1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Marc Fontecave1, Béatrice Py2, Sandrine Ollagnier de Choudens3, and FréDéric Barras4
  • Editor: Tadhg P. Begley5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: CNRS UMR 5249 and CEA, DSV, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 17 Avenue des Martyrs, F-38054 Grenoble; Université Joseph Fourier, F-38000 Grenoble, France; 2: Université de la Méditerranée, Aix-Marseille II, Campus de Luminy, 70 Rte Léon Lachamp, 13009 Marseille; and Laboratoire de Chimie Bactérienne, UPR 9043, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France; 3: CNRS UMR 5249 and CEA, DSV, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 17 Avenue des Martyrs, F-38054 Grenoble; Université Joseph Fourier, F-38000 Grenoble, France; 4: Université de la Méditerranée, Aix-Marseille II, Campus de Luminy, 70 Rte Léon Lachamp, 13009 Marseille; and Laboratoire de Chimie Bactérienne, UPR 9043, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France; 5: Texas A&M University, College Station, Texas
  • Received 01 February 2008 Accepted 13 April 2008 Published 01 August 2008
  • Address correspondence to Marc Fontecave mfontecave@cea.fr
image of From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries
    Preview this reference work article:
    Zoom in
    Zoomout

    From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/1/3_6_3_14_module-1.gif /docserver/preview/fulltext/ecosalplus/3/1/3_6_3_14_module-2.gif
  • Abstract:

    This review describes the two main systems, namely the (iron-sulfur cluster) and (sulfur assimilation) systems, utilized by and for the biosynthesis of iron-sulfur (Fe-S) clusters, as well as other proteins presumably participating in this process. In the case of Fe-S cluster biosynthesis, it is assumed that the sulfur atoms from the cysteine desulfurase end up at cysteine residues of the scaffold protein, presumably waiting for iron atoms for cluster assembly. The review discusses the various potential iron donor proteins. For in vitro experiments, in general, ferrous salts are used during the assembly of Fe-S clusters, even though this approach is unlikely to reflect the physiological conditions. The fact that sulfur atoms can be directly transferred from cysteine desulfurases to scaffold proteins supports a mechanism in which the latter bind sulfur atoms first and iron atoms afterwards. In , gene inactivation results in a reduced growth rate and reduced Fe-S enzyme activities. Interestingly, the SufE structure resembles that of IscU, strengthening the notion that the two proteins share the property of acting as acceptors of sulfur atoms provided by cysteine desulfurases. Several other factors have been suggested to participate in cluster assembly and repair in and . Most of them were identified by their abilities to act as extragenic and/or multicopy suppressors of mutations in Fe-S cluster metabolism, while others possess biochemical properties that are consistent with a role in Fe-S cluster biogenesis.

  • Citation: Fontecave M, Py B, Ollagnier de Choudens S, Barras F. 2008. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.14

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.41429895
Transcription Start Site
0.34620583
Gene Expression and Regulation
0.343438
Bacterial Proteins
0.3126806
0.41429895

