1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biosynthesis of Riboflavin

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Markus Fischer1, and Adelbert Bacher2
  • Editor: Thomas J. Begley3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institute of Food Chemistry, University of Hamburg, Grindelallee 117, D-20146 Hamburg, Germany; 2: Lehrstuhl für Biochemie, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany; 3: University at Albany, Rensselear, NY
  • Received 20 February 2008 Accepted 09 May 2008 Published 10 December 2010
  • Address correspondence to Markus Fischer markus.fischer@chemie.uni-hamburg.de and Adelbert Bacher adelbertbacher@aol.com.
image of Biosynthesis of Riboflavin
    Preview this reference work article:
    Zoom in
    Zoomout

    Biosynthesis of Riboflavin, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/4/1/3_6_3_2_module-1.gif /docserver/preview/fulltext/ecosalplus/4/1/3_6_3_2_module-2.gif
  • Abstract:

    The biosynthesis of riboflavin requires 1 equivalent of GTP and 2 equivalents of ribulose phosphate. The first committed reactions of the convergent pathway are catalyzed by GTP hydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase. The initial reaction steps afford 5-amino-6-ribitylaminopyrimidine 5′-phosphate, which needs to be dephosphorylated by a hitherto elusive hydrolase. The dephosphorylated pyrimidine is condensed with the carbohydrate precursor, 3,4-dihydroxy-2-butanone 4-phosphate. The resulting 6,7-dimethyl-8-ribityllumazine affords riboflavin by a mechanistically unique dismutation, i.e., by formation of a pentacyclic dimer that is subsequently fragmented.

  • Citation: Fischer M, Bacher A. 2010. Biosynthesis of Riboflavin, EcoSal Plus 2010; doi:10.1128/ecosalplus.3.6.3.2

Key Concept Ranking

Transcription Start Site
0.44443563
Lactic Acid Bacteria
0.39300936
Riboflavin Biosynthesis
0.35447854
Candida albicans
0.35074627
0.44443563

