1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biosynthesis and Insertion of the Molybdenum Cofactor

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Axel Magalon1, and Ralf R. Mendel2
  • Editor: Tadhg P. Begley3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et de Microbiologie, CNRS, 13402 Marseilles Cedex 20, France; 2: Department of Plant Biology, Technical University, 38106 Braunschweig, Germany; 3: Texas A&M University, College Station, Texas
  • Received 29 August 2007 Accepted 04 November 2007 Published 18 January 2008
  • Address correspondence to Axel Magalon magalon@ibsm.cnrs-mrs.fr.
image of Biosynthesis and Insertion of the Molybdenum Cofactor
    Preview this reference work article:
    Zoom in
    Zoomout

    Biosynthesis and Insertion of the Molybdenum Cofactor, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/1/3_6_3_13_module-1.gif /docserver/preview/fulltext/ecosalplus/3/1/3_6_3_13_module-2.gif
  • Abstract:

    The transition element molybdenum (Mo) is of primordial importance for biological systems as it is required by enzymes catalyzing key reactions in global carbon, sulfur, and nitrogen metabolism. In order to gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo enzymes in prokaryotes, including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox ones. Mo enzymes are widespread in prokaryotes, and many of them were likely present in LUCA. To date, more than 50–mostly bacterial–Mo enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Moco is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.

  • Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13

Key Concept Ranking

Bacterial Cytoplasmic Membrane Proteins
0.3380909
Dimethyl sulfoxide reductase
0.30629098
0.3380909

Article Version

An updated version has been published for this content:
Biosynthesis and Insertion of the Molybdenum Cofactor