References

1. Johnson DC, Dean DR, Smith AD, Johnson MK. 2005. Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281. [PubMed][CrossRef]
2. Johnson MK. 1994. In King RB et al. (ed), Encyclopedia of Inorganic Chemistry, p 1896–1915. John Wiley & Sons, New York, NY.
3. Cheek J, Broderick JB. 2001. Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role. J Biol Inorg Chem 6:209–226. [PubMed][CrossRef]
4. Jarrett JT. 2003. The generation of 5′-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes. Curr Opin Chem Biol 7:174–182. [PubMed][CrossRef]
5. Ollagnier-de Choudens S, Sanakis Y, Hewitson KS, Roach P, Munck E, Fontecave M. 2002. Reductive cleavage of S-adenosylmethionine by biotin synthase from Escherichia coli. J Biol Chem 277:13449–13454. [PubMed][CrossRef]
6. Padovani D, Thomas F, Trautwein AX, Mulliez E, Fontecave M. 2001. Activation of class III ribonucleotide reductase from E. coli. The electron transfer from the iron-sulfur center to S-adenosylmethionine. Biochemistry 40:6713–6719. [PubMed][CrossRef]
7. Pierrel F, Douki T, Fontecave M, Atta M. 2004. MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J Biol Chem 279:47555–47563. [PubMed][CrossRef]
8. Beinert H, Kennedy MC, Stout CD. 1996. Aconitase as iron sulfur protein: enzyme and iron-regulatory protein. Chem Rev 96:2335–2374. [PubMed][CrossRef]
9. Bouton C. 1999. Nitrosative and oxidative modulation of iron regulatory proteins. Cell Mol Life Sci 55:1043–1053. [PubMed][CrossRef]
10. Demple B, Ding H, Jorgensen M. 2002. Escherichia coli SoxR protein: sensor/transducer of oxidative stress and nitric oxide. Methods Enzymol 348:355–364. [PubMed][CrossRef]
11. Gaskell AA, Crack JC, Kelemen GH, Hutchings MI, Le Brun NE. 2007. RsmA is an anti-sigma factor that modulates its activity through a [2Fe-2S] cluster cofactor. J Biol Chem 282:31812–31820. [PubMed][CrossRef]
12. Kiley PJ, Beinert H. 2003. The role of Fe-S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 6:181–185. [PubMed][CrossRef]
13. Singh A, Guidry L, Narasimhulu KV, Mai D, Trombley J, Redding KE, Giles GI, Lancaster JR, Jr, Steyn AJ. 2007. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad Sci USA 104:11562–11567. [PubMed][CrossRef]
14. Fontecave M. 2006. Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol 2:171–174. [PubMed][CrossRef]
15. Imlay JA. 2006. Iron-sulfur clusters and the problem with oxygen. Mol Microbiol 59:1073–1082. [PubMed][CrossRef]
16. Jang S, Imlay JA. 2007. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem 282:929–937. [PubMed][CrossRef]
17. Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR. 1989. Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57. [PubMed][CrossRef]
18. Mihara H, Esaki N. 2002. Bacterial cysteine desulfurases: their function and mechanisms. Appl Microbiol Biotechnol 60:12–23. [PubMed][CrossRef]
19. Zheng L, White RH, Cash VL, Dean DR. 1994. Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. Biochemistry 33:4714–4720. [PubMed][CrossRef]
20. Zheng L, White RH, Cash VL, Jack RF, Dean DR. 1993. Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90:2754–2758. [PubMed][CrossRef]
21. Fontecave M, Ollagnier-de-Choudens S. 2008. Iron-sulfur cluster biosynthesis in bacteria: mechanisms of cluster assembly and transfer. Arch Biochem Biophys 474:226–237. [PubMed][CrossRef]
22. Ollagnier-de-Choudens S, Lascoux D, Loiseau L, Barras F, Forest E, Fontecave M. 2003. Mechanistic studies of the SufS-SufE cysteine desulfurase: evidence for sulfur transfer from SufS to SufE. FEBS Lett 555:263–267. [PubMed][CrossRef]
23. Sendra M, Ollagnier de Choudens S, Lascoux D, Sanakis Y, Fontecave M. 2007. The SUF iron-sulfur cluster biosynthetic machinery: sulfur transfer from the SUFS-SUFE complex to SUFA. FEBS Lett 581:1362–1368. [PubMed][CrossRef]
24. Smith AD, Agar JN, Johnson KA, Frazzon J, Amster IJ, Dean DR, Johnson MK. 2001. Sulfur transfer from IscS to IscU: the first step in iron-sulfur cluster biosynthesis. J Am Chem Soc 123:11103–11104. [PubMed][CrossRef]
25. Smith AD, Frazzon J, Dean DR, Johnson MK. 2005. Role of conserved cysteines in mediating sulfur transfer from IscS to IscU. FEBS Lett 579:5236–5240. [PubMed][CrossRef]
26. Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK. 2000. IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39:7856–7862. [PubMed][CrossRef]
27. Krebs C, Agar JN, Smith AD, Frazzon J, Dean DR, Huynh BH, Johnson MK. 2001. IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry 40:14069–14080. [PubMed][CrossRef]
28. Ollagnier-de-Choudens S, Mattioli T, Takahashi Y, Fontecave M. 2001. Iron-sulfur cluster assembly: characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 276:22604–22607. [PubMed][CrossRef]
29. Ollagnier-de Choudens S, Nachin L, Sanakis Y, Loiseau L, Barras F, Fontecave M. 2003. SufA from Erwinia chrysanthemi. Characterization of a scaffold protein required for iron-sulfur cluster assembly. J Biol Chem 278:17993–18001. [PubMed][CrossRef]
30. Fontecave M, Choudens SO, Py B, Barras F. 2005. Mechanisms of iron-sulfur cluster assembly: the SUF machinery. J Biol Inorg Chem 10:713–721. [PubMed][CrossRef]
31. Urbina HD, Silberg JJ, Hoff KG, Vickery LE. 2001. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. J Biol Chem 276:44521–44526. [PubMed][CrossRef]
32. Nuth M, Yoon T, Cowan JA. 2002. Iron-sulfur cluster biosynthesis: characterization of iron nucleation sites for assembly of the [2Fe-2S]2+ cluster core in IscU proteins. J Am Chem Soc 124:8774–8775. [PubMed][CrossRef]
33. Ollagnier-de-Choudens S, Sanakis Y, Fontecave M. 2004. SufA/IscA: reactivity studies of a class of scaffold proteins involved in [Fe-S] cluster assembly. J Biol Inorg Chem 9:828–838. [PubMed][CrossRef]
34. Dos Santos PC, Johnson DC, Ragle BE, Unciuleac MC, Dean DR. 2007. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems. J Bacteriol 189:2854–2862. [PubMed][CrossRef]