References

1. Müller F. 1992. Chemistry and Biochemistry of Flavoenzymes. CRC Press, Boca Raton, FL.
2. Silva E, Edwards AM. 2006. Flavins: Photochemistry and Photobiology. The Royal Society of Chemistry, Cambridge, United Kingdom.
3. Bacher A. 1991. Biosynthesis of flavins, p 215–259. In Müller F (ed), Chemistry and Biochemistry of Flavoenzymes. CRC Press, Boca Raton, FL.
4. Bacher A, Eisenreich W, Kis K, Ladenstein R, Richter G, Scheuring J, Weinkauf S. 1993. Biosynthesis of flavins, p 147–192. In Dugas H and Schmidtchen FP (ed), Bioorganic Chemistry Frontiers. Springer, Berlin, Germany.
5. Bacher A, Eberhardt S, Richter G. 1996. Biosynthesis of riboflavin, p 657–664. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
6. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G. 2000. Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167. [PubMed][CrossRef]
7. Bacher A, Eberhardt S, Eisenreich W, Fischer M, Herz S, Illarionov B, Kis K, Richter G. 2001. Biosynthesis of riboflavin. Vitam Horm 61:1–49. [PubMed][CrossRef]
8. Brown GM, Reynolds JJ. 1963. Biogenesis of the water-soluble vitamins. Annu Rev Biochem 32:419–462. [PubMed][CrossRef]
9. Brown GM, Williamson JM. 1982. Biosynthesis of riboflavin, folic acid, thiamine, and pantothenic acid. Adv Enzymol Relat Areas Mol Biol 53:345–381.[PubMed]
10. Brown GM, Williamson JM. 1987. Biosynthesis of folic acid, riboflavin, thiamine, and pantothenic acid, p 521–538. In Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC.
11. Fischer M, Bacher A. 2005. Biosynthesis of flavocoenzymes. Nat Prod Rep 22:324–350. [PubMed][CrossRef]
12. Fischer M, Bacher A. 2006. Biosynthesis of vitamin B2 in plants. Physiol Plant 126:304–318. [CrossRef]
13. Plaut GW, Smith CM, Alworth WL. 1974. Biosynthesis of water-soluble vitamins. Annu Rev Biochem 43:899–922. [PubMed][CrossRef]
14. Plaut GWE. 1961. Water-soluble vitamins. II. Folic acid, riboflavin, thiamine, vitamin B12. Annu Rev Biochem 30:409–446. [CrossRef]
15. Plaut GWE. 1971. Metabolism of water-soluble vitamins: the biosynthesis of riboflavin, p 11–45. In Florkin M and Stotz EH (ed), Comprehensive Biochemistry. Elsevier, Amsterdam, The Netherlands.
16. Schlee D. 1969. Bildung von Riboflavin in höheren Pflanzen (Spermatophyten). Biol Rundsch 7:17–25.
17. Young DW. 1986. The biosynthesis of the vitamins thiamin, riboflavin, and folic acid. Nat Prod Rep 3:395–419. [PubMed][CrossRef]
18. Stahmann KP, Revuelta JL, Seulberger H. 2000. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516. [PubMed][CrossRef]
19. Wilska-Jeszka J. 2007. Food colorants, p 245–274. In Sikorski ZE (ed), Chemical and Functional Properties of Food Components (3rd Edition). CRC Press LLC, Boca Raton, FL.
20. Demain AL. 1972. Riboflavin oversynthesis. Annu Rev Microbiol 26:369–388. [PubMed][CrossRef]
21. MacLaren JA. 1952. The effects of certain purines and pyrimidines upon the production of riboflavin by Eremothecium ashbyii. J Bacteriol 63:233–241.[PubMed]
22. Masuda T. 1956. Isolation of a green fluorescent substance produced by Eremothecium ashbyii. Pharm Bull 4:71–72.[PubMed]
23. Masuda T. 1957. Application of chromatography. XXXII. Biosynthesis of riboflavin by Eremothecium ashbyii. Pharm Bull 5:136–141.[PubMed]
24. Plaut GWE, Harvey RA. 1971. The enzymatic synthesis of riboflavin. Methods Enzymol 18:515–538. [CrossRef]
25. Bacher A, Mailänder B. 1973. Biosynthesis of riboflavin. The structure of the purine precursor. J Biol Chem 248:6227–6231.[PubMed]
26. Bacher A, Mailänder B. 1976. Biosynthesis of riboflavin. Structure of the purine precursor and origin of the ribityl side chain, p 733–736. In Singer TP (ed), Flavins and Flavoproteins. Elsevier, Amsterdam, The Netherlands.
27. Mailänder B, Bacher A. 1976. Biosynthesis of riboflavin. Structure of the purine precursor and origin of the ribityl side chain. J Biol Chem 251:3623–3628.[PubMed]
28. Foor F, Brown GM. 1975. Purification and properties of guanosine triphosphate cyclohydrolase II from Escherichia coli. J Biol Chem 250:3545–3451.[PubMed]
29. Foor F, Brown GM. 1980. GTP-cyclohydrolase II from Escherichia coli. Methods Enzymol 66:303–307. [PubMed][CrossRef]
30. Auerbach G, Herrmann A, Bracher A, Bader G, Gütlich M, Fischer M, Neukamm M, Garrido-Franco M, Richardson J, Nar H, Huber R, Bacher A. 2000. Zinc plays a key role in human and bacterial GTP cyclohydrolase I. Proc Natl Acad Sci USA 97:13567–13572. [PubMed][CrossRef]
31. Kaiser J, Schramek N, Eberhardt S, Püttmer S, Schuster M, Bacher A. 2002. Biosynthesis of vitamin B2. An essential zinc ion at the catalytic site of GTP cyclohydrolase II. Eur J Biochem 269:5264–5270. [PubMed][CrossRef]
32. Ren J, Kotaka M, Lockyer M, Lamb HK, Hawkins AR, Stammers DK. 2005. GTP cyclohydrolase II structure and mechanism. J Biol Chem 280:36912–36919. [PubMed][CrossRef]
33. Graham DE, Xu H, White RH. 2002. A member of a new class of GTP cyclohydrolases produces formylaminopyrimidine nucleotide monophosphates. Biochemistry 41:15074–15084. [PubMed][CrossRef]
34. Ritz H, Schramek N, Bracher A, Herz S, Eisenreich W, Richter G, Bacher A. 2001. Biosynthesis of riboflavin: studies on the mechanism of GTP cyclohydrolase II. J Biol Chem 276:22273–22277. [PubMed][CrossRef]
35. Schramek N, Bracher A, Bacher A. 2001. Biosynthesis of riboflavin. Single turnover kinetic analysis of GTP cyclohydrolase II. J Biol Chem 276:44157–44162. [PubMed][CrossRef]
36. Fischer M, Römisch W, Saller S, Illarionov B, Richter G, Rohdich F, Eisenreich W, Bacher A. 2004. Evolution of vitamin B2 biosynthesis: structural and functional similarity between pyrimidine deaminases of eubacterial and plant origin. J Biol Chem 279:36299–36308. [PubMed][CrossRef]