References

1. Anonymous. 2002. In Sigel H (ed), Molybdenum and Tungsten. Their Roles in Biological Processes, vol. 39. Metals in Biological Systems series. Routledge, New York, NY.
2. Hille R. 2002. Molybdenum and tungsten in biology. Trends Biochem Sci 27:360–367. [PubMed][CrossRef]
3. Hille R. 2002. Molybdenum enzymes containing the pyranopterin cofactor: an overview. Met Ions Biol Syst 39:187–226.[PubMed]
4. Schwarz G, Hagedoorn PL, Fisher K. 2007. Molybdate and tungstate: uptake, homeostasis, cofactors and enzymes. Microbiol Monogr 6:421–451. [CrossRef]
5. Pateman JA, Cove DJ, Rever BM, Roberts DB. 1964. A common co-factor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase. Nature 201:58–60. [PubMed][CrossRef]
6. Cove DJ, Pateman JA. 1963. Independently segregating genetic loci concerned with nitrate reductase activity in Aspergillus nidulans. Nature 198:262–263. [PubMed][CrossRef]
7. Johnson JL, Hainline BE, Rajagopalan KV. 1980. Characterization of the molybdenum cofactor of sulfite oxidase, xanthine, oxidase, and nitrate reductase. Identification of a pteridine as a structural component. J Biol Chem 255:1783–1786.[PubMed]
8. Pichinoty F, Puig J, Chippaux M, Bigliardi-Rouvier J, Gendre J. 1969. Studies of bacterial mutants that have lost catalytic activities associated with nitrate reductase A. II. Behavior toward chlorate and chlorite. Ann Inst Pasteur (Paris) 116:409–432.[PubMed]
9. Piechaud M, Pichinoty F, Azoulay E, Couchoud-Beaumont P, Gendre J. 1969. Study of bacterial mutants that have lost catalytic activity associated with nitrate reductase A. I. Description of isolation methods. Ann Inst Pasteur (Paris) 116:276–287.[PubMed]
10. Stewart V, MacGregor CH. 1982. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol 151:788–799.[PubMed]
11. Shanmugam KT, Stewart V, Gunsalus RP, Boxer DH, Cole JA, Chippaux M, DeMoss JA, Giordano G, Lin EC, Rajagopalan KV. 1992. Proposed nomenclature for the genes involved in molybdenum metabolism in Escherichia coli and Salmonella typhimurium. Mol Microbiol 6:3452–3454. [PubMed][CrossRef]
12. Glaser JH, DeMoss JA. 1971. Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli. J Bacteriol 108:854–860.[PubMed]
13. Pau RN, Lawson DM. 2002. Transport, homeostasis, regulation, and binding of molybdate and tungstate to proteins. Met Ions Biol Syst 39:31–74.[PubMed]
14. Scott D, Amy NK. 1989. Molybdenum accumulation in chlD mutants of Escherichia coli. J Bacteriol 171:1284–1287.[PubMed]
15. Grunden AM, Ray RM, Rosentel JK, Healy FG, Shanmugam KT. 1996. Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J Bacteriol 178:735–744.[PubMed]
16. Anderson LA, Palmer T, Price NC, Bornemann S, Boxer DH, Pau RN. 1997. Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli. Eur J Biochem 246:119–126. [PubMed][CrossRef]
17. Hall DR, Gourley DG, Leonard GA, Duke EM, Anderson LA, Boxer DH, Hunter WN. 1999. The high-resolution crystal structure of the molybdate-dependent transcriptional regulator (ModE) from Escherichia coli: a novel combination of domain folds. EMBO J 18:1435–1446. [PubMed][CrossRef]
18. Schuttelkopf AW, Boxer DH, Hunter WN. 2003. Crystal structure of activated ModE reveals conformational changes involving both oxyanion and DNA-binding domains. J Mol Biol 326:761–767. [PubMed][CrossRef]
19. McNicholas PM, Chiang RC, Gunsalus RP. 1998. Anaerobic regulation of the Escherichia coli dmsABC operon requires the molybdate-responsive regulator ModE. Mol Microbiol 27:197–208. [PubMed][CrossRef]
20. Self WT, Grunden AM, Hasona A, Shanmugam KT. 1999. Transcriptional regulation of molybdoenzyme synthesis in Escherichia coli in response to molybdenum: ModE-molybdate, a repressor of the modABCD (molybdate transport) operon, is a secondary transcriptional activator for the hyc and nar operons. Microbiology 145:41–55. [PubMed][CrossRef]
21. Anderson LA, McNairn E, Leubke T, Pau RN, Boxer DH. 2000. ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli. J Bacteriol 182:7035–7043. [PubMed][CrossRef]
22. McNicholas PM, Rech SA, Gunsalus RP. 1997. Characterization of the ModE DNA-binding sites in the control regions of modABCD and moaABCDE of Escherichia coli. Mol Microbiol 23:515–524. [PubMed][CrossRef]
23. Bevers LE, Hagedoorn PL, Krijger GC, Hagen WR. 2006. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters. J Bacteriol 188:6498–6505. [PubMed][CrossRef]
24. Makdessi K, Andreesen JR, Pich A. 2001. Tungstate uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J Biol Chem 276:24557–25564. [PubMed][CrossRef]
25. Grunden AM, Shanmugam KT. 1997. Molybdate transport and regulation in bacteria. Arch Microbiol 168:345–354. [PubMed][CrossRef]
26. Baker KP, Boxer DH. 1991. Regulation of the chlA locus of Escherichia coli K12: involvement of molybdenum cofactor. Mol Microbiol 5:901–907. [PubMed][CrossRef]
27. Hasona A, Self WT, Shanmugam KT. 2001. Transcriptional regulation of the moe (molybdate metabolism) operon of Escherichia coli. Arch Microbiol 175:178–188. [PubMed][CrossRef]