35. Johnson DC, Dos Santos PC, Dean DR. 2005. NifU and NifS are required for the maturation of nitrogenase and cannot replace the function of isc-gene products in Azotobacter vinelandii. Biochem Soc Trans 33:90–93. [PubMed][CrossRef]
36. Barras F, Loiseau L, Py B. 2005. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol 50:41–101. [CrossRef]
37. Zheng L, Cash VL, Flint DH, Dean DR. 1998. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272. [PubMed][CrossRef]
38. Nakamura M, Saeki K, Takahashi Y. 1999. Hyperproduction of recombinant ferredoxins in Escherichia coli by coexpression of the ORF1-ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster. J Biochem (Tokyo) 126:10–18.
39. Takahashi Y, Nakamura M. 1999. Functional assignment of the ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster involved in the assembly of Fe-S clusters in Escherichia coli. J Biochem (Tokyo) 126:917–926.
40. Tokumoto U, Takahashi Y. 2001. Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron-sulfur proteins. J Biochem (Tokyo) 130:63–71.
41. Lauhon CT, Kambampati R. 2000. The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD. J Biol Chem 275:20096–20103. [PubMed][CrossRef]
42. Schwartz CJ, Djaman O, Imlay JA, Kiley PJ. 2000. The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proc Natl Acad Sci USA 97:9009–9014. [PubMed][CrossRef]
43. Skovran E, Downs DM. 2000. Metabolic defects caused by mutations in the isc gene cluster in Salmonella enterica serovar Typhimurium: implications for thiamine synthesis. J Bacteriol 182:3896–3903. [PubMed][CrossRef]
44. Cicchillo RM, Tu L, Stromberg JA, Hoffart LM, Krebs C, Booker SJ. 2005. Escherichia coli quinolinate synthetase does indeed harbor a [4Fe-4S] cluster. J Am Chem Soc 127:7310–7311. [PubMed][CrossRef]
45. Leonardi R, Fairhurst SA, Kriek M, Lowe DJ, Roach PL. 2003. Thiamine biosynthesis in Escherichia coli: isolation and initial characterisation of the ThiGH complex. FEBS Lett 539:95–99. [PubMed][CrossRef]
46. Martinez-Gomez NC, Robers M, Downs DM. 2004. Mutational analysis of ThiH, a member of the radical S-adenosylmethionine (AdoMet) protein superfamily. J Biol Chem 279:40505–40510. [PubMed][CrossRef]
47. Ollagnier-de Choudens S, Loiseau L, Sanakis Y, Barras F, Fontecave M. 2005. Quinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesis. FEBS Lett 579:3737–3743. [PubMed][CrossRef]
48. Djaman O, Outten FW, Imlay JA. 2004. Repair of oxidized iron-sulfur clusters in Escherichia coli. J Biol Chem 279:44590–44599. [PubMed][CrossRef]
49. Park JH, Dorrestein PC, Zhai H, Kinsland C, McLafferty FW, Begley TP. 2003. Biosynthesis of the thiazole moiety of thiamin pyrophosphate (vitamin B1). Biochemistry 42:12430–12438. [PubMed][CrossRef]
50. Kessler D. 2006. Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. FEMS Microbiol Rev 30:825–840. [PubMed][CrossRef]
51. Lauhon CT. 2002. Requirement for IscS in biosynthesis of all thionucleosides in Escherichia coli. J Bacteriol 184:6820–6829. [PubMed][CrossRef]
52. Nilsson K, Lundgren HK, Hagervall TG, Bjork GR. 2002. The cysteine desulfurase IscS is required for synthesis of all five thiolated nucleosides present in tRNA from Salmonella enterica serovar Typhimurium. J Bacteriol 184:6830–6835. [PubMed][CrossRef]
53. Cupp-Vickery JR, Urbina H, Vickery LE. 2003. Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. J Mol Biol 330:1049–1059. [PubMed][CrossRef]
54. Mihara H, Kurihara T, Yoshimura T, Esaki N. 2000. Kinetic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reactions. J Biochem (Tokyo) 127:559–567.
55. Kato S, Mihara H, Kurihara T, Takahashi Y, Tokumoto U, Yoshimura T, Esaki N. 2002. Cys-328 of IscS and Cys-63 of IscU are the sites of disulfide bridge formation in a covalently bound IscS/IscU complex: implications for the mechanism of iron-sulfur cluster assembly. Proc Natl Acad Sci USA 99:5948–5952. [PubMed][CrossRef]
56. Agar JN, Zheng LM, Cash VL, Dean DR, Johnson MK. 2000. Role of the IscU protein in iron-sulfur cluster biosynthesis: IscS-mediated assembly of a [Fe2S2] cluster in IscU. J Am Chem Soc 122:2136–2137. [CrossRef]
57. Goldsmith-Fischman S, Kuzin A, Edstrom WC, Benach J, Shastry R, Xiao R, Acton TB, Honig B, Montelione GT, Hunt JF. 2004. The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes. J Mol Biol 344:549–565. [PubMed][CrossRef]
58. Bonomi F, Iametti S, Ta D, Vickery LE. 2005. Multiple turnover transfer of [2Fe2S] clusters by the iron-sulfur cluster assembly scaffold proteins IscU and IscA. J Biol Chem 280:29513–29518. [PubMed][CrossRef]
59. Mansy SS, Wu G, Surerus KK, Cowan JA. 2002. Iron-sulfur cluster biosynthesis. Thermatoga maritima IscU is a structured iron-sulfur cluster assembly protein J Biol Chem 277:21397–21404. [PubMed][CrossRef]
60. Wu SP, Wu G, Surerus KK, Cowan JA. 2002. Iron-sulfur cluster biosynthesis. Kinetic analysis of [2Fe-2S] cluster transfer from holo ISU to apo Fd: role of redox chemistry and a conserved aspartate. Biochemistry 41:8876–8885. [PubMed][CrossRef]
61. Unciuleac MC, Chandramouli K, Naik S, Mayer S, Huynh BH, Johnson MK, Dean DR. 2007. In vitro activation of apo-aconitase using a [4Fe-4S] cluster-loaded form of the IscU [Fe-S] cluster scaffolding protein. Biochemistry 46:6812–6821. [PubMed][CrossRef]
62. Morimoto K, Yamashita E, Kondou Y, Lee SJ, Arisaka F, Tsukihara T, Nakai M. 2006. The asymmetric IscA homodimer with an exposed [2Fe-2S] cluster suggests the structural basis of the Fe-S cluster biosynthetic scaffold. J Mol Biol 360:117–132. [PubMed][CrossRef]
63. Ding B, Smith ES, Ding H. 2005. Mobilization of the iron centre in IscA for the iron-sulfur cluster assembly in IscU. Biochem J 389:797–802. [PubMed][CrossRef]
64. Ding H, Clark RJ. 2004. Characterization of iron binding in IscA, an ancient iron-sulfur cluster assembly protein. Biochem J 379:433–440. [PubMed][CrossRef]