37. Kobayashi M, Ohara-Nemoto Y, Kaneko M, Hayakawa H, Sekiguchi M, Yamamoto K. 1998. Potential of Escherichia coli GTP cyclohydrolase II for hydrolyzing 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J Biol Chem 273:26394–26399. [PubMed][CrossRef]
38. Richter G, Fischer M, Krieger C, Eberhardt S, Lüttgen H, Gerstenschläger I, Bacher A. 1997. Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J Bacteriol 179:2022–2028.[PubMed]
39. Richter G, Krieger C, Volk R, Kis K, Ritz H, Götze E, Bacher A. 1997. Biosynthesis of riboflavin: 3,4-dihydroxy-2-butanone-4-phosphate synthase. Methods Enzymol 280:374–382. [PubMed][CrossRef]
40. Mörtl S, Fischer M, Richter G, Tack J, Weinkauf S, Bacher A. 1996. Biosynthesis of riboflavin. Lumazine synthase of Escherichia coli. J Biol Chem 271:33201–33207. [PubMed][CrossRef]
41. Eberhardt S, Richter G, Gimbel W, Werner T, Bacher A. 1996. Cloning, sequencing, mapping and hyperexpression of the ribC gene coding for riboflavin synthase of Escherichia coli. Eur J Biochem 242:712–719. [PubMed][CrossRef]
42. Burrows RB, Brown GM. 1978. Presence in Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin. J Bacteriol 136:657–667.[PubMed]
43. Stenmark P, Moche M, Gurmu D, Nordlund P. 2007. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism. J Mol Biol 373:48–64. [PubMed][CrossRef]
44. Chatwell L, Krojer T, Fidler A, Römisch W, Eisenreich W, Bacher A, Huber R, Fischer M. 2006. Biosynthesis of riboflavin: structure and properties of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-phosphate reductase of Methanocaldococcus jannaschii. J Mol Biol 359:1334–1351. [PubMed][CrossRef]
45. Graupner M, Xu H, White RH. 2002. The pyrimidine nucleotide reductase step in riboflavin and F420 biosynthesis in Archaea proceeds by the eukaryotic route to riboflavin. J Bacteriol 184:1952–1957. [PubMed][CrossRef]
46. Klaus SM, Wegkamp A, Sybesma W, Hugenholtz J, Gregory JF III, Hanson AD. 2005. A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants. J Biol Chem 280:5274–5280. [PubMed][CrossRef]
47. Perkins JB, Pero JG, Sloma A. 1991. Riboflavin overproducing bacteria expressing the rib operon of Bacillus. European patent 405370 A1 19910102:70pp.
48. Bacher A, Le Van Q, Keller PJ, Floss HG. 1983. Biosynthesis of riboflavin. Incorporation of 13C-labeled precursors into the xylene ring. J Biol Chem 258:13431–13437.[PubMed]
49. Bacher A, Van QL, Keller PJ, Floss HG. 1985. Biosynthesis of riboflavin. Incorporation of multiply 13C-labeled precursors into the xylene ring. J Am Chem Soc 107:6380–6385. [CrossRef]
50. Floss HG, Le Van Q, Keller PJ, Bacher A. 1983. Biosynthesis of riboflavin. An unusual rearrangement in the formation of 6,7-dimethyl-8-ribityllumazine. J Am Chem Soc 105:2493–2494. [CrossRef]
51. Le Van Q, Keller PJ, Bown DH, Floss HG, Bacher A. 1985. Biosynthesis of riboflavin in Bacillus subtilis: origin of the four-carbon moiety. J Bacteriol 162:1280–1284.[PubMed]
52. Neuberger G, Bacher A. 1985. Biosynthesis of riboflavin. An aliphatic intermediate in the formation of 6,7-dimethyl-8-ribityllumazine from pentose phosphate. Biochem Biophys Res Commun 127:175–181. [PubMed][CrossRef]
53. Volk R, Bacher A. 1988. Biosynthesis of riboflavin. The structure of the four-carbon precursor. J Am Chem Soc 110:3651–3653. [CrossRef]
54. Volk R, Bacher A. 1990. Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase. J Biol Chem 265:19479–19485.[PubMed]
55. Volk R, Bacher A. 1991. Biosynthesis of riboflavin. Studies on the mechanism of L-3,4-dihydroxy-2-butanone 4-phosphate synthase. J Biol Chem 266:20610–20618.[PubMed]
56. Fischer M, Römisch W, Schiffmann S, Kelly M, Oschkinat H, Steinbacher S, Huber R, Eisenreich W, Richter G, Bacher A. 2002. Biosynthesis of riboflavin in Archaea. Studies on the mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase of Methanococcus jannaschii. J Biol Chem 277:41410–41416. [PubMed][CrossRef]
57. Steinbacher S, Schiffmann S, Richter G, Huber R, Bacher A, Fischer M. 2003. Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism. J Biol Chem 278:42256–42265. [PubMed][CrossRef]
58. Götze E, Kis K, Eisenreich W, Yamauchi N, Kakinuma K, Bacher A. 1998. Biosynthesis of riboflavin. Stereochemistry of the 3,4-dihydroxy-2-butanone 4-phosphate synthase reaction. J Org Chem 63:6456–6457. [CrossRef]
59. Echt S, Bauer S, Steinbacher S, Huber R, Bacher A, Fischer M. 2004. Potential anti-infective targets in pathogenic yeasts: structure and properties of 3,4-dihydroxy-2-butanone 4-phosphate synthase of Candida albicans. J Mol Biol 341:1085–1096. [PubMed][CrossRef]
60. Liao DI, Viitanen PV, Jordan DB. 2000. Cloning, expression, purification and crystallization of dihydroxybutanone phosphate synthase from Magnaporthe grisea. Acta Crystallogr D 56:1495–1497. [CrossRef]
61. Kelly MJ, Ball LJ, Krieger C, Yu Y, Fischer M, Schiffmann S, Schmieder P, Kühne R, Bermel W, Bacher A, Richter G, Oschkinat H. 2001. The NMR structure of the 47-kDa dimeric enzyme 3,4-dihydroxy-2-butanone 4-phosphate synthase and ligand binding studies reveal the location of the active site. Proc Natl Acad Sci USA 98:13025–13030. [PubMed][CrossRef]
62. Liao DI, Calabrese JC, Wawrzak Z, Viitanen PV, Jordan DB. 2001. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis. Structure (Cambridge) 9:11–18. [PubMed][CrossRef]
63. Liao DI, Zheng YJ, Viitanen PV, Jordan DB. 2002. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase. Biochemistry 41:1795–1806. [PubMed][CrossRef]
64. Steinbacher S, Schiffmann S, Bacher A, Fischer M. 2004. Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate. Acta Crystallogr D 60:1338–1340. [CrossRef]
65. Herz S, Eberhardt S, Bacher A. 2000. Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase. Phytochemistry 53:723–731. [PubMed][CrossRef]
66. Kis K, Volk R, Bacher A. 1995. Biosynthesis of riboflavin. Studies on the reaction mechanism of 6,7-dimethyl-8-ribityllumazine synthase. Biochemistry 34:2883–2892. [PubMed][CrossRef]