28. Hasona A, Self WT, Ray RM, Shanmugam KT. 1998. Molybdate-dependent transcription of hyc and nar operons of Escherichia coli requires MoeA protein and ModE-molybdate. FEMS Microbiol Lett 169:111–116. [PubMed][CrossRef]
29. Iobbi-Nivol C, Palmer T, Whitty PW, McNairn E, Boxer DH. 1995. The mob locus of Escherichia coli K12 required for molybdenum cofactor biosynthesis is expressed at very low levels. Microbiology 141:1663–1671. [PubMed][CrossRef]
30. Rajagopalan KV, Johnson JL. 1992. The pterin molybdenum cofactors. J Biol Chem 267:10199–10202.[PubMed]
31. Rajagopalan KV, Johnson JL, Wuebbens MM, Pitterle DM, Hilton JC, Zurick TR, Garrett RM. 1993. Chemistry and biology of the molybdenum cofactors. Adv Exp Med Biol 338:355–362.[PubMed]
32. Hanzelmann P, Schindelin H. 2004. Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. Proc Natl Acad Sci USA 101:12870–12875. [PubMed][CrossRef]
33. Wuebbens MM, Liu MT, Rajagopalan K, Schindelin H. 2000. Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC. Structure Fold Des 8:709–718. [CrossRef]
34. Rudolph MJ, Wuebbens MM, Rajagopalan KV, Schindelin H. 2001. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol 8:42–46. [PubMed][CrossRef]
35. Lake MW, Wuebbens MM, Rajagopalan KV, Schindelin H. 2001. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414:325–329. [PubMed][CrossRef]
36. Liu MT, Wuebbens MM, Rajagopalan KV, Schindelin H. 2000. Crystal structure of the gephyrin-related molybdenum cofactor biosynthesis protein MogA from Escherichia coli. J Biol Chem 275:1814–1822. [PubMed][CrossRef]
37. Xiang S, Nichols J, Rajagopalan KV, Schindelin H. 2001. The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin. Structure (Camb) 9:299–310. [PubMed][CrossRef]
38. Lake MW, Temple CA, Rajagopalan KV, Schindelin H. 2000. The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. J Biol Chem 275:40211–40217. [PubMed][CrossRef]
39. Stevenson CE, Sargent F, Buchanan G, Palmer T, Lawson DM. 2000. Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution. Structure Fold Des 8:1115–1125. [CrossRef]
40. McLuskey K, Harrison JA, Schuttelkopf AW, Boxer DH, Hunter WN. 2003. Insight into the role of Escherichia coli MobB in molybdenum cofactor biosynthesis based on the high resolution crystal structure. J Biol Chem 278:23706–23713. [PubMed][CrossRef]
41. Delano WL. 2002. The PyMOL Molecular graphics system, San Carlos, CA. DeLano Scientific LLC, Palo Alto, CA. http://pymol.sourceforge.net/.
42. Thony B, Auerbach G, Blau N. 2000. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 347:1–16. [PubMed][CrossRef]
43. Bacher A, Eberhardt S, Eisenreich W, Fischer M, Herz S, Illarionov B, Kis K, Richter G. 2001. Biosynthesis of riboflavin. Vitam Horm 61:1–49. [PubMed][CrossRef]
44. Wuebbens MM, Rajagopalan KV. 1995. Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies. J Biol Chem 270:1082–1087. [PubMed][CrossRef]
45. Wuebbens MM, Rajagopalan KV. 1993. Structural characterization of a molybdopterin precursor. J Biol Chem 268:13493–13498.[PubMed]
46. Santamaria-Araujo JA, Fischer B, Otte T, Nimtz M, Mendel RR, Wray V, Schwarz G. 2004. The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor. J Biol Chem 279:15994–15999. [PubMed][CrossRef]
47. Hanzelmann P, Hernandez HL, Menzel C, Garcia-Serres R, Huynh BH, Johnson MK, Mendel RR, Schindelin H. 2004. Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis. J Biol Chem 279:34721–34732. [PubMed][CrossRef]
48. Layer G, Kervio E, Morlock G, Heinz DW, Jahn D, Retey J, Schubert WD. 2005. Structural and functional comparison of HemN to other radical SAM enzymes. Biol Chem 386:971–980. [PubMed][CrossRef]
49. Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. 2001. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106. [PubMed][CrossRef]
50. Hanzelmann P, Schindelin H. 2006. Binding of 5′-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. Proc Natl Acad Sci USA 103:6829–6834. [PubMed][CrossRef]
51. Gutzke G, Fischer B, Mendel RR, Schwarz G. 2001. Thiocarboxylation of molybdopterin synthase provides evidence for the mechanism of dithiolene formation in metal-binding pterins. J Biol Chem 276:36268–36274. [PubMed][CrossRef]
52. Tong Y, Wuebbens MM, Rajagopalan KV, Fitzgerald MC. 2005. Thermodynamic analysis of subunit interactions in Escherichia coli molybdopterin synthase. Biochemistry 44:2595–2601. [PubMed][CrossRef]
53. Wuebbens MM, Rajagopalan KV. 2003. Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J Biol Chem 278:14523–14532. [PubMed][CrossRef]
54. Leimkuhler S, Wuebbens MM, Rajagopalan KV. 2001. Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J Biol Chem 276:34695–34701. [PubMed][CrossRef]
55. Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu Rev Biochem 67:425–479. [PubMed][CrossRef]
56. Schmitz J, Wuebbens MM, Rajagopalan KV, Leimkuhler S. 2007. Role of the C-terminal Gly-Gly motif of Escherichia coli MoaD, a molybdenum cofactor biosynthesis protein with a ubiquitin fold. Biochemistry 46:909–916. [PubMed][CrossRef]
57. Lehmann C, Begley TP, Ealick SE. 2006. Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Biochemistry 45:11–19. [PubMed][CrossRef]