65. Lu J, Yang J, Tan G, Ding H. 2008. Complementary roles of SufA and IscA in the biogenesis of iron-sulfur clusters in Escherichia coli. Biochem J 409:535–543. [PubMed][CrossRef]
66. Morimoto K, Nishio K, Nakai M. 2002. Identification of a novel prokaryotic HEAT-repeats-containing protein which interacts with a cyanobacterial IscA homolog. FEBS Lett 519:123–127. [PubMed][CrossRef]
67. Zeng J, Geng M, Jiang H, Liu Y, Liu J, Qiu G. 2007. The IscA from Acidithiobacillus ferrooxidans is an iron-sulfur protein which assemble the [Fe4S4] cluster with intracellular iron and sulfur. Arch Biochem Biophys 463:237–244. [PubMed][CrossRef]
68. Kawula TH, Lelivelt MJ. 1994. Mutations in a gene encoding a new Hsp70 suppress rapid DNA inversion and bgl activation, but not proU derepression, in hns-1 mutant Escherichia coli. J Bacteriol 176:610–619.[PubMed]
69. Lelivelt MJ, Kawula TH. 1995. Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J Bacteriol 177:4900–4907.[PubMed]
70. Genevaux P, Georgopoulos C, Kelley WL. 2007. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 66:840–857. [PubMed][CrossRef]
71. Vickery LE, Cupp-Vickery JR. 2007. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation. Crit Rev Biochem Mol Biol 42:95–111. [PubMed][CrossRef]
72. Hoff KG, Silberg JJ, Vickery LE. 2000. Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc Natl Acad Sci USA 97:7790–7795. [PubMed][CrossRef]
73. Silberg JJ, Hoff KG, Tapley TL, Vickery LE. 2001. The Fe/S assembly protein IscU behaves as a substrate for the molecular chaperone Hsc66 from Escherichia coli. J Biol Chem 276:1696–1700. [PubMed][CrossRef]
74. Cupp-Vickery JR, Peterson JC, Ta DT, Vickery LE. 2004. Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. J Mol Biol 342:1265–1278. [PubMed][CrossRef]
75. Hoff KG, Cupp-Vickery JR, Vickery LE. 2003. Contributions of the LPPVK motif of the iron-sulfur template protein IscU to interactions with the Hsc66-Hsc20 chaperone system. J Biol Chem 278:37582–37589. [PubMed][CrossRef]
76. Silberg JJ, Tapley TL, Hoff KG, Vickery LE. 2004. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron-sulfur cluster assembly protein IscU. J Biol Chem 279:53924–53931. [PubMed][CrossRef]
77. Chandramouli K, Johnson MK. 2006. HscA and HscB stimulate [2Fe-2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry 45:11087–11095. [PubMed][CrossRef]
78. Kakuta Y, Horio T, Takahashi Y, Fukuyama K. 2001. Crystal structure of Escherichia coli Fdx, an adrenodoxin-type ferredoxin involved in the assembly of iron-sulfur clusters. Biochemistry 40:11007–11012. [PubMed][CrossRef]
79. Ta DT, Vickery LE. 1992. Cloning, sequencing, and overexpression of a [2Fe-2S] ferredoxin gene from Escherichia coli. J Biol Chem 267:11120–11125.[PubMed]
80. Takahashi Y, Tokumoto U. 2002. A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28383. [PubMed][CrossRef]
81. Nachin L, Loiseau L, Expert D, Barras F. 2003. SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress. EMBO J 22:427–437. [PubMed][CrossRef]
82. Outten FW, Djaman O, Storz G. 2004. A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52:861–872. [PubMed][CrossRef]
83. Mihara H, Maeda M, Fujii T, Kurihara T, Hata Y, Esaki N. 1999. A nifS-like gene, csdB, encodes an Escherichia coli counterpart of mammalian selenocysteine lyase. Gene cloning, purification, characterization and preliminary X-ray crystallographic studies. J Biol Chem 274:14768–14772. [PubMed][CrossRef]
84. Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F. 2003. Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278:38352–38359. [PubMed][CrossRef]
85. Outten FW, Wood MJ, Munoz FM, Storz G. 2003. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem 278:45713–45719. [PubMed][CrossRef]
86. Lima CD. 2002. Analysis of the E. coli NifS CsdB protein at 2.0 Å reveals the structural basis for perselenide and persulfide intermediate formation. J Mol Biol 315:1199–1208. [PubMed][CrossRef]
87. Tirupati B, Vey JL, Drennan CL, Bollinger JM, Jr. 2004. Kinetic and structural characterization of Slr0077/SufS, the essential cysteine desulfurase from Synechocystis sp. PCC 6803. Biochemistry 43:12210–12219. [PubMed][CrossRef]
88. Ramelot TA, Cort JR, Goldsmith-Fischman S, Kornhaber GJ, Xiao R, Shastry R, Acton TB, Honig B, Montelione GT, Kennedy MA. 2004. Solution NMR structure of the iron-sulfur cluster assembly protein U (IscU) with zinc bound at the active site. J Mol Biol 344:567–583. [PubMed][CrossRef]
89. Hjorth E, Hadfi K, Zauner S, Maier UG. 2005. Unique genetic compartmentalization of the SUF system in cryptophytes and characterization of a SufD mutant in Arabidopsis thaliana. FEBS Lett 579:1129–1135. [PubMed][CrossRef]
90. Huet G, Daffe M, Saves I. 2005. Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: evidence for its implication in the pathogen’s survival. J Bacteriol 187:6137–6146. [PubMed][CrossRef]
91. Xu XM, Moller SG. 2004. AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc Natl Acad Sci USA 101:9143–9148. [PubMed][CrossRef]
92. Linton KJ, Higgins CF. 1998. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 28:5–13. [PubMed][CrossRef]
93. Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F. 2001. SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39:960–972. [PubMed][CrossRef]
94. Layer G, Gaddam SA, Ayala-Castro CN, Ollagnier-de Choudens S, Lascoux D, Fontecave M, Outten FW. 2007. SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly. J Biol Chem 282:13342–13350. [PubMed][CrossRef]
95. Badger J, Sauder JM, Adams JM, Antonysamy S, Bain K, Bergseid MG, Buchanan SG, Buchanan MD, Batiyenko Y, Christopher JA, Emtage S, Eroshkina A, Feil I, Furlong EB, Gajiwala KS, Gao X, He D, Hendle J, Huber A, Hoda K, Kearins P, Kissinger C, Laubert B, Lewis HA, Lin J, Loomis K, Lorimer D, Louie G, Maletic M, Marsh CD, Miller I, Molinari J, Muller-Dieckmann HJ, Newman JM, Noland BW, Pagarigan B, Park F, Peat TS, Post KW, Radojicic S, Ramos A, Romero R, Rutter ME, Sanderson WE, Schwinn KD, Tresser J, Winhoven J, Wright TA, Wu L, Xu J, Harris TJ. 2005. Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins 60:787–796. [PubMed][CrossRef]
96. Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, Kiley PJ. 2001. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci USA 98:14895–14900. [PubMed][CrossRef]
97. Giel JL, Rodionov D, Liu M, Blattner FR, Kiley PJ. 2006. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol 60:1058–1075. [PubMed][CrossRef]
98. Yeo WS, Lee JH, Lee KC, Roe JH. 2006. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol Microbiol 61:206–218. [PubMed][CrossRef]
99. Gyaneshwar P, Paliy O, McAuliffe J, Popham DL, Jordan MI, Kustu S. 2005. Sulfur and nitrogen limitation in Escherichia coli K-12: specific homeostatic responses. J Bacteriol 187:1074–1090. [PubMed][CrossRef]
100. Patzer SI, Hantke K. 1999. SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli. J Bacteriol 181:3307–3309.[PubMed]
101. Lee JH, Yeo WS, Roe JH. 2004. Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol 51:1745–1755. [PubMed][CrossRef]
102. Zheng M, Wang X, Doan B, Lewis KA, Schneider TD, Storz G. 2001. Computation-directed identification of OxyR DNA binding sites in Escherichia coli. J Bacteriol 183:4571–4579. [PubMed][CrossRef]
103. Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G. 2001. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570. [PubMed][CrossRef]
104. Loiseau L, Ollagnier-de Choudens S, Lascoux D, Forest E, Fontecave M, Barras F. 2005. Analysis of the heteromeric CsdA-CsdE cysteine desulfurase, assisting Fe-S cluster biogenesis in Escherichia coli. J Biol Chem 280:26760–26769. [PubMed][CrossRef]
105. Murthy UMN, Ollagnier-de-Choudens S, Sanakis Y, Abdel-Ghany SE, Rousset C, Ye H, Fontecave M, Pilon-Smits EA, Pilon M. 2007. Characterization of Arabidopsis thaliana SufE2 and SufE3: functions in chloroplast iron-sulfur cluster assembly and NAD synthesis. J Biol Chem 282:18254–18264. [PubMed][CrossRef]
106. Loiseau L, Gerez C, Bekker M, Ollagnier-de Choudens S, Py B, Sanakis Y, Teixeira de Mattos J, Fontecave M, Barras F. 2007. ErpA, an iron sulfur (Fe/S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc Natl Acad Sci USA 104:13626–13631. [PubMed][CrossRef]
107. Seemann M, Rohmer M. 2007. Isoprenoid biosynthesis via the methylerythritol phosphate pathway: GcpE and LytB, two novel iron-sulfur proteins. C R Chim 10:748–755.
108. Angelini S, Gerez C, Ollagnier-de Choudens S, Sanakis Y, Fontecave M, Barras F, Py B. 2008. NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions. J Biol Chem 283:14084–14091. [PubMed][CrossRef]
109. Dos Santos PC, Smith AD, Frazzon J, Cash VL, Johnson MK, Dean DR. 2004. Iron-sulfur cluster assembly: NifU-directed activation of the nitrogenase Fe protein. J Biol Chem 279:19705–19711. [PubMed][CrossRef]
110. Bandyopadhyay S, Naik SG, O’Carroll IP, Huynh BH, Dean DR, Johnson MK, Dos Santos PC. 2008. A proposed role for the Azotobacter vinelandii NfuA protein as an intermediate iron-sulfur cluster carrier. J Biol Chem 283:14092–14099. [PubMed][CrossRef]
111. Lesley SA, Graziano J, Cho CY, Knuth MW, Klock HE. 2002. Gene expression response to misfolded protein as a screen for soluble recombinant protein. Protein Eng 15:153–160. [PubMed][CrossRef]
112. Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. 2006. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev 20:1776–1789. [PubMed][CrossRef]
113. Shaw KJ, Miller N, Liu X, Lerner D, Wan J, Bittner A, Morrow BJ. 2003. Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J Mol Microbiol Biotechnol 5:105–122. [PubMed][CrossRef]
114. Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J. 1997. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712. [PubMed][CrossRef]
115. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M. 1996. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427. [PubMed][CrossRef]
116. Harding AE. 1981. Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620. [PubMed][CrossRef]
117. Duby G, Foury F, Ramazzotti A, Herrmann J, Lutz T. 2002. A non-essential function for yeast frataxin in iron-sulfur cluster assembly. Hum Mol Genet 11:2635–2643. [PubMed][CrossRef]
118. Foury F, Cazzalini O. 1997. Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett 411:373–377. [PubMed][CrossRef]
119. Martelli A, Wattenhofer-Donze M, Schmucker S, Bouvet S, Reutenauer L, Puccio H. 2007. Frataxin is essential for extramitochondrial Fe-S cluster proteins in mammalian tissues. Hum Mol Genet 16:2651–2658. [PubMed][CrossRef]
120. Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R. 2002. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 11:2025–2036. [PubMed][CrossRef]
121. Bedekovics T, Gajdos GB, Kispal G, Isaya G. 2007. Partial conservation of functions between eukaryotic frataxin and the Escherichia coli frataxin homolog CyaY. FEMS Yeast Res 7:1276–1284.[PubMed]
122. Li DS, Ohshima K, Jiralerspong S, Bojanowski MW, Pandolfo M. 1999. Knock-out of the cyaY gene in Escherichia coli does not affect cellular iron content and sensitivity to oxidants. FEBS Lett 456:13–16. [PubMed][CrossRef]
123. Vivas E, Skovran E, Downs DM. 2006. Salmonella enterica strains lacking the frataxin homolog CyaY show defects in Fe-S cluster metabolism in vivo. J Bacteriol 188:1175–1179. [PubMed][CrossRef]
124. Layer G, Ollagnier-de Choudens S, Sanakis Y, Fontecave M. 2006. Iron-sulfur cluster biosynthesis: characterization of Escherichia coli CyaY as an iron donor for the assembly of [2Fe-2S] clusters in the scaffold IscU. J Biol Chem 281:16256–16263. [PubMed][CrossRef]
125. Gralnick J, Downs D. 2001. Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica. Proc Natl Acad Sci USA 98:8030–8035. [PubMed][CrossRef]