67. Nielsen P, Neuberger G, Fujii I, Bown DH, Keller PJ, Floss HG, Bacher A. 1986. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine from pentose phosphates. J Biol Chem 261:3661–3669.[PubMed]
68. Haase I, Fischer M, Bacher A, Schramek N. 2003. Temperature-dependent presteady state kinetics of lumazine synthase from the hyperthermophilic eubacterium Aquifex aeolicus. J Biol Chem 278:37909–37915. [PubMed][CrossRef]
69. Schramek N, Haase I, Fischer M, Bacher A. 2003. Biosynthesis of riboflavin. Single turnover kinetic analysis of 6,7-dimethyl-8-ribityllumazine synthase. J Am Chem Soc 125:4460–4466. [PubMed][CrossRef]
70. Haase I, Mörtl S, Köhler P, Bacher A, Fischer M. 2003. Biosynthesis of riboflavin in archaea. 6,7-Dimethyl-8-ribityllumazine synthase of Methanococcus jannaschii. Eur J Biochem 270:1025–1032. [PubMed][CrossRef]
71. Ladenstein R, Schneider M, Huber R, Bartunik HD, Wilson K, Schott K, Bacher A. 1988. Heavy riboflavin synthase from Bacillus subtilis. Crystal structure analysis of the icosahedral β 60 capsid at 3.3 Å resolution. J Mol Biol 203:1045–1070. [PubMed][CrossRef]
72. Ladenstein R, Ritsert K, Huber R, Richter G, Bacher A. 1994. The lumazine synthase/riboflavin synthase complex of Bacillus subtilis. X-ray structure analysis of hollow reconstituted β-subunit capsids. Eur J Biochem 223:1007–1017. [PubMed][CrossRef]
73. Persson K, Schneider G, Douglas BJ, Viitanen PV, Sandalova T. 1999. Crystal structure analysis of a pentameric fungal and icosahedral plant lumazine synthase reveals the structural basis of differences in assembly. Prot Sci 8:2355–2365. [CrossRef]
74. Zhang X, Meining W, Fischer M, Bacher A, Ladenstein R. 2001. X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 Å resolution: determinants of thermostability revealed from structural comparisons. J Mol Biol 306:1099–1114. [PubMed][CrossRef]
75. Bacher A, Mailänder B. 1978. Biosynthesis of riboflavin in Bacillus subtilis: function and genetic control of the riboflavin synthase complex. J Bacteriol 134:476–482.[PubMed]
76. Bacher A, Schnepple H, Mailänder B, Otto MK, Ben-Shaul Y. 1980. Structure and function of the riboflavin synthase complex of Bacillus subtilis, p 579–586. In Yagi K and Yamano T (ed), Flavins and Flavoproteins. Japanese Science Society Press, Tokyo, Japan.
77. Gerhardt S, Haase I, Steinbacher S, Kaiser JT, Cushman M, Bacher A, Huber R, Fischer M. 2002. The structural basis of riboflavin binding to Schizosaccharomyces pombe 6,7-dimethyl-8-ribityllumazine synthase. J Mol Biol 318:1317–1329. [PubMed][CrossRef]
78. Koch M, Breithaupt C, Gerhardt S, Haase I, Weber S, Cushman M, Huber R, Bacher A, Fischer M. 2004. Structural basis of charge transfer complex formation by riboflavin bound to 6,7-dimethyl-8-ribityllumazine synthase. Eur J Biochem 271:3208–3214. [PubMed][CrossRef]
79. Meining W, Mörtl S, Fischer M, Cushman M, Bacher A, Ladenstein R. 2000. The atomic structure of pentameric lumazine synthase from Saccharomyces cerevisiae at 1.85 Å resolution reveals the binding mode of a phosphonate intermediate analogue. J Mol Biol 299:181–197. [PubMed][CrossRef]
80. Morgunova E, Meining W, Illarionov B, Haase I, Jin G, Bacher A, Cushman M, Fischer M, Ladenstein R. 2005. Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: binding mode of a new class of purinetrione inhibitors. Biochemistry 44:2746–2758. [PubMed][CrossRef]
81. Morgunova E, Saller S, Haase I, Cushman M, Bacher A, Fischer M, Ladenstein R. 2007. Lumazine synthase from Candida albicans as an anti-fungal target enzyme: structural and biochemical basis for drug design. J Biol Chem 282:17231–17241. [PubMed][CrossRef]
82. Klinke S, Zylberman V, Vega DR, Guimaraes BG, Braden BC, Goldbaum FA. 2005. Crystallographic studies on decameric Brucella spp. lumazine synthase: a novel quaternary arrangement evolved for a new function? J Mol Biol 353:124–137. [PubMed][CrossRef]
83. Klinke S, Zylberman V, Bonomi HR, Haase I, Guimaraes BG, Braden BC, Bacher A, Fischer M, Goldbaum FA. 2007. Structural and kinetic properties of lumazine synthase isoenzymes in the order Rhizobiales. J Mol Biol 373:664–680. [PubMed][CrossRef]
84. Zylberman V, Craig PO, Klinke S, Braden BC, Cauerhff A, Goldbaum FA. 2004. High order quaternary arrangement confers increased structural stability to Brucella sp. lumazine synthase. J Biol Chem 279:8093–8101. [PubMed][CrossRef]
85. Fischer M, Haase I, Kis K, Meining W, Ladenstein R, Cushman M, Schramek N, Huber R, Bacher A. 2003. Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6,7-dimethyl-8-ribityllumazine synthase. J Mol Biol 326:783–793. [PubMed][CrossRef]
86. Kis K, Kugelbrey K, Bacher A. 2001. Biosynthesis of riboflavin. The reaction catalyzed by 6,7-dimethyl-8-ribityllumazine synthase can proceed without enzymatic catalysis under physiological conditions. J Org Chem 66:2555–2559. [PubMed][CrossRef]
87. Harvey RA, Plaut GW. 1966. Riboflavin synthetase from yeast. Properties of complexes of the enzyme with lumazine derivatives and riboflavin. J Biol Chem 241:2120–2136.[PubMed]
88. Maley GF, Plaut GW. 1959. The isolation, synthesis, and metabolic properties of 6,7-dimethyl-8-ribityllumazine. J Biol Chem 243:641–647.
89. Otto MK, Bacher A. 1981. Ligand-binding studies on light riboflavin synthase from Bacillus subtilis. Eur J Biochem 115:511–517. [PubMed][CrossRef]
90. Plaut GW, Beach RL, Aogaichi T. 1970. Studies on the mechanism of elimination of protons from the methyl groups of 6,7-dimethyl-8-ribityllumazine by riboflavin synthetase. Biochemistry 9:771–785. [PubMed][CrossRef]
91. Plaut GWE. 1963. Studies on the nature of the enzymic conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin. J Biol Chem 238:2225–2243.[PubMed]