58. Taylor SV, Kelleher NL, Kinsland C, Chiu HJ, Costello CA, Backstrom AD, McLafferty FW, Begley TP. 1998. Thiamin biosynthesis in Escherichia coli. Identification of this thiocarboxylate as the immediate sulfur donor in the thiazole formation. J Biol Chem 273:16555–16560. [PubMed][CrossRef]
59. Wang C, Xi J, Begley TP, Nicholson LK. 2001. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat Struct Biol 8:47–51. [PubMed][CrossRef]
60. Begley TP, Xi J, Kinsland C, Taylor S, McLafferty F. 1999. The enzymology of sulfur activation during thiamin and biotin biosynthesis. Curr Opin Chem Biol 3:623–629. [PubMed][CrossRef]
61. Cicchillo RM, Booker SJ. 2005. Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J Am Chem Soc 127:2860–2861. [PubMed][CrossRef]
62. Kessler D. 2006. Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. FEMS Microbiol Rev 30:825–840. [PubMed][CrossRef]
63. Leimkuhler S, Rajagopalan KV. 2001. A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J Biol Chem 276:22024–22031. [PubMed][CrossRef]
64. Llamas A, Mendel RR, Schwarz G. 2004. Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion. J Biol Chem 279:55241–55246. [PubMed][CrossRef]
65. Schwarz G, Boxer DH, Mendel RR. 1997. Molybdenum cofactor biosynthesis. The plant protein Cnx1 binds molybdopterin with high affinity. J Biol Chem 272:26811–26814. [PubMed][CrossRef]
66. Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G. 2004. Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430:803–806. [PubMed][CrossRef]
67. Kuper J, Winking J, Hecht HJ, Mendel RR, Schwarz G. 2003. The active site of the molybdenum cofactor biosynthetic protein domain Cnx1G. Arch Biochem Biophys 411:36–46. [PubMed][CrossRef]
68. Schwarz G, Schrader N, Mendel RR, Hecht HJ, Schindelin H. 2001. Crystal structures of human gephyrin and plant Cnx1 G domains: comparative analysis and functional implications. J Mol Biol 312:405–418. [PubMed][CrossRef]
69. Llamas A, Otte T, Multhaup G, Mendel RR, Schwarz G. 2006. The mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly. J Biol Chem 281:18343–13850. [PubMed][CrossRef]
70. Bader G, Gomez-Ortiz M, Haussmann C, Bacher A, Huber R, Fischer M. 2004. Structure of the molybdenum-cofactor biosynthesis protein MoaB of Escherichia coli. Acta Crystallogr D Biol Crystallogr 60:1068–1075. [PubMed][CrossRef]
71. Sanishvili R, Beasley S, Skarina T, Glesne D, Joachimiak A, Edwards A, Savchenko A. 2004. The crystal structure of Escherichia coli MoaB suggests a probable role in molybdenum cofactor synthesis. J Biol Chem 279:42139–42146. [PubMed][CrossRef]
72. Leimkuhler S, Angermuller S, Schwarz G, Mendel RR, Klipp W. 1999. Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis. J Bacteriol 181:5930–5939.[PubMed]
73. Nichols J, Rajagopalan KV. 2002. Escherichia coli MoeA and MogA. Function in metal incorporation step of molybdenum cofactor biosynthesis. J Biol Chem 277:24995–25000. [PubMed][CrossRef]
74. Hasona A, Ray RM, Shanmugam KT. 1998. Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli. J Bacteriol 180:1466–1472.[PubMed]
75. Brokx SJ, Rothery RA, Zhang G, Ng DP, Weiner JH. 2005. Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Biochemistry 44:10339–10348. [PubMed][CrossRef]
76. Loschi L, Brokx SJ, Hills TL, Zhang G, Bertero MG, Lovering AL, Weiner JH, Strynadka NC. 2004. Structural and biochemical identification of a novel bacterial oxidoreductase. J Biol Chem 279:50391–50400. [PubMed][CrossRef]
77. Nichols JD, Rajagopalan KV. 2005. In vitro molybdenum ligation to molybdopterin using purified components. J Biol Chem 280:7817–7822. [PubMed][CrossRef]
78. Magalon A, Frixon C, Pommier J, Giordano G, Blasco F. 2002. In vivo interactions between gene products involved in the final stages of molybdenum cofactor biosynthesis in Escherichia coli. J Biol Chem 277:48199–48204. [PubMed][CrossRef]
79. Leimkuhler S, Rajagopalan KV. 2001. In vitro incorporation of nascent molybdenum cofactor into human sulfite oxidase. J Biol Chem 276:1837–1844. [PubMed][CrossRef]
80. Nichols JD, Xiang S, Schindelin H, Rajagopalan KV. 2007. Mutational analysis of Escherichia coli MoeA: two functional activities map to the active site cleft. Biochemistry 46:78–86. [PubMed][CrossRef]
81. Palmer T, Vasishta A, Whitty PW, Boxer DH. 1994. Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli. Eur J Biochem 222:687–692. [PubMed][CrossRef]
82. Palmer T, Santini CL, Iobbi-Nivol C, Eaves DJ, Boxer DH, Giordano G. 1996. Involvement of the narJ and mob gene products in distinct steps in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli. Mol Microbiol 20:875–884. [PubMed][CrossRef]
83. Temple CA, Rajagopalan KV. 2000. Mechanism of assembly of the bis(molybdopterin guanine dinucleotide)molybdenum cofactor in Rhodobacter sphaeroides dimethyl sulfoxide reductase. J Biol Chem 275:40202–40210. [PubMed][CrossRef]
84. Rizzi M, Schindelin H. 2002. Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis. Curr Opin Struct Biol 12:709–720. [PubMed][CrossRef]
