1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biosynthesis and Use of Cobalamin (B)

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Jorge C. Escalante-Semerena1, and Martin J. Warren2
  • Editor: Tadhg P. Begley3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Bacteriology, University of Wisconsin—Madison, 1550 Linden Drive, Madison, WI 53706; 2: Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom; 3: Texas A&M University, College Station, Texas
  • Received 15 November 2007 Accepted 21 February 2008 Published 05 August 2008
  • Address correspondence to Jorge C. Escalante-Semerena escalante@bact.wisc.edu and Martin J. Warren M.J.Warren@kent.ac.uk
image of Biosynthesis and Use of Cobalamin (B<span class="jp-sub">12</span>)
    Preview this reference work article:
    Zoom in
    Zoomout

    Biosynthesis and Use of Cobalamin (B), Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/1/3_6_3_8_module-1.gif /docserver/preview/fulltext/ecosalplus/3/1/3_6_3_8_module-2.gif
  • Abstract:

    This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B) biosynthesis. It also discusses the role of coenzyme B in the physiology of serovar Typhimurium LT2 and . John Roth's seminal contributions to the field of coenzyme B biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In and serovar Typhimurium, uro’gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike , serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.

  • Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8

References

1. Jeter RM. 1990. Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium. J Gen Microbiol 136:887–896.[PubMed]
2. Jarrett JT, Hoover DM, Ludwig ML, Matthews RG. 1998. The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of cob(II)alamin enzyme. Biochemistry 37:12649–12658. [PubMed][CrossRef]
3. Roof DM, Roth JR. 1992. Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella typhimurium. J Bacteriol 174:6634–6643.[PubMed]
4. Roof DM, Roth JR. 1988. Ethanolamine utilization in Salmonella typhimurium. J Bacteriol 170:3855–3863.[PubMed]
5. Thauer RK, Jungermann K, Decker K. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180.[PubMed]
6. Woodcock SC, Raux E, Levillayer F, Thermes C, Rambach A, Warren MJ. 1998. Effect of mutations in the transmethylase and dehydrogenase/chelatase domains of sirohaem synthase (CysG) on sirohaem and cobalamin biosynthesis. Biochem J 330:121–129.[PubMed]
7. Woodson JD, Escalante-Semerena JC. 2004. CbiZ, an amidohydrolase enzyme required for salvaging the coenzyme B12 precursor cobinamide in archaea. Proc Natl Acad Sci USA 101:3591–3596. [PubMed][CrossRef]
8. Woodson JD, Peck RF, Krebs MP, Escalante-Semerena JC. 2003. The cobY gene of the archaeon Halobacterium sp. strain NRC-1 is required for de novo cobamide synthesis. J Bacteriol 185:311–316. [PubMed][CrossRef]
9. Hoover DM, Ludwig ML. 1997. A flavodoxin that is required for enzyme activation: the structure of oxidized flavodoxin from Escherichia coli at 1.8 Å resolution. Protein Sci 6:2525–2537. [PubMed][CrossRef]
10. Horswill AR, Escalante-Semerena JC. 2001. In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate. Biochemistry 40:4703–4713. [PubMed][CrossRef]
11. Horswill AR, Escalante-Semerena JC. 1997. Propionate catabolism in Salmonella typhimurium LT2: two divergently transcribed units comprise the prp locus at 8.5 centisomes, prpR encodes a member of the sigma-54 family of activators, and the prpBCDE genes constitute an operon. J Bacteriol 179:928–940.[PubMed]
12. Taurog RE, Matthews RG. 2006. Activation of methyltetrahydrofolate by cobalamin-independent methionine synthase. Biochemistry 45:5092–5102. [PubMed][CrossRef]
13. Trzebiatowski JR, O’Toole GA, Escalante-Semerena JC. 1994. The cobT gene of Salmonella typhimurium encodes the NaMN:5,6-dimethylbenzimidazole phosphoribosyltransferase responsible for the synthesis of N1-(5-phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide loop of cobalamin. J Bacteriol 176:3568–3575.[PubMed]
14. Roth JR, Lawrence JG, Bobik TA. 1996. Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181. [PubMed][CrossRef]
15. Cheong CG, Escalante-Semerena JC, Rayment I. 2002. Structural studies of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica: the apo, substrate, and product-aldimine complexes. Biochemistry 41:9079–9089. [PubMed][CrossRef]
16. Price-Carter M, Tingey J, Bobik TA, Roth JR. 2001. The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar Typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol 183:2463–2475. [PubMed][CrossRef]
17. Raux E, Schubert HL, Warren MJ. 2000. Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Cell Mol Life Sci 57:1880–1893. [PubMed][CrossRef]
18. Roessner CA, Scott AI. 2006. Fine-tuning our knowledge of the anaerobic route to cobalamin (vitamin B12). J Bacteriol 188:7331–7334. [PubMed][CrossRef]
19. Schubert HL, Raux E, Brindley AA, Leech HK, Wilson KS, Hill CP, Warren MJ. 2002. The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase. EMBO J 21:2068–2075. [PubMed][CrossRef]
20. Thompson TB, Thomas MG, Escalante-Semerena JC, Rayment I. 1999. Three-dimensional structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) complexed with GMP: evidence for a substrate-induced transferase active site. Biochemistry 38:12995–13005. [PubMed][CrossRef]
21. Wolf J, Brey RN. 1986. Isolation and characterizations of Bacillus megaterium cobalamin biosynthesis-deficient mutants. J Bacteriol 166:51–58.[PubMed]
22. Andersson DI, Roth JR. 1989. Redox regulation of the genes for cobinamide biosynthesis in Salmonella typhimurium. J Bacteriol 171:6734–6739.[PubMed]
23. Blackwell CM, Turner JM. 1978. Microbial metabolism of amino alcohols. Formation of coenzyme B12-dependent ethanolamine ammonia-lyase and its concerted induction in Escherichia coli. Biochem J 176:751–757.[PubMed]
24. Bassford PJ Jr, Kadner RJ. 1977. Genetic analysis of components involved in vitamin B12 uptake in Escherichia coli. J Bacteriol 132:796–805.[PubMed]
25. Battersby AR. 1994. New intermediates in the B12 pathway, p 267–279. In Chadwick DJ and Ackrill K (ed), CIBA Foundation Symposium on the Biosynthesis of the Tetrapyrrole Pigments. John Wiley & Sons, New York, NY.