126. Skovran E, Lauhon CT, Downs DM. 2004. Lack of YggX results in chronic oxidative stress and uncovers subtle defects in Fe-S cluster metabolism in Salmonella enterica. J Bacteriol 186:7626–7634. [PubMed][CrossRef]
127. Pomposiello PJ, Koutsolioutsou A, Carrasco D, Demple B. 2003. SoxRS-regulated expression and genetic analysis of the yggX gene of Escherichia coli. J Bacteriol 185:6624–6632. [PubMed][CrossRef]
128. Boiteux S, Radicella JP. 1999. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie 81:59–67. [PubMed][CrossRef]
129. Boon EM, Livingston AL, Chmiel NH, David SS, Barton JK. 2003. DNA-mediated charge transport for DNA repair. Proc Natl Acad Sci USA 100:12543–12547. [PubMed][CrossRef]
130. Yavin E, Boal AK, Stemp ED, Boon EM, Livingston AL, O’Shea VL, David SS, Barton JK. 2005. Protein-DNA charge transport: redox activation of a DNA repair protein by guanine radical. Proc Natl Acad Sci USA 102:3546–3551. [PubMed][CrossRef]
131. Gralnick JA, Downs DM. 2003. The YggX protein of Salmonella enterica is involved in Fe(II) trafficking and minimizes the DNA damage caused by hydroxyl radicals: residue CYS-7 is essential for YggX function. J Biol Chem 278:20708–20715. [PubMed][CrossRef]
132. Cui Q, Thorgersen MP, Westler WM, Markley JL, Downs DM. 2006. Solution structure of YggX: a prokaryotic protein involved in Fe(II) trafficking. Proteins 62:578–586. [PubMed][CrossRef]
133. Osborne MJ, Siddiqui N, Landgraf D, Pomposiello PJ, Gehring K. 2005. The solution structure of the oxidative stress-related protein YggX from Escherichia coli. Protein Sci 14:1673–1678. [PubMed][CrossRef]
134. Justino MC, Almeida CC, Goncalves VL, Teixeira M, Saraiva LM. 2006. Escherichia coli YtfE is a di-iron protein with an important function in assembly of iron-sulphur clusters. FEMS Microbiol Lett 257:278–284. [PubMed][CrossRef]
135. Justino MC, Almeida CC, Teixeira M, Saraiva LM. 2007. Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J Biol Chem 282:10352–10359. [PubMed][CrossRef]
136. Justino MC, Vicente JB, Teixeira M, Saraiva LM. 2005. New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem 280:2636–2643. [PubMed][CrossRef]
137. Filenko N, Spiro S, Browning DF, Squire D, Overton TW, Cole J, Constantinidou C. 2007. The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J Bacteriol 189:4410–4417. [PubMed][CrossRef]
138. Velayudhan J, Castor M, Richardson A, Main-Hester KL, Fang FC. 2007. The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: a unique role for ferritin B in iron-sulfur cluster repair and virulence. Mol Microbiol 63:1495–1507. [PubMed][CrossRef]
139. Pastore C, Adinolfi S, Huynen MA, Rybin V, Martin S, Mayer M, Bukau B, Pastore A. 2006. YfhJ, a molecular adaptor in iron-sulfur cluster formation or a frataxin-like protein? Structure 14:857–867. [PubMed][CrossRef]
140. Shimomura Y, Takahashi Y, Kakuta Y, Fukuyama K. 2005. Crystal structure of Escherichia coli YfhJ protein, a member of the ISC machinery involved in assembly of iron-sulfur clusters. Proteins 60:566–569. [PubMed][CrossRef]
141. Tokumoto U, Nomura S, Minami Y, Mihara H, Kato S, Kurihara T, Esaki N, Kanazawa H, Matsubara H, Takahashi Y. 2002. Network of protein-protein interactions among iron-sulfur cluster assembly proteins in Escherichia coli. J Biochem (Tokyo) 131:713–719.
142. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A. 2005. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537. [PubMed][CrossRef]
143. Hama H, Kayahara T, Ogawa W, Tsuda M, Tsuchiya T. 1994. Enhancement of serine-sensitivity by a gene encoding rhodanese-like protein in Escherichia coli. J Biochem (Tokyo) 115:1135–1140.
144. Petersen L, Downs DM. 1996. Mutations in apbC (mrp) prevent function of the alternative pyrimidine biosynthetic pathway in Salmonella typhimurium. J Bacteriol 178:5676–5682.[PubMed]
145. Petersen L, Enos-Berlage J, Downs DM. 1996. Genetic analysis of metabolic crosstalk and its impact on thiamine synthesis in Salmonella typhimurium. Genetics 143:37–44.[PubMed]
146. Skovran E, Downs DM. 2003. Lack of the ApbC or ApbE protein results in a defect in Fe-S cluster metabolism in Salmonella enterica serovar Typhimurium. J Bacteriol 185:98–106. [PubMed][CrossRef]
147. Hausmann A, Aguilar Netz DJ, Balk J, Pierik AJ, Muhlenhoff U, Lill R. 2005. The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proc Natl Acad Sci USA 102:3266–3271. [PubMed][CrossRef]
148. Roy A, Solodovnikova N, Nicholson T, Antholine W, Walden WE. 2003. A novel eukaryotic factor for cytosolic Fe-S cluster assembly. EMBO J 22:4826–4835. [PubMed][CrossRef]
149. Yarunin A, Panse VG, Petfalski E, Dez C, Tollervey D, Hurt EC. 2005. Functional link between ribosome formation and biogenesis of iron-sulfur proteins. EMBO J 24:580–588. [PubMed][CrossRef]
150. Cobine PA, Pierrel F, Winge DR. 2006. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim Biophys Acta 1763:759–772. [PubMed][CrossRef]
151. Hausinger RP. 1997. Metallocenter assembly in nickel-containing enzymes. J Biol Inorg Chem 2:279–286. [CrossRef]
152. Leach MR, Zamble DB. 2007. Metallocenter assembly of the hydrogenase enzymes. Curr Opin Chem Biol 11:159–165. [PubMed][CrossRef]
153. Mendel RR, Smith AG, Marquet A, Warren MJ. 2007. Metal and cofactor insertion. Nat Prod Rep 24:963–971. [PubMed][CrossRef]
154. Beck BJ, Downs DM. 1998. The apbE gene encodes a lipoprotein involved in thiamine synthesis in Salmonella typhimurium. J Bacteriol 180:885–891.[PubMed]
155. Beck BJ, Downs DM. 1999. A periplasmic location is essential for the role of the ApbE lipoprotein in thiamine synthesis in Salmonella typhimurium. J Bacteriol 181:7285–7290.[PubMed]
ecosalplus.3.6.3.14.citations
ecosalplus/3/1
content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.14
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.14
2008-08-01
2017-11-19

