. 1999. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol 181:1211–1219.[PubMed]
301. O’Neill GP, Thorbjarnardóttir S, Michelsen U, Pálsson S, Söll D, Eggertsson G. 1991. δ-Aminolevulinic acid dehydratase deficiency can cause δ-aminolevulinate auxotrophy in Escherichia coli. J Bacteriol 173:94–100.[PubMed]
302. Darie S, Gunsalus RP. 1994. Effect of heme and oxygen availability on hemA gene expression in Escherichia coli: role of the fnr, arcA, and himA gene products. J Bacteriol 176:5270–5276.[PubMed]
303. Beck CF, Warren RAJ. 1988. Divergent promoters, a common form of gene organization. Microbiol Rev 52:318–326.[PubMed]
304. Ikemi M, Murakami K, Hashimoto M, Murooka Y. 1992. Cloning and characterization of genes involved in the biosynthesis of δ-aminolevulinic acid in Escherichia coli. Gene 121:127–132. [PubMed][CrossRef]
305. Matsuyama SI, Yokota N, Tokuda H. 1997. A novel outer membrane lipoprotein, LolB (HemM), involved in the LolA (p20)-dependent localization of lipoproteins to the outer membrane of Escherichia coli. EMBO J 16:6947–1955. [PubMed][CrossRef]
306. Woodard SI, Dailey HA. 1995. Regulation of heme synthesis in Escherichia coli. Arch Biochem Biophys 316:110–115. [PubMed][CrossRef]
307. Zollner A, Rödel G, Haid A. 1994. Expression of the Saccharomyces cerevisiae CYT2 gene, encoding cytochrome c1 heme lyase. Curr Genet 25:291–298. [PubMed][CrossRef]
308. Goldman BS, Roth JR. 1993. Genetic structure and regulation of the cysG gene in Salmonella typhimurium. J Bacteriol 175:1457–1466.[PubMed]
309. Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan S, Harborne N, Wootton J, Nicolson R, Cole J. 1990. Nucleotide sequence, organization and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur J Biochem 191:315–323. [PubMed][CrossRef]
310. Chepuri V, Lemieux L, Au DC-T, Gennis RB. 1990. The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. J Biol Chem 265:11185–11192.[PubMed]
311. Minagawa J, Nakamura H, Yamato I, Mogi T, Anraku Y. 1990. Transcriptional regulation of the cytochrome b562-o complex in Escherichia coli. Gene expression and molecular characterization of the promoter. J Biol Chem 265:11198–11203.[PubMed]
312. Hansson M, Rutberg L, Schröder I, Hederstedt L. 1991. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J Bacteriol 173:2590–2599.[PubMed]
ecosalplus.3.6.3.11.citations
ecosalplus/2/2
content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.11
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.11
2007-10-18
2017-04-24

Abstract:

This review is concerned specifically with the structures and biosynthesis of hemes in and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of HO. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

End products that are synthesized by and/or serovar Typhimurium are enclosed in boxes.

Citation: Beale S. 2007. Biosynthesis of Hemes, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.6.3.11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

.

Citation: Beale S. 2007. Biosynthesis of Hemes, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.6.3.11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The numbers assigned to enzymes that catalyze the individual reactions are named in Table 1 . The customary letter designations of the pyrrole rings and the IUPAC number designations of tetrapyrrole carbon atoms are illustrated for uroporphyrinogen III.

Citation: Beale S. 2007. Biosynthesis of Hemes, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.6.3.11
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Steps in heme biosynthesis in and serovar Typhimurium (S. Typh.), the enzymes catalyzing these steps, and the genes that encode them

Citation: Beale S. 2007. Biosynthesis of Hemes, EcoSal Plus 2007; doi:10.1128/ecosalplus.3.6.3.11

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error