85. Guse A, Stevenson CE, Kuper J, Buchanan G, Schwarz G, Giordano G, Magalon A, Mendel RR, Lawson DM, Palmer T. 2003. Biochemical and structural analysis of the molybdenum cofactor biosynthesis protein MobA. J Biol Chem 278:25302–25307. [PubMed][CrossRef]
86. Ketchum PA, Sevilla CL. 1973. In vitro formation of nitrate reductase using extracts of the nitrate reductase mutant of Neurospora crassa, nit-1, and Rhodospirillum rubrum. J Bacteriol 116:600–609.[PubMed]
87. Amy NK, Rajagopalan KV. 1979. Characterization of molybdenum cofactor from Escherichia coli. J Bacteriol 140:114–124. [PubMed]
88. Witte CP, Igeno MI, Mendel R, Schwarz G, Fernandez E. 1998. The Chlamydomonas reinhardtii MoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form. FEBS Lett 431:205–209. [PubMed][CrossRef]
89. Vergnes A, Gouffi-Belhabich K, Blasco F, Giordano G, Magalon A. 2004. Involvement of the molybdenum cofactor biosynthetic machinery in the maturation of the Escherichia coli nitrate reductase A. J Biol Chem 279:41398–41403. [PubMed][CrossRef]
90. Ilbert M, Mejean V, Giudici-Orticoni MT, Samama JP, Iobbi-Nivol C. 2003. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem 278:28787–28792. [PubMed][CrossRef]
91. Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL, Giordano G. 1998. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol Microbiol 28:435–447. [PubMed][CrossRef]
92. Czjzek M, Dos Santos JP, Pommier J, Giordano G, Mejean V, Haser R. 1998. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution. J Mol Biol 284:435–447. [PubMed][CrossRef]
93. Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC. 1996. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272:1615–1621. [PubMed][CrossRef]
94. Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC. 2003. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Biol 10:681–687. [PubMed][CrossRef]
95. Jormakka M, Richardson D, Byrne B, Iwata S. 2004. Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Structure (Camb) 12:95–104. [PubMed][CrossRef]
96. Blasco F, Pommier J, Augier V, Chippaux M, Giordano G. 1992. Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli. Mol Microbiol 6:221–230. [PubMed][CrossRef]
97. Schlindwein C, Giordano G, Santini CL, Mandrand MA. 1990. Identification and expression of the Escherichia coli fdhD and fdhE genes, which are involved in the formation of respiratory formate dehydrogenase. J Bacteriol 172:6112–6121.[PubMed]
98. Schlindwein C, Mandrand MA. 1991. Nucleotide sequence of the fdhE gene involved in respiratory formate dehydrogenase formation in Escherichia coli K-12. Gene 97:147–148. [PubMed][CrossRef]
99. Pommier J, Mejean V, Giordano G, Iobbi-Nivol C. 1998. TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli. J Biol Chem 273:16615–16620. [PubMed][CrossRef]
100. Oresnik IJ, Ladner CL, Turner RJ. 2001. Identification of a twin-arginine leader-binding protein. Mol Microbiol 40:323–331. [PubMed][CrossRef]
101. Ray N, Oates J, Turner RJ, Robinson C. 2003. DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus. FEBS Lett 534:156–160. [PubMed][CrossRef]
102. Leimkuhler S, Klipp W. 1999. Role of XDHC in molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus. J Bacteriol 181:2745–2751.[PubMed]
103. Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD, Achenbach LA. 2005. Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 187:5090–5096. [PubMed][CrossRef]
104. Krafft T, Bowen A, Theis F, Macy JM. 2000. Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. DNA Sequence 10:365–377. [PubMed][CrossRef]
105. McDevitt CA, Hugenholtz P, Hanson GR, McEwan AG. 2002. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol 44:1575–1587. [PubMed][CrossRef]
106. Rabus R, Kube M, Beck A, Widdel F, Reinhardt R. 2002. Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 178:506–516. [PubMed][CrossRef]
107. Blasco F, Guigliarelli B, Magalon A, Asso M, Giordano G, Rothery RA. 2001. The coordination and function of the redox centres of the membrane-bound nitrate reductases. Cell Mol Life Sci 58:179–193. [PubMed][CrossRef]
108. Rothery RA, Blasco F, Magalon A, Weiner JH. 2001. The diheme cytochrome b subunit (NarI) of Escherichia coli nitrate reductase A (NarGHI): structure, function, and interaction with quinols. J Mol Microbiol Biotechnol 3:273–283.[PubMed]
109. Guigliarelli B, Asso M, More C, Augier V, Blasco F, Pommier J, Giordano G, Bertrand P. 1992. EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. Evidence for a high-potential and a low-potential class and their relevance in the electron-transfer mechanism. Eur J Biochem 207:61–68. [PubMed][CrossRef]
110. Guigliarelli B, Magalon A, Asso M, Bertrand P, Frixon C, Giordano G, Blasco F. 1996. Complete coordination of the four Fe-S centers of the beta subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutants lacking the highest or lowest potential [4Fe-4S] clusters. Biochemistry 35:4828–4836. [PubMed][CrossRef]