92. Beach RL, Plaut GWE. 1970. Stereospecificity of the enzymatic synthesis of the o-xylene ring of riboflavin. J Am Chem Soc 92:2913–2916. [PubMed][CrossRef]
93. Fischer M, Schott AK, Römisch W, Ramsperger A, Augustin M, Fidler A, Bacher A, Richter G, Huber R, Eisenreich W. 2004. Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in archaea. J Mol Biol 343:267–278. [PubMed][CrossRef]
94. Paterson T, Wood HCS. 1969. Deuterium exchange of C7-methyl protons in 6,7-dimethyl-8-D-ribityllumazine, and studies of the mechanism of riboflavin biosynthesis. J Chem Soc Commun 1969:290–291.
95. Paterson T, Wood HC. 1972. The biosynthesis of pteridines. VI. Studies of the mechanism of riboflavin biosynthesis. J Chem Soc Perkin Trans I 1972:1051–1056. [CrossRef]
96. Plaut GW, Beach RL. 1976. Substrate specificity and stereospecific mode of action of riboflavin synthase, p 737–746. In Singer TP (ed), Flavins and Flavoproteins. Elsevier, Amsterdam, The Netherlands.
97. Sedlmaier H, Müller F, Keller PJ, Bacher A. 1987. Enzymatic synthesis of riboflavin and FMN specifically labeled with 13C in the xylene ring. Z Naturforsch Sect C 42:425–429.[PubMed]
98. Pfleiderer W, Hutzenlaub W. 1973. Pteridines. LVII. Synthesis and properties of lumazine N-oxides. Chem Ber 106:3149–3174. [CrossRef]
99. Beach RL, Plaut GWE. 1971. Synthesis, properties, and base-catalyzed interactions of 8-substituted 6,7-dimethyllumazines. J Org Chem 36:3937–3943. [CrossRef]
100. Bown DH, Keller PJ, Floss HG, Sedlmaier H, Bacher A. 1986. Solution structures of 6,7-dimethyl-8-substituted-lumazines. 13C NMR evidence for intramolecular ether formation. J Org Chem 51:2461–2467. [CrossRef]
101. Pfleiderer W, Mengel R, Hemmerich P. 1971. Pteridines. XLIV. Synthesis and structure of N-8-substituted pterins and lumazines. Chem Ber 104:2273–2292. [CrossRef]
102. Illarionov B, Eisenreich W, Bacher A. 2001. A pentacyclic reaction intermediate of riboflavin synthase. Proc Natl Acad Sci USA 98:7224–7229. [PubMed][CrossRef]
103. Illarionov B, Haase I, Bacher A, Fischer M, Schramek N. 2003. Presteady state kinetic analysis of riboflavin synthase. J Biol Chem 278:47700–47706. [PubMed][CrossRef]
104. Illarionov B, Haase I, Fischer M, Bacher A, Schramek N. 2005. Pre-steady-state kinetic analysis of riboflavin synthase using a pentacyclic reaction intermediate as substrate. Biol Chem 386:127–136. [PubMed][CrossRef]
105. Illarionov B, Eisenreich W, Schramek N, Bacher A, Fischer M. 2005. Biosynthesis of vitamin B2: diastereomeric reaction intermediates of archaeal and non-archaeal riboflavin synthases. J Biol Chem 280:28541–28546. [PubMed][CrossRef]
106. Ramsperger A, Augustin M, Schott AK, Gerhardt S, Krojer T, Eisenreich W, Illarionov B, Cushman M, Bacher A, Huber R, Fischer M. 2006. Crystal structure of an archaeal pentameric riboflavin synthase in complex with a substrate analog inhibitor: stereochemical implications. J Biol Chem 281:1224–1232. [PubMed][CrossRef]
107. Liao DI, Wawrzak Z, Calabrese JC, Viitanen PV, Jordan DB. 2001. Crystal structure of riboflavin synthase. Structure (Cambridge) 9:399–408. [PubMed][CrossRef]
108. Gerhardt S, Schott AK, Kairies N, Cushman M, Illarionov B, Eisenreich W, Bacher A, Huber R, Steinbacher S, Fischer M. 2002. Studies on the reaction mechanism of riboflavin synthase: X-ray crystal structure of a complex with 6-carboxyethyl-7-oxo-8-ribityllumazine. Structure (Cambridge) 10:1371–1381. [PubMed][CrossRef]
109. Beach RL, Plaut GWE. 1970. Investigations of structures of substituted lumazines by deuterium exchange and nuclear magnetic resonance spectroscopy. Biochemistry 9:760–770. [PubMed][CrossRef]
110. Fischer M, Schott AK, Kemter K, Feicht R, Richter G, Illarionov B, Eisenreich W, Gerhardt S, Cushman M, Steinbacher S, Huber R, Bacher A. 2003. Riboflavin synthase of Schizosaccharomyces pombe. Protein dynamics revealed by 19F NMR protein perturbation experiments. BMC Biochem 4:18. [PubMed][CrossRef]
111. Scheuring J, Fischer M, Cushman M, Lee J, Bacher A, Oschkinat H. 1996. NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates. Biochemistry 35:9637–9646. [PubMed][CrossRef]
112. Eberhardt S, Zingler N, Kemter K, Richter G, Cushman M, Bacher A. 2001. Domain structure of riboflavin synthase. Eur J Biochem 268:4315–4323. [PubMed][CrossRef]
113. Meining W, Eberhardt S, Bacher A, Ladenstein R. 2003. The structure of the N-terminal domain of riboflavin synthase in complex with riboflavin at 2.6 Å resolution. J Mol Biol 331:1053–1063. [PubMed][CrossRef]
114. Truffault V, Coles M, Diercks T, Abelmann K, Eberhardt S, Lüttgen H, Bacher A, Kessler H. 2001. The solution structure of the N-terminal domain of riboflavin synthase. J Mol Biol 309:949–960. [PubMed][CrossRef]
115. Fischer M, Römisch W, Illarionov B, Eisenreich W, Bacher A. 2005. Structures and reaction mechanisms of riboflavin synthases of eubacterial and archaeal origin. Biochem Soc Trans 33:780–784. [PubMed][CrossRef]
116. Koka P, Lee J. 1979. Separation and structure of the prosthetic group of the blue fluorescence protein from the bioluminescent bacterium Photobacterium phosphoreum. Proc Natl Acad Sci USA 76:3068–3072. [PubMed][CrossRef]
117. Lee J, Koka P. 1978. Purification of a blue-fluorescent protein from the bioluminescent bacterium Photobacterium phosphoreum. Methods Enzymol 57:226–234. [CrossRef]
118. O’Kane DJ, Woodward B, Lee J, Prasher DC. 1991. Borrowed proteins in bacterial bioluminescence. Proc Natl Acad Sci USA 88:1100–1104. [PubMed][CrossRef]
119. Small ED, Koka P, Lee J. 1980. Lumazine protein from the bioluminescent bacterium Photobacterium phosphoreum. Purification and characterization. J Biol Chem 255:8804–8810.[PubMed]
120. Macheroux P, Schmidt KU, Steinerstauch P, Ghisla S, Colepicolo P, Buntic R, Hastings JW. 1987. Purification of the yellow fluorescent protein from Vibrio fischeri and identity of the flavin chromophore. Biochem Biophys Res Commun 146:101–106. [PubMed][CrossRef]