26. Schubert HL, Wilson KS, Raux E, Woodcock SC, Warren MJ. 1998. The X-ray structure of a cobalamin biosynthetic enzyme, cobalt-precorrin-4 methyltransferase. Nat Struct Biol 5:585–592. [PubMed][CrossRef]
27. Scott AI. 2003. Discovering nature’s diverse pathways to vitamin B12: a 35-year odyssey. J Org Chem 68:2529–2539. [PubMed][CrossRef]
28. Blanche F, Famechon A, Thibaut D, Debussche L, Cameron B, Crouzet J. 1992. Biosynthesis of vitamin B12 in Pseudomonas denitrificans: the biosynthetic sequence from precorrin-6y to precorrin-8x is catalyzed by the cobL gene product. J Bacteriol 174:1050–1052.[PubMed]
29. Thomas MG, Escalante-Semerena JC. 2000. Identification of an alternative nucleoside triphosphate: 5′-deoxyadenosylcobinamide phosphate nucleotidyltransferase in Methanobacterium thermoautotrophicum ΔH. J Bacteriol 182:4227–4233. [PubMed][CrossRef]
30. Maggio-Hall LA, Dorrestein PC, Escalante-Semerena JC, Begley TP. 2003. Formation of the dimethylbenzimidazole ligand of coenzyme B12 under physiological conditions by a facile oxidative cascade. Org Lett 5:2211–2213. [PubMed][CrossRef]
31. Zayas CL, Claas K, Escalante-Semerena JC. 2007. The CbiB protein of Salmonella enterica is an integral membrane protein involved in the last step of the de novo corrin ring biosynthetic pathway. J Bacteriol 189:7697–7708. [PubMed][CrossRef]
32. Maggio-Hall LA, Escalante-Semerena JC. 2003. α-5,6-Dimethylbenzimidazole adenine dinucleotide (α-DAD), a putative new intermediate of coenzyme B12 biosynthesis in Salmonella typhimurium. Microbiology 149:983–990. [PubMed][CrossRef]
33. Kannangara CG, Gough SP, Bruyant P, Hoober JK, Kahn A, von Wettstein D. 1988. tRNA(Glu) as a cofactor in delta-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends Biochem Sci 13:139–143. [PubMed][CrossRef]
34. Keck B, Munder M, Renz P. 1998. Biosynthesis of cobalamin in Salmonella typhimurium: transformation of riboflavin into the 5,6-dimethylbenzimidazole moiety. Arch Microbiol 171:66–68. [PubMed][CrossRef]
35. Ravnum S, Andersson DI. 1997. Vitamin B12 repression of the btuB gene in Salmonella typhimurium is mediated via a translational control which requires leader and coding sequences. Mol Microbiol 23:35–42. [PubMed][CrossRef]
36. Cameron B, Blanche F, Rouyez MC, Bisch D, Famechon A, Couder M, Cauchois L, Thibaut D, Debussche L, Crouzet J. 1991. Genetic analysis, nucleotide sequence, and products of two Pseudomonas denitrificans cob genes encoding nicotinate-nucleotide:dimethylbenzimidazole phosphoribosyltransferase and cobalamin (5′-phosphate) synthase. J Bacteriol 173:6066–6073.[PubMed]
37. Grabau C, Roth JR. 1992. A Salmonella typhimurium cobalamin-deficient mutant blocked in 1-amino-2-propanol synthesis. J Bacteriol 174:2138–2144.[PubMed]
38. Plano GV. 2004. Modulation of AraC family member activity by protein ligands. Mol Microbiol 54:287–290. [PubMed][CrossRef]
39. Maggio-Hall LA, Claas KR, Escalante-Semerena JC. 2004. The last step in coenzyme B12 synthesis is localized to the cell membrane in bacteria and archaea. Microbiology 150:1385–1395. [PubMed][CrossRef]
40. Roessner CA, Warren MJ, Santander PJ, Atshaves BP, Ozaki S, Stolowich NJ, Iida K, Scott AI. 1992. Expression of 9 Salmonella typhimurium enzymes for cobinamide synthesis. Identification of the 11-methyl and 20-methyl transferases of corrin biosynthesis. FEBS Lett 301:73–78. [PubMed][CrossRef]
41. Raux E, McVeigh T, Peters SE, Leustek T, Warren MJ. 1999. The role of Saccharomyces cerevisiae Met1p and Met8p in sirohaem and cobalamin biosynthesis. Biochem J 338:701–708. [PubMed][CrossRef]
42. Roof DM, Roth JR. 1989. Functions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium. J Bacteriol 171:3316–3323.[PubMed]
43. Imai S, Armstrong CM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800. [PubMed][CrossRef]
44. International Union of Pure Applied Chemistry-International Union of Biochemistry Molecular Biology Joint Commission on Biochemical Nomenclature. 1966. Tentative rules. Nomenclature of corrinoids. Biochim Biophys Acta 117:285–288.[PubMed]
45. Friedmann HC, Harris DL. 1965. The formation of α-glycosidic 5′-nucleotides by a single displacement trans-N-glycosidase. J Biol Chem 240:406–412.[PubMed]
46. Debussche L, Thibaut D, Cameron B, Crouzet J, Blanche F. 1993. Biosynthesis of the corrin macrocycle of coenzyme B12 in Pseudomonas denitrificans. J Bacteriol 175:7430–7440.[PubMed]
47. Battersby AR. 1994. How nature builds the pigments of life: the conquest of vitamin B12. Science 264:1551–1557. [PubMed][CrossRef]
48. Bobik TA, Xu Y, Jeter RM, Otto KE, Roth JR. 1997. Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase. J Bacteriol 179:6633–6639.[PubMed]
49. Brown ED. 2005. Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochem Cell Biol 83:738–746. [PubMed][CrossRef]
50. Brown KL. 2005. Chemistry and enzymology of vitamin B12. Chem Rev 105:2075–2149. [PubMed][CrossRef]
51. Gantt E, Conti SF. 1969. Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493.[PubMed]
52. Gerfen GJ. 1999. EPR spectroscopy of B12-dependent enzymes, p 165–195. In Banerjee R (ed), Chemistry and Biochemistry of B12. John Wiley & Sons, Inc, New York, NY.
53. Hennig M, Grimm B, Contestabile R, John RA, Jansonius JN. 1997. Crystal structure of glutamate-1-semialdehyde aminomutase: an α2-dimeric vitamin B6–dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 94:4866–4871. [PubMed][CrossRef]
54. Kofoid E, Rappleye C, Stojiljkovic I, Roth J. 1999. The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 181:5317–5329.[PubMed]
55. Malpica R, Sandoval GR, Rodriguez C, Franco B, Georgellis D. 2006. Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid Redox Signal 8:781–795. [PubMed][CrossRef]
56. Sheppard DE, Roth JR. 1994. A rationale for autoinduction of a transcriptional activator: ethanolamine ammonia-lyase (EutBC) and the operon activator (EutR) compete for adenosyl-cobalamin in Salmonella typhimurium. J Bacteriol 176:1287–1296.[PubMed]
57. Stark WM, Hawker CJ, Hart GJ, Philippides A, Petersen PM, Lewis JD, Leeper FJ, Battersby AR. 1993. Biosynthesis of porphyrins and related macrocycles. 40 Synthesis of a spiro-lactam related to the proposed spir-intermediate for porphyrin biosynthesis: inhibition of cosynthetase. J Chem Soc Perkin Trans 1 23:2875–2892. [CrossRef]
58. Stevens RV. 1982. The total synthesis of vitamin B12, p 169–200. In Dolphin D (ed), B12, vol. 1. John Wiley & Sons, Inc., New York, NY.