111. Magalon A, Lemesle-Meunier D, Rothery RA, Frixon C, Weiner JH, Blasco F. 1997. Heme axial ligation by the highly conserved His residues in helix II of cytochrome b (NarI) of Escherichia coli nitrate reductase A. J Biol Chem 272:25652–25658. [PubMed][CrossRef]
112. Rothery RA, Blasco F, Magalon A, Asso M, Weiner JH. 1999. The hemes of Escherichia coli nitrate reductase A (NarGHI): potentiometric effects of inhibitor binding to narI. Biochemistry 38:12747–12757. [PubMed][CrossRef]
113. Blasco F, Nunzi F, Pommier J, Brasseur R, Chippaux M, Giordano G. 1992. Formation of active heterologous nitrate reductases between nitrate reductases A and Z of Escherichia coli. Mol Microbiol 6:209–219. [PubMed][CrossRef]
114. Dubourdieu M, DeMoss JA. 1992. The narJ gene product is required for biogenesis of respiratory nitrate reductase in Escherichia coli. J Bacteriol 174:867–872.[PubMed]
115. Liu X, DeMoss JA. 1997. Characterization of NarJ, a system-specific chaperone required for nitrate reductase biogenesis in Escherichia coli. J Biol Chem 272:24266–24271. [PubMed][CrossRef]
116. Vergnes A, Pommier J, Toci R, Blasco F, Giordano G, Magalon A. 2006. NarJ chaperone binds on two distinct sites of the aponitrate reductase of Escherichia coli to coordinate molybdenum cofactor insertion and assembly. J Biol Chem 281:2170–2176. [PubMed][CrossRef]
117. Chan CS, Howell JM, Workentine ML, Turner RJ. 2006. Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli. Biochem Biophys Res Commun 343:244–251. [PubMed][CrossRef]
118. Lanciano P, Vergnes A, Grimaldi S, Guigliarelli B, Magalon A. 2007. Biogenesis of a respiratory complex is orchestrated by a single accessory protein. J Biol Chem 282:17468–17474. [PubMed][CrossRef]
119. Barras F, Loiseau L, Py B. 2005. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol 50:41–101. [PubMed][CrossRef]
120. Johnson DC, Dean DR, Smith AD, Johnson MK. 2005. Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281. [PubMed][CrossRef]
121. Santini CL, Ize B, Chanal A, Muller M, Giordano G, Wu LF. 1998. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J 17:101–112. [PubMed][CrossRef]
122. Berks BC, Palmer T, Sargent F. 2005. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol 8:174–181. [PubMed][CrossRef]
123. Palmer T, Sargent F, Berks BC. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180. [PubMed][CrossRef]
124. Sargent F, Berks BC, Palmer T. 2002. Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Arch Microbiol 178:77–84. [PubMed][CrossRef]
125. Mejean V, Iobbi-Nivol C, Lepelletier M, Giordano G, Chippaux M, Pascal MC. 1994. TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol 11:1169–1179. [PubMed][CrossRef]
126. Silvestro A, Pommier J, Pascal MC, Giordano G. 1989. The inducible trimethylamine N-oxide reductase of Escherichia coli K12: its localization and inducers. Biochim Biophys Acta 999:208–216.[PubMed]
127. Tranier S, Mortier-Barriere I, Ilbert M, Birck C, Iobbi-Nivol C, Mejean V, Samama JP. 2002. Characterization and multiple molecular forms of TorD from Shewanella massilia, the putative chaperone of the molybdoenzyme TorA. Protein Sci 11:2148–2157. [PubMed][CrossRef]
128. Tranier S, Iobbi-Nivol C, Birck C, Ilbert M, Mortier-Barriere I, Mejean V, Samama JP. 2003. A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia. Structure (Camb) 11:165–174. [PubMed][CrossRef]
129. Mazzarella L, D’Avino R, di Prisco G, Savino C, Vitagliano L, Moody PC, Zagari A. 1999. Crystal structure of Trematomus newnesi haemoglobin re-opens the root effect question. J Mol Biol 287:897–906. [PubMed][CrossRef]
130. Raaijmakers H, Vix O, Toro I, Golz S, Kemper B, Suck D. 1999. X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture. EMBO J 18:1447–1458. [PubMed][CrossRef]
131. Tegoni M, Ramoni R, Bignetti E, Spinelli S, Cambillau C. 1996. Domain swapping creates a third putative combining site in bovine odorant binding protein dimer. Nat Struct Biol 3:863–867. [PubMed][CrossRef]
132. Genest O, Ilbert M, Mejean V, Iobbi-Nivol C. 2005. TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature. J Biol Chem 280:15644–15648. [PubMed][CrossRef]
133. Berks BC, Sargent F, Palmer T. 2000. The Tat protein export pathway. Mol Microbiol 35:260–274. [PubMed][CrossRef]
134. Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F. 2004. Coordinating assembly and export of complex bacterial proteins. EMBO J 23:3962–3972. [PubMed][CrossRef]
135. Ilbert M, Mejean V, Iobbi-Nivol C. 2004. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins. Microbiology 150:935–943. [PubMed][CrossRef]
136. Hatzixanthis K, Clarke TA, Oubrie A, Richardson DJ, Turner RJ, Sargent F. 2005. Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proc Natl Acad Sci USA 102:8460–8465. [PubMed][CrossRef]
137. Genest O, Seduk F, Ilbert M, Mejean V, Iobbi-Nivol C. 2006. Signal peptide protection by specific chaperone. Biochem Biophys Res Commun 339:991–995. [PubMed][CrossRef]
138. Bilous PT, Cole ST, Anderson WF, Weiner JH. 1988. Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli. Mol Microbiol 2:785–795. [PubMed][CrossRef]