121. Petushkov VN, Lee J. 1997. Purification and characterization of flavoproteins and cytochromes from the yellow bioluminescence marine bacterium Vibrio fischeri strain Y1. Eur J Biochem 245:790–796. [PubMed][CrossRef]
122. Illarionov B, Eisenreich W, Wirth M, Lee CL, Woo YE, Bacher A, Fischer M. 2007. Lumazine proteins from photobacteria. Localization of the single ligand binding site to the N-terminal domain. Biol Chem 388:1313–1323. [PubMed][CrossRef]
123. Bacher A. 1991. Riboflavin kinase and FAD-synthetase, p 349–370. In Müller F (ed), Chemistry and Biochemistry of Flavoenzymes. CRC Press, Boca Raton, FL.
124. Manstein DJ, Pai EF. 1986. Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes. J Biol Chem 261:16169–16173.[PubMed]
125. Nakagawa S, Igarashi A, Ohta T, Hagihara T, Fujio T, Aisaka K. 1995. Nucleotide sequence of the FAD synthetase gene from Corynebacterium ammoniagenes and its expression in Escherichia coli. Biosci Biotechnol Biochem 59:694–702. [PubMed][CrossRef]
126. Santos MA, Jimenez A, Revuelta JL. 2000. Molecular characterization of FMN1, the structural gene for the monofunctional flavokinase of Saccharomyces cerevisiae. J Biol Chem 275:28618–28624. [PubMed][CrossRef]
127. Bauer S, Kemter K, Bacher A, Huber R, Fischer M, Steinbacher S. 2003. Crystal structure of Schizosaccharomyces pombe riboflavin kinase reveals a novel ATP and riboflavin-binding fold. J Mol Biol 326:1463–1473. [PubMed][CrossRef]
128. Karthikeyan S, Zhou Q, Mseeh F, Grishin NV, Osterman AL, Zhang H. 2003. Crystal structure of human riboflavin kinase reveals a beta barrel fold and a novel active site arch. Structure (Cambridge) 11:265–273. [PubMed][CrossRef]
129. Wang W, Kim R, Jancarik J, Yokota H, Kim SH. 2003. Crystal structure of a flavin-binding protein from Thermotoga maritima. Proteins 52:633–635. [PubMed][CrossRef]
130. Wang W, Kim R, Yokota H, Kim SH. 2005. Crystal structure of flavin binding to FAD synthetase of Thermotoga maritima. Proteins 58:246–248. [PubMed][CrossRef]
131. Eschenmoser A, Loewenthal E. 1992. Chemistry of potentially prebiological natural products. Chem Soc Rev 21:1–16. [CrossRef]
132. Strupp CJ. 1992. Untersuchungen über die nicht-enzymatische Simulation des Biosyntheseweges zu Riboflavin. ETH Thesis Nr. 9832, Zürich, Switzerland.
133. Beach RL, Plaut GWE. 1969. The formation of riboflavin from 6,7-dimethyl-8-ribityllumazine in acid media. Tetrahedron Lett 40:3489–3492. [PubMed][CrossRef]
134. Rowan T, Wood HCS. 1963. The biosynthesis of riboflavin. Proc Chem Soc 1963:21–22.
135. Rowan T, Wood HC. 1968. The biosynthesis of pteridines. V. The synthesis of riboflavin from pteridine precursors. J Chem Soc Perkin Trans I 1968:452–458.
136. Fischer M, Haase I, Feicht R, Schramek N, Köhler P, Schieberle P, Bacher A. 2005. Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin. Biol Chem 386:417–428. [PubMed][CrossRef]
137. Gelfand MS, Mironov AA, Jomantas J, Kozlov YI, Perumov DA. 1999. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet 15:439–442. [PubMed][CrossRef]
138. Gusarov I, Kreneva RA, Podcharniaev DA, Iomantas IV, Abalakina EG, Stoinova NV, Perumov DA, Kozlov II. 1997. Riboflavin biosynthetic genes in Bacillus amyloliquefaciens: primary structure, organization and regulation of activity. Mol Biol (Moscow) 31:446–453. (In Russian.)
139. Kil YV, Mironov VN, Gorishin I, Kreneva RA, Perumov DA. 1992. Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region. Mol Gen Genet 233:483–486. [PubMed][CrossRef]
140. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. 2002. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30:3141–3151. [PubMed][CrossRef]
141. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. 2004. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 20:44–50. [PubMed][CrossRef]
142. Winkler WC, Cohen-Chalamish S, Breaker RR. 2002. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 99:15908–15913. [PubMed][CrossRef]
143. Zylberman V, Klinke S, Haase I, Bacher A, Fischer M, Goldbaum FA. 2006. Evolution of vitamin B2 biosynthesis: 6,7-dimethyl-8-ribityllumazine synthases of Brucella. J Bacteriol 188:6135–6142. [PubMed][CrossRef]
144. Meighen EA. 1993. Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J 7:1016–1022.[PubMed]
145. Bandrin SV, Beburov M, Rabinovich PM, Stepanov AI. 1979. Riboflavin auxotrophs of Escherichia coli. Genetika 15:2063–2065.[PubMed]
146. Burgess CM, Slotboom DJ, Geertsma ER, Duurkens RH, Poolman B, van Sinderen D. 2006. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J Bacteriol 188:2752–2760. [PubMed][CrossRef]
147. Coquard D, Huecas M, Ott M, van Dijl JM, van Loon AP, Hohmann HP. 1997. Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction. Mol Gen Genet 254:81–84. [PubMed][CrossRef]
148. Hümbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann HP, Ritz H, Richter G, Bacher A, Van Loon APGM. 1999. GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol 22:1–7. [CrossRef]
149. Mack M, van Loon AP, Hohmann HP. 1998. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. J Bacteriol 180:950–955.[PubMed]
150. Solovieva IM, Kreneva RA, Leak DJ, Perumov DA. 1999. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. Microbiology 145:67–73. [PubMed][CrossRef]
151. Perkins JB, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee NP, Williams V II, Rufo GA, Hatch R, Pero J. 1999. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotechnol 22:8–18. [CrossRef]
152. Schmidt G, Stahmann K-P, Sahm H. 1996. Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducer Ashbya gossypii. Microbiology (Reading, United Kingdom) 142:411–417. [CrossRef]
153. Heefner DL, Weaver CA, Yarus MJ, Burdzinski LA, Gyure DC, Foster EW. 1988. Riboflavin-producing strains of microorganisms, method for selecting, and method for fermentation. Patent cooperation treaty WO 88-US1876:54pp.
154. Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, Mann M, Bumann D. 2006. Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440:303–307. [PubMed][CrossRef]
155. Rollenhagen C, Bumann D. 2006. Salmonella enterica highly expressed genes are disease specific. Infect Immun 74:1649–1660. [PubMed][CrossRef]
156. Al-Hassan SS, Kulick RJ, Livingstone DB, Suckling CJ, Wood HCS, Wrigglesworth R, Ferone R. 1980. Specific enzyme inhibitors in vitamin biosynthesis. Part 3 The synthesis and inhibitory properties of some substrates and transition state analogs of riboflavin synthase. J Chem Soc Perkin Trans I 1980:2645–2656. [CrossRef]
157. Chen J, Sambaiah T, Illarionov B, Fischer M, Bacher A, Cushman M. 2004. Design, synthesis, and evaluation of acyclic C-nucleoside and N-methylated derivatives of the ribitylaminopyrimidine substrate of lumazine synthase as potential enzyme inhibitors and mechanistic probes. J Org Chem 69:6996–7003. [PubMed][CrossRef]
158. Cushman M, Mavandadi F, Kugelbrey K, Bacher A. 1998. Synthesis of 2,6-dioxo-(1H,3H)-9-N-ribitylpurine and 2,6-dioxo-(1H,3H)-8-aza-9-N-ribitylpurine as inhibitors of lumazine synthase and riboflavin synthase. Bioorg Med Chem 6:409–415. [PubMed][CrossRef]
159. Cushman M, Mavandadi F, Yang D, Kugelbrey K, Kis K, Bacher A. 1999. Synthesis and biochemical evaluation of bis(6,7-dimethyl-8-D-ribityllumazines) as potential bisubstrate analogue inhibitors of riboflavin synthase. J Org Chem 64:4635–4642. [PubMed][CrossRef]
160. Cushman M, Mihalic JT, Kis K, Bacher A. 1999. Design and synthesis of 6-(6-D-ribitylamino-2,4-dihydroxypyrimidin-5-yl)-1-hexyl phosphonic acid, a potent inhibitor of lumazine synthase. Bioorg Med Chem Lett 9:39–42. [PubMed][CrossRef]
161. Cushman M, Yang D, Kis K, Bacher A. 2001. Design, synthesis, and evaluation of 9-D-ribityl-1,3,7-trihydro-2,6,8-purinetrione, a potent inhibitor of riboflavin synthase and lumazine synthase. J Org Chem 66:8320–8327. [PubMed][CrossRef]
162. Cushman M, Yang D, Gerhardt S, Huber R, Fischer M, Kis K, Bacher A. 2002. Design, synthesis, and evaluation of 6-carboxyalkyl and 6-phosphonoxyalkyl derivatives of 7-oxo-8-ribitylaminolumazines as inhibitors of riboflavin synthase and lumazine synthase. J Org Chem 67:5807–5816. [PubMed][CrossRef]
163. Cushman M, Yang D, Mihalic JT, Chen J, Gerhardt S, Huber R, Fischer M, Kis K, Bacher A. 2002. Incorporation of an amide into 5-phosphonoalkyl-6-D-ribitylaminopyrimidinedione lumazine synthase inhibitors results in an unexpected reversal of selectivity for riboflavin synthase vs. lumazine synthase. J Org Chem 67:6871–6877. [PubMed][CrossRef]
164. Cushman M, Sambaiah T, Jin G, Illarionov B, Fischer M, Bacher A. 2004. Design, synthesis, and evaluation of 9-D-ribitylamino-1,3,7,9-tetrahydro-2,6,8-purinetriones bearing alkyl phosphate and α,α-difluorophosphonate substituents as inhibitors of riboflavin synthase and lumazine synthase. J Org Chem 69:601–612. [PubMed][CrossRef]
165. Cushman M, Jin G, Sambaiah T, Illarionov B, Fischer M, Ladenstein R, Bacher A. 2005. Design, synthesis, and biochemical evaluation of 1,5,6,7-tetrahydro-6,7-dioxo-9-D-ribitylaminolumazines bearing alkyl phosphate substituents as inhibitors of lumazine synthase and riboflavin synthase. J Org Chem 70:8162–8170. [PubMed][CrossRef]
166. Ginger CD, Wrigglesworth R, Inglis WD, Kulick RJ, Suckling CJ, Wood HCS. 1984. Specific enzyme inhibitors in vitamin biosynthesis. Part 5. Purification of riboflavin synthase by affinity chromatography using 7-oxolumazines. J Chem Soc Perkin Trans I 1984:953–958. [CrossRef]
167. Talukdar A, Illarionov B, Bacher A, Fischer M, Cushman M. 2007. Synthesis and enzyme inhibitory activity of the S-nucleoside analogue of the ribitylaminopyrimidine substrate of lumazine synthase and product of riboflavin synthase. J Org Chem 72:7167–7175. [PubMed][CrossRef]
168. Wood HCS, Wrigglesworth R, Yeowell DA, Gurney FW, Hürlbert BS. 1974. Specific enzyme inhibitors in vitamin biosynthesis. Part 2. Revised structures for some 8-substituted pyrido[2,3-d] pyrimidines. J Chem Soc Perkin Trans I 1974:1225–1230. [CrossRef]
169. Wrigglesworth R, Inglis WD, Livingstone DB, Suckling CJ, Wood HCS. 1984. Specific enzyme inhibitors in vitamin biosynthesis . Part 6. Identification of an affinity chromatography ligand for the purification of riboflavin synthase. J Chem Soc Perkin Trans 1 5:959–963. [CrossRef]
170. Zhang Y, Illarionov B, Bacher A, Fischer M, Georg GI, Ye QZ, van der Velde D, Fanwick PE, Song Y, Cushman M. 2007. A novel lumazine synthase inhibitor derived from oxidation of 1,3,6,8-tetrahydroxy-2,7-naphthyridine to a tetraazaperylenehexaone derivative. J Org Chem 72:2769–2776. [PubMed][CrossRef]
171. Zhang Y, Jin G, Illarionov B, Bacher A, Fischer M, Cushman M. 2007. A new series of 3-alkyl phosphate derivatives of 4,5,6,7-tetrahydro-1-D-ribityl-1H-pyrazolo[3,4-d]pyrimidinedione as inhibitors of lumazine synthase: design, synthesis, and evaluation. J Org Chem 72:7176–7184. [PubMed][CrossRef]
172. Chen J, Illarionov B, Bacher A, Fischer M, Haase I, Georg G, Ye QZ, Ma Z, Cushman M. 2005. A high-throughput screen utilizing the fluorescence of riboflavin for identification of lumazine synthase inhibitors. Anal Biochem 338:124–130. [PubMed][CrossRef]
173. Kaiser J, Illarionov B, Rohdich F, Eisenreich W, Saller S, Van den Brulle J, Cushman M, Bacher A, Fischer M. 2007. A high-throughput screening platform for inhibitors of the riboflavin biosynthesis pathway. Anal Biochem 365:52–61. [PubMed][CrossRef]
ecosalplus.3.6.3.2.citations
ecosalplus/4/1
content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.2
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.2
2010-12-10
2017-08-17