59. Stich TA, Brooks AJ, Buan NR, Brunold TC. 2003. Spectroscopic and computational studies of Co3+-corrinoids: spectral and electronic properties of the B12 cofactors and biologically relevant precursors. J Am Chem Soc 125:5897–5914. [PubMed][CrossRef]
60. Woodson JD, Zayas CL, Escalante-Semerena JC. 2003. A new pathway for salvaging the coenzyme B12 precursor cobinamide in archaea requires cobinamide-phosphate synthase (CbiB) enzyme activity. J Bacteriol 185:7193–7201. [PubMed][CrossRef]
61. Spencer P, Stolowich NJ, Sumner LW, Scott AI. 1998. Definition of the redox states of cobalt-precorrinoids: investigation of the substrate and redox specificity of CbiL from Salmonella typhimurium. Biochemistry 37:14917–14927. [PubMed][CrossRef]
62. Leal NA, Olteanu H, Banerjee R, Bobik TA. 2004. Human ATP:cob(I)alamin adenosyltransferase and its interaction with methionine synthase reductase. J Biol Chem 279:47536–47542. [PubMed][CrossRef]
63. Bandarian V, Reed GH. 1999. Ethanolamine ammonia-lyase, p 811–833. In Banerjee R (ed), Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York, NY.
64. Cheong CG, Escalante-Semerena JC, Rayment I. 1999. The three-dimensional structures of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase (CobT) from Salmonella typhimurium complexed with 5,6-dimethybenzimidazole and its reaction products determined to 1.9 Å resolution. Biochemistry 38:16125–16135. [PubMed][CrossRef]
65. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93. [PubMed][CrossRef]
66. Banerjee RV, Matthews RG. 1990. Cobalamin-dependent methionine synthase. FASEB J 4:1450–1459.[PubMed]
67. International Union of Pure Applied Chemistry-International Union of Biochemistry Molecular Biology Joint Commission on Biochemical Nomenclature. 1974. The nomenclature of corrinoids (1973 recommendations). Biochemistry 13:1555–1560. [PubMed][CrossRef]
68. Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO. 2005. Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938. [PubMed][CrossRef]
69. Krathy C, Kräutler B. 1999. X-ray crystallography of B12, p 9–41. In Banerjee R (ed), Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York, NY.
70. Kräutler B, Kohler HP, Stupperich E. 1988. 5′-Methylbenzimidazolyl-cobamides are the corrinoids from some sulfate-reducing and sulfur-metabolizing bacteria. Eur J Biochem 176:461–469. [PubMed][CrossRef]
71. Matthews RG. 2001. Cobalamin-dependent methyltransferases. Acc Chem Res 34:681–689. [PubMed][CrossRef]
72. Stupperich E, Eisinger HJ, Kräutler B. 1989. Identification of phenolyl cobamide from the homoacetogenic bacterium Sporomusa ovata. Eur J Biochem 186:657–661. [PubMed][CrossRef]
73. Williams L, Fresquet V, Santander PJ, Raushel FM. 2007. The multiple amidation reactions catalyzed by cobyric acid synthetase from Salmonella typhimurium are sequential and dissociative. J Am Chem Soc 129:294–295. [PubMed][CrossRef]
74. Lawhon SD, Frye JG, Suyemoto M, Porwollik S, McClelland M, Altier C. 2003. Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol 48:1633–1645. [PubMed][CrossRef]
75. Lawrence JG, Roth JR. 1996. Evolution of coenzyme B12 synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. Genetics 142:11–24.[PubMed]
76. Bobik TA. 2006. Polyhedral organelles compartmenting bacterial metabolic processes. Appl Microbiol Biotechnol 70:517–525. [PubMed][CrossRef]
77. Rondon MR, Escalante-Semerena JC. 1997. Integration host factor is required for 1,2-propanediol-dependent transcription of the cob/pdu regulon in Salmonella typhimurium LT2. J Bacteriol 179:3797–3800.[PubMed]
78. Escalante-Semerena JC, Roth JR. 1987. Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J Bacteriol 169:2251–2258.[PubMed]
79. Lundrigan MD, De Veaux LC, Mann BJ, Kadner RJ. 1987. Separate regulatory systems for the repression of metE and btuB by vitamin B12 in Escherichia coli. Mol Gen Genet 206:401–407. [PubMed][CrossRef]
80. Fonseca MV, Escalante-Semerena JC. 2000. Reduction of cob(III)alamin to cob(II)alamin in Salmonella enterica serovar Typhimurium LT2. J Bacteriol 182:4304–4309. [PubMed][CrossRef]
81. Gray MJ, Escalante-Semerena JC. 2007. Single-enzyme conversion of FMNH2 to 5,6-dimethylbenzimidazole, the lower ligand of B12. Proc Natl Acad Sci USA 104:2921–2926. [PubMed][CrossRef]
82. Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML. 1994. How a protein binds B12: a 3.0 Å X-ray structure of B12-binding domains of methionine synthase. Science 266:1669–1674. [PubMed][CrossRef]
83. Mathews MA, Schubert HL, Whitby FG, Alexander KJ, Schadick K, Bergonia HA, Phillips JD, Hill CP. 2001. Crystal structure of human uroporphyrinogen III synthase. EMBO J 20:5832–5839. [PubMed][CrossRef]
84. Dorweiler JS, Matthews RG, Finke RG. 2002. Providing a chemical basis toward understanding the histidine base-on motif of methylcobalamin-dependent methionine synthase: an improved purification of methylcobinamide, plus thermodynamic studies of methylcobinamide binding exogenous imidazole and pyridine bases. Inorg Chem 41:6217–6224. [PubMed][CrossRef]
85. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst, Evol Microbiol 50:1563–1589.
86. Bandarian V, Ludwig ML, Matthews RG. 2003. Factors modulating conformational equilibria in large modular proteins: a case study with cobalamin-dependent methionine synthase. Proc Natl Acad Sci USA 100:8156–81563. [PubMed][CrossRef]
87. Bandarian V, Matthews RG. 2004. Measurement of energetics of conformational change in cobalamin-dependent methionine synthase. Methods Enzymol 380:152–169. [PubMed][CrossRef]
88. Bandarian V, Matthews RG. 2001. Quantitation of rate enhancements attained by the binding of cobalamin to methionine synthase. Biochemistry 40:5056–5064. [PubMed][CrossRef]
89. Banerjee R, Chowdhury S. 1999. Methylmalonyl-CoA mutase, p 707–729. In Banerjee R (ed), Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York, NY.
90. Banerjee RV, Harder SR, Ragsdale SW, Matthews RG. 1990. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Biochemistry 29:1129–1135. [PubMed][CrossRef]
91. DiMarco AA, Bobik TA, Wolfe RS. 1990. Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–94. [PubMed][CrossRef]
92. Dorweiler JS, Finke RG, Matthews RG. 2003. Cobalamin-dependent methionine synthase: probing the role of the axial base in catalysis of methyl transfer between methyltetrahydrofolate and exogenous cob(I)alamin or cob(I)inamide. Biochemistry 42:14653–14662. [PubMed][CrossRef]
93. Escalante-Semerena JC, Suh SJ, Roth JR. 1990. cobA function is required for both de novo cobalamin biosynthesis and assimilation of exogenous corrinoids in Salmonella typhimurium. J Bacteriol 172:273–280.[PubMed]
94. Greene RC. 1996. Biosynthesis of methionine, p 542–560. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
95. Hodgkin DC. 1979. New and old problems in the structure analysis of vitamin B12, p 19–36. In Zagalak B and Friedrich W (ed), Vitamin B12. de Gruyter, Berlin, Germany.