139. Rothery RA, Grant JL, Johnson JL, Rajagopalan KV, Weiner JH. 1995. Association of molybdopterin guanine dinucleotide with Escherichia coli dimethyl sulfoxide reductase: effect of tungstate and a mob mutation. J Bacteriol 177:2057–2063.[PubMed]
140. Trieber CA, Rothery RA, Weiner JH. 1996. Engineering a novel iron-sulfur cluster into the catalytic subunit of Escherichia coli dimethyl-sulfoxide reductase. J Biol Chem 271:4620–4626. [PubMed][CrossRef]
141. Cammack R, Weiner JH. 1990. Electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli. Biochemistry 29:8410–8416. [PubMed][CrossRef]
142. Geijer P, Weiner JH. 2004. Glutamate 87 is important for menaquinol binding in DmsC of the DMSO reductase (DmsABC) from Escherichia coli. Biochim Biophys Acta 1660:66–74. [PubMed][CrossRef]
143. Rothery RA, Weiner JH. 1996. Interaction of an engineered [3Fe-4S] cluster with a menaquinol binding site of Escherichia coli DMSO reductase. Biochemistry 35:3247–3257. [PubMed][CrossRef]
144. Weiner JH, Shaw G, Turner RJ, Trieber CA. 1993. The topology of the anchor subunit of dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem 268:3238–3244. [PubMed]
145. Lubitz SP, Weiner JH. 2003. The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch Biochem Biophys 418:205–216. [PubMed][CrossRef]
146. Sambasivarao D, Turner RJ, Simala-Grant JL, Shaw G, Hu J, Weiner JH. 2000. Multiple roles for the twin arginine leader sequence of dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem 275:22526–22531. [PubMed][CrossRef]
147. Papish AL, Ladner CL, Turner RJ. 2003. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase. J Biol Chem 278:32501–32506. [PubMed][CrossRef]
148. Mandrand-Berthelot MA, Couchoux-Luthaud G, Santini CL, Giordano G. 1988. Mutants of Escherichia coli specifically deficient in respiratory formate dehydrogenase activity. J Gen Microbiol 134:3129–3139.[PubMed]
149. Pommier J, Mandrand MA, Holt SE, Boxer DH, Giordano G. 1992. A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in Escherichia coli. Biochim Biophys Acta 1107:305–313. [PubMed][CrossRef]
150. Stewart V, Lin JT, Berg BL. 1991. Genetic evidence that genes fdhD and fdhE do not control synthesis of formate dehydrogenase-N in Escherichia coli K-12. J Bacteriol 173:4417–4423.[PubMed]
151. Turner RJ, Papish AL, Sargent F. 2004. Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 50:225–238. [PubMed][CrossRef]
152. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A. 2005. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537. [PubMed][CrossRef]
153. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD. 1997. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308. [PubMed][CrossRef]
154. Nilavongse A, Brondijk TH, Overton TW, Richardson DJ, Leach ER, Cole JA. 2006. The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA. Microbiology 152:3227–3237. [PubMed][CrossRef]
155. Olmo-Mira MF, Gavira M, Richardson DJ, Castillo F, Moreno-Vivian C, Roldan MD. 2004. NapF is a cytoplasmic iron-sulfur protein required for Fe-S cluster assembly in the periplasmic nitrate reductase. J Biol Chem 279:49727–49735. [PubMed][CrossRef]
156. Maillard J, Spronk CA, Buchanan G, Lyall V, Richardson DJ, Palmer T, Vuister GW, Sargent F. 2007. Structural diversity in twin-arginine signal peptide-binding proteins. Proc Natl Acad Sci USA 104:15641–15646. [PubMed][CrossRef]
157. Hille R, Sprecher H. 1987. On the mechanism of action of xanthine oxidase. Evidence in support of an oxo transfer mechanism in the molybdenum-containing hydroxylases. J Biol Chem 262:10914–10917.[PubMed]
158. Leimkuhler S, Kern M, Solomon PS, McEwan AG, Schwarz G, Mendel RR, Klipp W. 1998. Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Mol Microbiol 27:853–869. [PubMed][CrossRef]
159. Truglio JJ, Theis K, Leimkuhler S, Rappa R, Rajagopalan KV, Kisker C. 2002. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure (Camb) 10:115–125. [PubMed][CrossRef]
160. Leimkuhler S, Hodson R, George GN, Rajagopalan KV. 2003. Recombinant Rhodobacter capsulatus xanthine dehydrogenase, a useful model system for the characterization of protein variants leading to xanthinuria I in humans. J Biol Chem 278:20802–20811. [PubMed][CrossRef]
161. Ivanov NV, Hubalek F, Trani M, Edmondson DE. 2003. Factors involved in the assembly of a functional molybdopyranopterin center in recombinant Comamonas acidovorans xanthine dehydrogenase. Eur J Biochem 270:4744–4754. [PubMed][CrossRef]
162. Neumann M, Schulte M, Junemann N, Stocklein W, Leimkuhler S. 2006. Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase. J Biol Chem 281:15701–15708. [PubMed][CrossRef]
163. Neumann M, Stocklein W, Walburger A, Magalon A, Leimkuhler S. 2007. Identification of a Rhodobacter capsulatus L-cysteine desulfurase that sulfurates the molybdenum cofactor when bound to XdhC and before its insertion into xanthine dehydrogenase. Biochemistry 46:9586–9595. [PubMed][CrossRef]
ecosalplus.3.6.3.13.citations
ecosalplus/3/1
content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.13
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.13
2008-01-18
2017-11-21