Abstract:

This review describes the two main systems, namely the (iron-sulfur cluster) and (sulfur assimilation) systems, utilized by and for the biosynthesis of iron-sulfur (Fe-S) clusters, as well as other proteins presumably participating in this process. In the case of Fe-S cluster biosynthesis, it is assumed that the sulfur atoms from the cysteine desulfurase end up at cysteine residues of the scaffold protein, presumably waiting for iron atoms for cluster assembly. The review discusses the various potential iron donor proteins. For in vitro experiments, in general, ferrous salts are used during the assembly of Fe-S clusters, even though this approach is unlikely to reflect the physiological conditions. The fact that sulfur atoms can be directly transferred from cysteine desulfurases to scaffold proteins supports a mechanism in which the latter bind sulfur atoms first and iron atoms afterwards. In , gene inactivation results in a reduced growth rate and reduced Fe-S enzyme activities. Interestingly, the SufE structure resembles that of IscU, strengthening the notion that the two proteins share the property of acting as acceptors of sulfur atoms provided by cysteine desulfurases. Several other factors have been suggested to participate in cluster assembly and repair in and . Most of them were identified by their abilities to act as extragenic and/or multicopy suppressors of mutations in Fe-S cluster metabolism, while others possess biochemical properties that are consistent with a role in Fe-S cluster biogenesis.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The orange balls illustrate the sulfur atoms. Cys indicates the thiolates from the protein cysteine residues that coordinate the clusters.