96. Hondorp ER, Matthews RG. 2004. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biol 2:e336. [CrossRef]
97. Hoover DM, Jarrett JT, Sands RH, Dunham WR, Ludwig ML, Matthews RG. 1997. Interaction of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamin cofactor. Biochemistry 36:127–138. [PubMed][CrossRef]
98. Jahn D, Verkamp E, Soll D. 1992. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17:215–218. [PubMed][CrossRef]
99. Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Warren MJ, Woodcock SC, Jordan PM. 1992. Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site. Nature 359:33–39. [PubMed][CrossRef]
100. Lundrigan MD, Koster W, Kadner RJ. 1991. Transcribed sequences of the Escherichia coli btuB gene control its expression and regulation by vitamin B12. Proc Natl Acad Sci USA 88:1479–1483. [PubMed][CrossRef]
101. Shively JM, Decker GL, Greenawalt JW. 1970. Comparative ultrastructure of the thiobacilli. J Bacteriol 101:618–627.[PubMed]
102. Glusker JP. 1982. X-ray crystallography of B12 and cobaloximes, p 23–106. In Dolphin D (ed), B12, vol. 1. John Wiley & Sons, New York, NY.
103. Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan S, Harborne N, Wootton J, Nicolson R, Cole J. 1990. Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur J Biochem 191:315–323. [PubMed][CrossRef]
104. Peariso K, Zhou ZS, Smith AE, Matthews RG, Penner-Hahn JE. 2001. Characterization of the zinc sites in cobalamin-independent and cobalamin-dependent methionine synthase using zinc and selenium X-ray absorption spectroscopy. Biochemistry 40:987–993. [PubMed][CrossRef]
105. Suh SJ, Escalante-Semerena JC. 1993. Cloning, sequencing and overexpression of cobA which encodes ATP:corrinoid adenosyltransferase in Salmonella typhimurium. Gene 129:93–97. [PubMed][CrossRef]
106. Taurog RE, Jakubowski H, Matthews RG. 2006. Synergistic, random sequential binding of substrates in cobalamin-independent methionine synthase. Biochemistry 45:5083–5091. [PubMed][CrossRef]
107. Zayas CL, Escalante-Semerena JC. 2007. Reassessment of the late steps of coenzyme B12 synthesis in Salmonella enterica: evidence that dephosphorylation of adenosylcobalamin-5′-phosphate by the CobC phosphatase is the last step of the pathway. J Bacteriol 189:2210–2218. [PubMed][CrossRef]
108. Bartosinsky B, Zagalak B, Pawelkiewicz J. 1967. The route of vitamin B12 biosynthesis in Propionibacterium shermanii. Biochim Biophys Acta 136:581–584.[PubMed]
109. Campbell GR, Taga ME, Mistry K, Lloret J, Anderson PJ, Roth JR, Walker GC. 2006. Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12. Proc Natl Acad Sci USA 103:4634–4369. [PubMed][CrossRef]
110. Bandarian V, Pattridge KA, Lennon BW, Huddler DP, Matthews RG, Ludwig ML. 2002. Domain alternation switches B(12)-dependent methionine synthase to the activation conformation. Nat Struct Biol 9:53–56. [PubMed][CrossRef]
111. Beale SI, Castelfranco PA. 1973. 14C incorporation from exogenous compounds into δ-aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun 52:143–149. [PubMed][CrossRef]
112. Blackwell CM, Scarlett FA, Turner JM. 1976. Ethanolamine catabolism by bacteria, including Escherichia coli. Biochem Soc Trans 4:495–497.[PubMed]
113. Evans JC, Huddler DP, Hilgers MT, Romanchuk G, Matthews RG, Ludwig ML. 2004. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc Natl Acad Sci USA 101:3729–3736. [PubMed][CrossRef]
114. Kim W, Major TA, Whitman WB. 2005. Role of the precorrin 6-X reductase gene in cobamide biosynthesis in Methanococcus maripaludis. Archaea 1:375–384. [PubMed][CrossRef]
115. St. Maurice M, Mera PE, Taranto MP, Sesma F, Escalante-Semerena JC, Rayment I. 2007. Structural characterization of the active site of the PduO-type ATP:co(I)rrinoid adenosyltransferase from Lactobacillus reuteri. J Biol Chem 282:2596–2605. [PubMed][CrossRef]
116. Buan NR, Escalante-Semerena JC. 2006. Purification and initial biochemical characterization of ATP:cob(I)alamin adenosyltransferase (EutT) enzyme of Salmonella enterica. J Biol Chem 281:16971–16977. [PubMed][CrossRef]
117. Pollich M, Wersig C, Klug G. 1996. The bluFgene of Rhodobacter capsulatus is involved in conversion of cobinamide to cobalamin (vitamin B12). J Bacteriol 178:7308–7310.[PubMed]
118. Tobes R, Ramos JL. 2002. AraC-XylS database: a family of positive transcriptional regulators in bacteria. Nucleic Acids Res 30:318–321. [PubMed][CrossRef]
119. Toraya T, Mori K, Hara T, Tobimatsu T. 2000. A reactivating factor for coenzyme B12-dependent diol dehydratase. Biofactors 11:105–107. [PubMed][CrossRef]
120. Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC. 1999. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation. J Bacteriol 181:5967–5975.[PubMed]
121. Bobik TA, Ailion M, Roth JR. 1992. A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. J Bacteriol 174:2253–2266.[PubMed]
122. Hall DA, Jordan-Starck TC, Loo RO, Ludwig ML, Matthews RG. 2000. Interaction of flavodoxin with cobalamin-dependent methionine synthase. Biochemistry 39:10711–10719. [PubMed][CrossRef]
123. Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church GM. 1993. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 175:3303–3316.[PubMed]
124. Brown KL. 1999. NMR spectroscopy of B12, p 197–237. In Banerjee R (ed), Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York, NY.