Abstract:

The transition element molybdenum (Mo) is of primordial importance for biological systems as it is required by enzymes catalyzing key reactions in global carbon, sulfur, and nitrogen metabolism. In order to gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo enzymes in prokaryotes, including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox ones. Mo enzymes are widespread in prokaryotes, and many of them were likely present in LUCA. To date, more than 50–mostly bacterial–Mo enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Moco is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Shown are the known biosynthetic intermediates dividing the whole pathway in four steps. Ribbon representations of the crystal structures of the Moco biosynthetic proteins are shown: MoaA ( 32 ), MoaC ( 33 ), MoaD-MoaE complex ( 34 ), MoeB-MoaD complex ( 35 ), MogA ( 36 ), MoeA ( 37 ), MobA ( 38 , 39 ), and MobB ( 40 ). Individual figures were generated with PYMOL ( 41 ) using the deposited coordinates from the protein structure data base.

Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

See the text for a detailed description of the reaction mechanism leading to the two-step conversion of cPMP to MPT.

Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

See the text for a description of the reaction mechanism leading to MPT adenylylation.

Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

See the text for a description of the reaction mechanism leading to Mo addition and of the different postulated pathways for the nucleotide addition step leading to the Mo-bisMGD molecule.

Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The arrows represent the interactions as detected by using bacterial two-hybrid methodology, TAP-Tag, or biochemical assays (see the text for details and references).

Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Identity percentages are indicated by using proteins as a reference.

Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

(Left) The NarGHI complex is surface-represented (PDB ID code 1q16). The Moco-containing catalytic subunit NarG is shown in yellow, the electron-transfer subunit NarH is shown in orange, and the membrane-bound subunit NarI is shown in blue. (Right) Stick representation of the different metal centers.

Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

NarG and NarH constitute the catalytic dimer, while NarI is the -type membrane anchor subunit of the complex. NarI maturation takes place in the inner membrane where the two -type and hemes are sequentially inserted. Concomitantly, the apoNarGH complex retained by the enzyme-specific chaperone NarJ in the cytoplasm is maturated. First, [Fe-S] clusters are inserted in the NarH subunit through the action of one of the [Fe-S] biosynthetic machineries. Second, both Moco and its proximal [Fe-S] cluster, FS0, are inserted in the catalytic subunit NarG in a NarJ-dependent manner. On complete maturation of the NarGH complex, NarJ dissociates, allowing membrane anchoring of the NarGH dimer. TorA constitutes the catalytic subunit of the TMAO reductase system and harbors a twin-arginine signal peptide at the N terminus. Early interaction of the enzyme-specific chaperone TorD on apoTorA facilitates Moco insertion. Subsequently, mature TorA is exported to the periplasm through the Tat translocase. TorC, a pentahemic membrane-bound cytochrome , constitutes the electron donor to TorA. Whatever the considered system, Moco insertion proceeds as the action of a multiprotein complex of Moco biosynthetic proteins and chaperones ( 46 , 72 ).

Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

(A) NarJ from (PDB ID code 2o9x). (B) TorD dimer from (PDB ID code 1n1c). (C) DmsD from serovar Typhimurium LT2 (PDB ID code 1s9u). (D) NapD from (PDB ID code 2jsx). (E) FdhE from (PDB ID code 2fiy). Individual figures were generated with PYMOL ( 41 ) by using the deposited coordinates from the protein structure database.

Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Genetic and biochemical characteristics of the proteins involved in Moco biosynthesis in

Citation: Magalon A, Mendel R. 2008. Biosynthesis and Insertion of the Molybdenum Cofactor, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.13

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error