Citation: Fontecave M, Py B, Ollagnier de Choudens S, Barras F. 2008. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The schematic representation of the chromosome shows the relative locations of the genes encoding Fe-S proteins (outside) and Fe-S biosynthesis components (inside).

Citation: Fontecave M, Py B, Ollagnier de Choudens S, Barras F. 2008. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Cysteine desulfurase is a PLP-dependent enzyme which binds a sulfur atom, provided by -cysteine, in a persulfide form. CD, cysteine desulfurase. PLP, pyridoxal phosphate.

Citation: Fontecave M, Py B, Ollagnier de Choudens S, Barras F. 2008. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

PLP reacts with the -cysteine substrate to generate an intermediate aldimine adduct which converts into a ketimine adduct. Then the essential catalytic cysteine of the cysteine desulfurase performs a nucleophilic attack on the PLP-cysteine substrate, leading to a protein-bound persulfide. Hydrolysis generates -alanine and PLP. CD-S—H, cysteine desulfurase with its active cysteine residue. P-O stands for phosphate group.

Citation: Fontecave M, Py B, Ollagnier de Choudens S, Barras F. 2008. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The terminal sulfur atom of a protein-bound persulfide (donor) can be transferred to a cysteine of another protein (acceptor).

Citation: Fontecave M, Py B, Ollagnier de Choudens S, Barras F. 2008. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

The assembly of a cluster within a scaffold protein and the transfer to a target apoprotein (apo-target) are depicted. Holo-target, holoform target.

Citation: Fontecave M, Py B, Ollagnier de Choudens S, Barras F. 2008. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

The protein reacts with a cysteine desulfurase, an iron donor, and a reducing agent to assemble 2Fe-2S and 4Fe-4S clusters sequentially. e, electron.

Citation: Fontecave M, Py B, Ollagnier de Choudens S, Barras F. 2008. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Transcriptional regulators that control the expression of the and operons are indicated. The regions protected by IscR (hatched rectangles), Fur (black rectangle), IHF (white rectangle), and OxyR (grey rectangle) in DNase I footprinting assays are indicated ( 82 , 97 , 98 ). The boundaries of the binding regions are indicated by the positions of the nucleotides relative to the transcription start site. The transcription start site (+1) determined by primer extension is indicated by an arrow.

Citation: Fontecave M, Py B, Ollagnier de Choudens S, Barras F. 2008. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.14
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

List of characterized Fe-S cluster proteins in

Citation: Fontecave M, Py B, Ollagnier de Choudens S, Barras F. 2008. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.14

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error