125. O’Toole GA, Rondon MR, Escalante-Semerena JC. 1993. Analysis of mutants of Salmonella typhimurium defective in the synthesis of the nucleotide loop of cobalamin. J Bacteriol 175:3317–3326.[PubMed]
126. Fonseca MV, Buan NR, Horswill AR, Rayment I, Escalante-Semerena JC. 2002. The ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica requires the 2′-OH group of ATP for function and yields inorganic triphosphate as its reaction byproduct. J Biol Chem 277:33127–33131. [PubMed][CrossRef]
127. Gonzalez JC, Peariso K, Penner-Hahn JE, Matthews RG. 1996. Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme. Biochemistry 35:12228–12234. [PubMed][CrossRef]
128. Stupperich E, Steiner I, Eisinger HJ. 1987. Substitution of Coα-(5-hydroxybenzimidazolyl)cobamide (factor III) by vitamin B12 in Methanobacterium thermoautotrophicum. J Bacteriol 169:3076–3081.[PubMed]
129. Frank S, Deery E, Brindley AA, Leech HK, Lawrence A, Heathcote P, Schubert HL, Brocklehurst K, Rigby SE, Warren MJ, Pickersgill RW. 2007. Elucidation of substrate specificity in the cobalamin (vitamin B12) biosynthetic methyltransferases. Structure and function of the C20 methyltransferase (CbiL) from Methanothermobacter thermautotrophicus. J Biol Chem 282:23957–23969. [PubMed][CrossRef]
130. Bauer CB, Fonseca MV, Holden HM, Thoden JB, Thompson TB, Escalante-Semerena JC, Rayment I. 2001. Three-dimensional structure of ATP:corrinoid adenosyltransferase from Salmonella typhimurium in its free state, complexed with MgATP, or complexed with hydroxycobalamin and MgATP. Biochemistry 40:361–374. [PubMed][CrossRef]
131. Lexa D, Saveant JM, Zickler J. 1977. Electrochemistry of vitamin B12. 2 Redox and acid-base equilibria in the B12a/B12r system. J Am Chem Soc 99:2786–2790. [PubMed][CrossRef]
132. Iuchi S, Lin EC. 1993. Adaptation of Escherichia coli to redox environments by gene expression. Mol Microbiol 9:9–15. [PubMed][CrossRef]
133. Jahn D, Michelsen U, Soll D. 1991. Two glutamyl-tRNA reductase activities in Escherichia coli. J Biol Chem 266:2542–2548.[PubMed]
134. Kaneko Y, Danev R, Nagayama K, Nakamoto H. 2006. Intact carboxysomes in a cyanobacterial cell visualized by Hilbert differential contrast transmission electron microscopy. J Bacteriol 188:805–808. [PubMed][CrossRef]
135. Tsang AW, Escalante-Semerena JC. 1998. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J Biol Chem 273:31788–31794. [PubMed][CrossRef]
136. Wang J, Stolowich NJ, Santander PJ, Park JH, Scott AI. 1996. Biosynthesis of vitamin B12: concerning the identity of the two-carbon fragment eliminated during anaerobic formation of cobyrinic acid. Proc Natl Acad Sci USA 93:14320–14322. [PubMed][CrossRef]
137. Wang L, Elliott M, Elliott T. 1999. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol 181:1211–1219.[PubMed]
138. Wang L, Wilson S, Elliott T. 1999. A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J Bacteriol 181:6033–6041.[PubMed]
139. Mori K, Bando R, Hieda N, Toraya T. 2004. Identification of a reactivating factor for adenosylcobalamin-dependent ethanolamine ammonia lyase. J Bacteriol 186:6845–6854. [PubMed][CrossRef]
140. Sauve AA, Schramm VL. 2004. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates. Curr Med Chem 11:807–826. [PubMed][CrossRef]
141. Dworkin J, Jovanovic G, Model P. 2000. The PspA protein of Escherichia coli is a negative regulator of σ54-dependent transcription. J Bacteriol 182:311–319. [PubMed][CrossRef]
142. Huennekens FM, Vitols KS, Fujii K, Jacobsen DW. 1982. Biosynthesis of cobalamin coenzymes, p 145–168. In Dolphin D (ed), B12, vol. 1. John Wiley & Sons, Inc., New York, NY.
143. Ilag LL, Jahn D. 1992. Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry 31:7143–7151. [PubMed][CrossRef]
144. Havemann GD, Sampson EM, Bobik TA. 2002. PduA is a shell protein of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol 184:1253–1261. [PubMed][CrossRef]
145. Ludwig ML, Matthews RG. 1997. Structure-based perspectives on B12-dependent enzymes. Annu Rev Biochem 66:269–313. [PubMed][CrossRef]
146. Elliott T, Avissar YJ, Rhie GE, Beale SI. 1990. Cloning and sequence of the Salmonella typhimurium hemL gene and identification of the missing enzyme in hemL mutants as glutamate-1-semialdehyde aminotransferase. J Bacteriol 172:7071–7084.[PubMed]
147. Li JM, Brathwaite O, Cosloy SD, Russell CS. 1989. 5-Aminolevulinic acid synthesis in Escherichia coli. J Bacteriol 171:2547–2552.[PubMed]
148. Mercante J, Suzuki K, Cheng X, Babitzke P, Romeo T. 2006. Comprehensive alanine-scanning mutagenesis of Escherichia coli CsrA defines two subdomains of critical functional importance. J Biol Chem 281:31832–31842. [PubMed][CrossRef]
149. Spencer JB, Stolowich NJ, Roessner CA, Scott AI. 1993. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett 335:57–60. [PubMed][CrossRef]
150. Spencer P, Jordan PM. 1994. Investigation of the nature of the two metal-binding sites in 5-aminolaevulinic acid dehydratase from Escherichia coli. Biochem J 300:373–381.[PubMed]
151. Erskine PT, Coates L, Newbold R, Brindley AA, Stauffer F, Wood SP, Warren MJ, Cooper JB, Shoolingin-Jordan PM, Neier R. 2001. The X-ray structure of yeast 5-aminolaevulinic acid dehydratase complexed with two diacid inhibitors. FEBS Lett 503:196–200. [PubMed][CrossRef]
152. Johnson MG, Escalante-Semerena JC. 1992. Identification of 5,6-dimethylbenzimidazole as the Co α ligand of the cobamide synthesized by Salmonella typhimurium. Nutritional characterization of mutants defective in biosynthesis of the imidazole ring. J Biol Chem 267:13302–13305.[PubMed]
153. Elliott T, Roth JR. 1989. Heme-deficient mutants of Salmonella typhimurium: two genes required for ALA synthesis. Mol Gen Genet 216:303–314. [PubMed][CrossRef]
154. Haller T, Buckel T, Rétey J, Gerlt JA. 2000. Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 39:4622–4629. [PubMed][CrossRef]
155. Jordan PM, Seehra JS. 1979. The biosynthesis of uroporphyrinogen III: order of assembly of the four porphobilinogen molecules in the formation of the tetrapyrrole ring. FEBS Lett 104:364–366. [PubMed][CrossRef]
156. Warren MJ, Bolt EL, Roessner CA, Scott AI, Spencer JB, Woodcock SC. 1994. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J 302:837–844.[PubMed]
157. Jordan PM, Seehra JS. 1980. 13C NMR as a probe for the study of enzyme-catalysed reactions: mechanism of action of 5-aminolevulinic acid dehydratase. FEBS Lett 114:283–286. [PubMed][CrossRef]
158. Liu Y, Leal NA, Sampson EM, Johnson CL, Havemann GD, Bobik TA. 2007. PduL is an evolutionarily distinct phosphotransacylase involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. J Bacteriol 189:1589–1596. [PubMed][CrossRef]
159. Battersby AR. 2000. Tetrapyrroles: the pigments of life. Nat Prod Rep 17:507–526. [PubMed][CrossRef]
160. Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC. 2003. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163:545–555.[PubMed]
161. Marques HM. 1999. Modeling the structure of cobalt corrins by molecular dynamics methods, p 289–313. In Banerjee R (ed), Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York, NY.