Abstract:

The biosynthesis of riboflavin requires 1 equivalent of GTP and 2 equivalents of ribulose phosphate. The first committed reactions of the convergent pathway are catalyzed by GTP hydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase. The initial reaction steps afford 5-amino-6-ribitylaminopyrimidine 5′-phosphate, which needs to be dephosphorylated by a hitherto elusive hydrolase. The dephosphorylated pyrimidine is condensed with the carbohydrate precursor, 3,4-dihydroxy-2-butanone 4-phosphate. The resulting 6,7-dimethyl-8-ribityllumazine affords riboflavin by a mechanistically unique dismutation, i.e., by formation of a pentacyclic dimer that is subsequently fragmented.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

GTP (); 2,5-diamino-6-ribosylamino-4(3)-pyrimidinone 5′-phosphate (); 5-amino-6-ribosylamino-4(3)-pyrimidine 5′-phosphate (); 5-amino-6-ribitylamino-2,4(1,3)-pyrimidinedione 5′-phosphate (), 5-amino-6-ribitylamino-2,4(1,3)-pyrimidinedione (); ribulose 5-phosphate (); 3,4-dihydroxy-2-butanone 4-phosphate (); 6,7-dimethyl-8-ribityllumazine (); riboflavin (); FMN (); FAD (). Enzymes involved in the riboflavin pathway of are encoded by the following genes: , GTP cyclohydrolase II; , pyrimidine deaminase/pyrimidine reductase; , lumazine synthase; , 3,4-dihydroxy-2-butanone 4-phosphate synthase; , riboflavin synthase; , riboflavin kinase/FAD synthetase.

Citation: Fischer M, Bacher A. 2010. Biosynthesis of Riboflavin, EcoSal Plus 2010; doi:10.1128/ecosalplus.3.6.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Numbers correspond to the compounds identified in the legend to Fig. 1 .

Citation: Fischer M, Bacher A. 2010. Biosynthesis of Riboflavin, EcoSal Plus 2010; doi:10.1128/ecosalplus.3.6.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Specific activities of enzymes involved in the biosynthesis of riboflavin in

Citation: Fischer M, Bacher A. 2010. Biosynthesis of Riboflavin, EcoSal Plus 2010; doi:10.1128/ecosalplus.3.6.3.2

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error