162. Blanche F, Debussche L, Famechon A, Thibaut D, Cameron B, Crouzet J. 1991. A bifunctional protein from Pseudomonas denitrificans carries cobinamide kinase and cobinamide phosphate guanylyltransferase activities. J Bacteriol 173:6052–6057.[PubMed]
163. Warren MJ, Roessner CA, Santander PJ, Scott AI. 1990. The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J 265:725–729.[PubMed]
164. Croft MT, Warren MJ, Smith AG. 2006. Algae need their vitamins. Eukaryot Cell 5:1175–1183. [PubMed][CrossRef]
165. Rife C, Schwarzenbacher R, McMullan D, Abdubek P, Ambing E, Axelrod H, Biorac T, Canaves JM, Chiu HJ, Deacon AM, DiDonato M, Elsliger MA, Godzik A, Grittini C, Grzechnik SK, Hale J, Hampton E, Han GW, Haugen J, Hornsby M, Jaroszewski L, Klock HE, Koesema E, Kreusch A, Kuhn P, Lesley SA, Miller MD, Moy K, Nigoghossian E, Paulsen J, Quijano K, Reyes R, Sims E, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Wilson IA. 2005. Crystal structure of the global regulatory protein CsrA from Pseudomonas putida at 2.05 Å resolution reveals a new fold. Proteins 61:449–453. [PubMed][CrossRef]
166. Jeter RM, Olivera BM, Roth JR. 1984. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol 159:206–213.[PubMed]
167. So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC. 2004. A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 186:623–630. [PubMed][CrossRef]
168. Palacios S, Starai VJ, Escalante-Semerena JC. 2003. Propionyl coenzyme A is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-propanediol. J Bacteriol 185:2802–2810. [PubMed][CrossRef]
169. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. 2002. The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 19:390–412. [PubMed][CrossRef]
170. Warren MJ. 2006. Finding the final pieces of the vitamin B12 biosynthetic jigsaw. Proc Natl Acad Sci USA 103:4799–4800. [PubMed][CrossRef]
171. Raux E, Leech HK, Beck R, Schubert HL, Santander PJ, Roessner CA, Scott AI, Martens JH, Jahn D, Thermes C, Rambach A, Warren MJ. 2003. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem J 370:505–516. [PubMed][CrossRef]
172. Raux E, Lanois A, Levillayer F, Warren MJ, Brody E, Rambach A, Thermes C. 1996. Salmonella typhimurium cobalamin (vitamin B12) biosynthetic genes: functional studies in S. typhimurium and Escherichia coli. J Bacteriol 178:753–767.[PubMed]
173. Stojiljkovic I, Baumler AJ, Heffron F. 1995. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177:1357–1366.[PubMed]
174. Verkamp E, Jahn M, Jahn D, Kumar AM, Soll D. 1992. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. J Biol Chem 267:8275–8280.[PubMed]
175. Schubert HL, Hill CP. 2006. Structure of ATP-bound human ATP:cobalamin adenosyltransferase. Biochemistry 45:15188–15196. [PubMed][CrossRef]
176. Faust LR, Connor JA, Roof DM, Hoch JA, Babior BM. 1990. Cloning, sequencing, and expression of the genes encoding the adenosylcobalamin-dependent ethanolamine ammonia-lyase of Salmonella typhimurium. J Biol Chem 265:12462–12466.[PubMed]
177. Bouquiere JP, Finney JL, Lehmann MS, Lindley PF, Savage HFJ. 1993. High-resolution neutron study of vitamin B12 coenzyme at 15K: structure analysis and comparison with the structure at 279K. Acta Crystallogr B49:79–89.
178. Leal NA, Park SD, Kima PE, Bobik TA. 2003. Identification of the human and bovine ATP:cob(I)alamin adenosyltransferase cDNAs based on complementation of a bacterial mutant. J Biol Chem 278:9227–9234. [PubMed][CrossRef]
179. Darwin AJ. 2005. The phage-shock-protein response. Mol Microbiol 57:621–628. [PubMed][CrossRef]
180. Warren MJ, Jordan PM. 1988. Investigation into the nature of substrate binding to the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase. Biochemistry 27:9020–9030. [PubMed][CrossRef]
181. Schmid MF, Paredes AM, Khant HA, Soyer F, Aldrich HC, Chiu W, Shively JM. 2006. Structure of Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography. J Mol Biol 364:526–535. [PubMed][CrossRef]
182. Spencer P, Jordan PM. 1993. Purification and characterization of 5-aminolaevulinic acid dehydratase from Escherichia coli and a study of the reactive thiols at the metal-binding domain. Biochem J 290:279–287.[PubMed]
183. Vitols E, Walker GA, Huennekens FM. 1966. Enzymatic conversion of vitamin B-12s to a cobamide coenzyme, alpha-(5,6-dimethylbenzimidazolyl)deoxyadenosylcobamide (adenosyl-B-12). J Biol Chem 241:1455–1461.[PubMed]
184. Ford JE, Hutner SH. 1955. Role of vitamin B12 in the metabolism of microorganisms. Vitam Horm 1955:101–136. [CrossRef]
185. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 278:41148–41159. [PubMed][CrossRef]
186. Sanishvili R, Pennycooke M, Gu J, Xu X, Joachimiak A, Edwards AM, Christendat D. 2004. Crystal structure of the hypothetical protein TA1238 from Thermoplasma acidophilum: a new type of helical super-bundle. J Struct Funct Genomics 5:231–240. [PubMed][CrossRef]
187. Santander PJ, Kajiwara Y, Williams HJ, Scott AI. 2006. Structural characterization of novel cobalt corrinoids synthesized by enzymes of the vitamin B12 anaerobic pathway. Bioorg Med Chem 14:724–731. [PubMed][CrossRef]
188. Jordan PM, Warren MJ. 1987. Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase FEBS Lett 225:87–92. [PubMed][CrossRef]
189. Schubert HL, Raux E, Wilson KS, Warren MJ. 1999. Common chelatase design in the branched tetrapyrrole pathways of heme and anaerobic cobalamin synthesis. Biochemistry 38:10660–10669. [PubMed][CrossRef]
190. Wada K, Harada J, Yaeda Y, Tamiaki H, Oh-Oka H, Fukuyama K. 2007. Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B12 biosynthesis, and CbiL in complex with S-adenosylhomocysteine: implications for the reaction mechanism. FEBS J 274:563–573. [PubMed][CrossRef]
191. Raux E, Schubert HL, Roper JM, Wilson KS, Warren MJ. 1999. Vitamin B-12: insights into biosynthesis’s mount improbable. Bioorg Chem 27:100–118. [CrossRef]
192. Roessner CA, Williams HJ, Scott AI. 2005. Genetically engineered production of 1-desmethylcobyrinic acid, 1-desmethylcobyrinic acid a,c-diamide, and cobyrinic acid a,c-diamide in E. coli implies a role for CbiD in C-1 methylation in the anaerobic pathway to cobalamin. J Biol Chem 280:16748–16753. [PubMed][CrossRef]
193. Blanche F, Thibaut D, Debussche L, Hertle R, Zipfel F, Muller G. 1993. Parallels and decisive differences in vitamin B12 biosynthesis. Angew Chem (International ed.) 32:1651–1653. [CrossRef]
194. Blanche F, Debussche L, Thibaut D, Crouzet J, Cameron B. 1989. Purification and characterization of S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase from Pseudomonas denitrificans. J Bacteriol 171:4222–4231.[PubMed]
195. Keck B, Renz P. 2000. Salmonella typhimurium forms adenylcobamide and 2-methyladenylcobamide, but no detectable cobalamin during strictly anaerobic growth. Arch Microbiol 173:76–77. [PubMed][CrossRef]
196. Woodward RB. 1979. Synthetic vitamin B12, p 37–87. In Zagalak B and Friedrich W (ed), Vitamin B12. de Gruyter, Berlin, Germany.
197. Shiang JJ, Cole AG, Sension RJ, Hang K, Weng Y, Trommel JS, Marzilli LG, Lian T. 2006. Ultrafast excited-state dynamics in vitamin B12 and related cob(III)alamins. J Am Chem Soc 128:801–808. [PubMed][CrossRef]
198. Fraústo da Silva JJR, Williams RJP. 2001. The Biological Chemistry of the Elements, 2nd ed Oxford University Press, Oxford, United Kingdom.
199. Warren MJ, Stolowich NJ, Santander PJ, Roessner CA, Sowa BA, Scott AI. 1990. Enzymatic synthesis of dihydrosirohydrochlorin (precorrin-2) and of a novel pyrrocorphin by uroporphyrinogen III methylase. FEBS Lett 261:76–80. [PubMed][CrossRef]
200. Raux E, Thermes C, Heathcote P, Rambach A, Warren MJ. 1997. A role for Salmonella typhimurium cbiK in cobalamin (vitamin B12) and siroheme biosynthesis. J Bacteriol 179:3202–3212.[PubMed]
201. Chen P, Andersson DI, Roth JR. 1994. The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol 176:5474–5482.[PubMed]
202. Cheong CG, Escalante-Semerena JC, Rayment I. 2001. Structural investigation of the biosynthesis of alternative lower ligands for cobamides by nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase from Salmonella enterica. J Biol Chem 276:37612–37620. [PubMed][CrossRef]
203. Horswill AR, Escalante-Semerena JC. 1999. Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 181:5615–5623.[PubMed]
204. Vevodova J, Graham RM, Raux E, Schubert HL, Roper DI, Brindley AA, Ian Scott A, Roessner CA, Stamford NP, Elizabeth Stroupe M, Getzoff ED, Warren MJ, Wilson KS. 2004. Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. J Mol Biol 344:419–433. [PubMed][CrossRef]
205. Fonseca MV, Escalante-Semerena JC. 2001. An in vitro reducing system for the enzymic conversion of cobalamin to adenosylcobalamin. J Biol Chem 276:32101–32108. [PubMed][CrossRef]
206. Textor S, Wendisch VF, De Graaf AA, Muller U, Linder MI, Linder D, Buckel W. 1997. Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch Microbiol 168:428–436. [PubMed][CrossRef]
207. Lexa D, Saveant J-M. 1976. Electrochemistry of vitamin B12. 1. Role of the base-on/base-off reaction in the oxidoreduction mechanism of the B12r-B12s system. J Am Chem Soc 98:2652–2658. [PubMed][CrossRef]
208. Luer C, Schauer S, Mobius K, Schulze J, Schubert WD, Heinz DW, Jahn D, Moser J. 2005. Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. J Biol Chem 280:18568–18572. [PubMed][CrossRef]
209. Suh S, Escalante-Semerena JC. 1995. Purification and initial characterization of the ATP:corrinoid adenosyltransferase encoded by the cobA gene of Salmonella typhimurium. J Bacteriol 177:921–925.[PubMed]
210. Fazzio TG, Roth JR. 1996. Evidence that the CysG protein catalyzes the first reaction specific to B12 synthesis in Salmonella typhimurium, insertion of cobalt. J Bacteriol 178:6952–6959.[PubMed]
211. Battersby AR, Fookes CJ, Matcham GW, McDonald E. 1980. Biosynthesis of the pigments of life: formation of the macrocycle. Nature 285:17–21. [PubMed][CrossRef]
212. Brinsmade SR, Paldon T, Escalante-Semerena JC. 2005. Minimal functions and physiological conditions required for growth of Salmonella enterica on ethanolamine in the absence of the metabolosome. J Bacteriol 187:8039–8046. [PubMed][CrossRef]
213. Leech HK, Raux E, McLean KJ, Munro AW, Robinson NJ, Borrelly GP, Malten M, Jahn D, Rigby SE, Heathcote P, Warren MJ. 2003. Characterization of the cobaltochelatase CbiXL: evidence for a 4Fe-4S center housed within an MXCXXC motif. J Biol Chem 278:41900–4197. [PubMed][CrossRef]
214. Santander PJ, Roessner CA, Stolowich NJ, Holderman MT, Scott AI. 1997. How corrinoids are synthesized without oxygen: nature’s first pathway to vitamin B12. Chem Biol 4:659–666. [PubMed][CrossRef]
215. Smith BC, Denu JM. 2006. Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine. Biochemistry 45:272–282. [PubMed][CrossRef]
216. Leipe DD, Wolf YI, Koonin EV, Aravind L. 2002. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72. [PubMed][CrossRef]
217. Stich TA, Buan NR, Brunold TC. 2004. Spectroscopic and computational studies of Co2+ corrinoids: spectral and electronic properties of the biologically relevant base-on and base-off forms of Co2+ cobalamin. J Am Chem Soc 126:9735–9749. [PubMed][CrossRef]
218. Brushaber KR, O’Toole GA, Escalante-Semerena JC. 1998. CobD, a novel enzyme with L-threonine-O-3-phosphate decarboxylase activity, is responsible for the synthesis of (R)-1-amino-2-propanol O-2-phosphate, a proposed new intermediate in cobalamin biosynthesis in Salmonella typhimurium LT2. J Biol Chem 273:2684–2691. [PubMed][CrossRef]
219. Jeter RM, Roth JR. 1987. Cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 169:3189–3198.[PubMed]
220. Johnson CL, Buszko ML, Bobik TA. 2004. Purification and initial characterization of the Salmonella enterica PduO ATP:cob(I)alamin adenosyltransferase. J Bacteriol 186:7881–7887. [PubMed][CrossRef]
221. Sampson EM, Johnson CL, Bobik TA. 2005. Biochemical evidence that the pduS gene encodes a bifunctional cobalamin reductase. Microbiology 151:1169–1177. [PubMed][CrossRef]
222. Leal NA, Havemann GD, Bobik TA. 2003. PduP is a coenzyme-A-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. Arch Microbiol 180:353–361. [PubMed][CrossRef]
223. Schubert HL, Blumenthal RM, Cheng X. 2003. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329–335. [PubMed][CrossRef]
224. Stich TA, Buan NR, Escalante-Semerena JC, Brunold TC. 2005. Spectroscopic and computational studies of the ATP:corrinoid adenosyltransferase (CobA) from Salmonella enterica: insights into the mechanism of adenosylcobalamin biosynthesis. J Am Chem Soc 127:8710–8719. [PubMed][CrossRef]
225. Buan NR, Rehfeld K, Escalante-Semerena JC. 2006. Studies of the CobA-type ATP:co(I)rrinoid adenosyltransferase enzyme of Methanosarcina mazei strain Gö1. J Bacteriol 188:3543–3550. [PubMed][CrossRef]
226. Scott AI, Roessner CA. 2002. Biosynthesis of cobalamin (vitamin B12). Biochem Soc Trans 30:613–620. [PubMed][CrossRef]
227. Buan NR, Escalante-Semerena JC. 2005. Computer-assisted docking of flavodoxin with the ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme reveals residues critical for protein-protein interactions but not for catalysis. J Biol Chem 280:40948–40956. [PubMed][CrossRef]
228. Johnson CL, Pechonick E, Park SD, Havemann GD, Leal NA, Bobik TA. 2001. Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J Bacteriol 183:1577–1584. [PubMed][CrossRef]
229. Wang LY, Brown L, Elliott M, Elliott T. 1997. Regulation of heme biosynthesis in Salmonella typhimurium: activity of glutamyl-tRNA reductase (HemA) is greatly elevated during heme limitation by a mechanism which increases abundance of the protein. J Bacteriol 179:2907–2914.[PubMed]
230. Chen P, Ailion M, Bobik T, Stormo G, Roth J. 1995. Five promoters integrate control of the cob/pdu regulon in Salmonella typhimurium. J Bacteriol 177:5401–5410.[PubMed]
231. Ford JE, Holdsworth ES, Kon SK. 1955. The biosynthesis of vitamin B12-like compounds. Biochem J 59:86–93.[PubMed]
232. O’Toole GA, Escalante-Semerena JC. 1995. Purification and characterization of the bifunctional CobU enzyme of Salmonella typhimurium LT2. Evidence for a CobU-GMP intermediate. J Biol Chem 270:23560–23569. [PubMed][CrossRef]
233. Rondon MR, Kazmierczak R, Escalante-Semerena JC. 1995. Glutathione is required for maximal transcription of the cobalamin biosynthetic and 1,2-propanediol utilization (cob/pdu) regulon and for the catabolism of ethanolamine, 1,2-propanediol, and propionate in Salmonella typhimurium LT2. J Bacteriol 177:5434–5439.[PubMed]
234. Blanche F, Cameron B, Crouzet J, Debussche L, Thibaut D, Vuilhorgne M, Leeper FJ, Battersby AR. 1995. Vitamin B12: how the problem of its biosynthesis was solved. Angew Chem (International ed.) 34:383–411. [CrossRef]
235. O’Toole GA, Escalante-Semerena JC. 1993. cobU-dependent assimilation of nonadenosylated cobinamide in cobA mutants of Salmonella typhimurium. J Bacteriol 175:6328–6336.[PubMed]
236. O’Toole GA. 1994. Biochemistry and genetics of cobalamin nucleotide loop assembly in Salmonella typhimurium. Ph.D. dissertation. University of Wisconsin, Madison, WI.
237. Thomas MG, Thompson TB, Rayment I, Escalante-Semerena JC. 2000. Analysis of the adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) enzyme of Salmonella typhimurium LT2. Identification of residue H46 as the site of guanylylation. J Biol Chem 275:27376–27386.
238. Orus MI, Rodriguez ML, Martinez F, Marco E. 1995. Biogenesis and ultrastructure of carboxysomes from wild type and mutants of Synechococcus sp. strain PCC 7942. Plant Physiol 107:1159–1166.[PubMed]
239. Woodson JD, Escalante-Semerena JC. 2006. The cbiS gene of the archaeon Methanopyrus kandleri AV19 encodes a bifunctional enzyme with adenosylcobinamide amidohydrolase and α-ribazole-phosphate phosphatase activities. J Bacteriol 188:4227–4235. [PubMed][CrossRef]
240. Trzebiatowski JR, Escalante-Semerena JC. 1997. Purification and characterization of CobT, the nicotinate-mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase enzyme from Salmonella typhimurium LT2. J Biol Chem 272:17662–17667. [PubMed][CrossRef]
241. Reference deleted.
242. Friedmann HC. 1968. Vitamin B12 biosynthesis. Evidence for a new precursor vitamin B12 5′-phosphate. J Biol Chem 243:2065–2075.[PubMed]
243. Buan NR, Suh SJ, Escalante-Semerena JC. 2004. The eutT gene of Salmonella enterica encodes an oxygen-labile, metal-containing ATP:corrinoid adenosyltransferase enzyme. J Bacteriol 186:5708–5714. [PubMed][CrossRef]
244. Toraya T, Ushio K, Fukui S, Hogenkamp PC. 1977. Studies on the mechanism of the adenosylcobalamin-dependent diol dehydrase reaction by the use of analogs of the coenzyme. J Biol Chem 252:963–970.[PubMed]
245. Cheong CG, Bauer CB, Brushaber KR, Escalante-Semerena JC, Rayment I. 2002. Three-dimensional structure of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica. Biochemistry 41:4798–4808. [PubMed][CrossRef]
246. Cheong CG, Escalante-Semerena JC, Rayment I. 2002. Capture of a labile substrate by expulsion of water molecules from the active site of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase (CobT) from Salmonella enterica. J Biol Chem 277:41120–41127. [PubMed][CrossRef]
247. Stroupe ME, Leech HK, Daniels DS, Warren MJ, Getzoff ED. 2003. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat Struct Biol 10:1064–1073. [PubMed][CrossRef]
248. Stupperich E, Eisinger HJ, Kräutler B. 1988. Diversity of corrinoids in acetogenic bacteria. p-Cresolylcobamide from Sporomusa ovata, 5-methoxy-6-methylbenzimidazolylcobamide from Clostridium formicoaceticum and vitamin B12 from Acetobacterium woodii. Eur J Biochem 172:459–464. [PubMed][CrossRef]
249. Ilag LL, Jahn D, Eggertsson G, Soll D. 1991. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J Bacteriol 173:3408–3413.[PubMed]
250. Stabler SP. 1999. B12 and nutrition. In Banerjee R (ed), Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York, NY.
251. Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392. [PubMed][CrossRef]
252. Saraste M, Sibbald PR, Wittinghofer A. 1990. The P-loop: a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434. [PubMed][CrossRef]
253. Smith AE, Matthews RG. 2000. Protonation state of methyltetrahydrofolate in a binary complex with cobalamin-dependent methionine synthase. Biochemistry 39:13880–13890. [PubMed][CrossRef]
254. Luschinsky CL, Drummond JT, Matthews RG, Ludwig ML. 1992. Crystallization and preliminary X-ray diffraction studies of the cobalamin-binding domain of methionine synthase from Escherichia coli. J Mol Biol 225:557–560. [PubMed][CrossRef]
255. Yoshizawa Y, Toyoda K, Arai H, Ishii M, Igarashi Y. 2004. CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110. J Bacteriol 186:5685–5691. [PubMed][CrossRef]
256. Drummond JT, Matthews RG. 1993. Cobalamin-dependent and cobalamin-independent methionine synthases in Escherichia coli: two solutions to the same chemical problem. Adv Exp Med Biol 338:687–692.[PubMed]
257. Mitchell LW, Jaffe EK. 1993. Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch Biochem Biophys 300:169–177. [PubMed][CrossRef]
258. Crouzet J, Cauchois L, Blanche F, Debussche L, Thibaut D, Rouyez MC, Rigault S, Mayaux JF, Cameron B. 1990. Nucleotide sequence of a Pseudomonas denitrificans 5.4-kilobase DNA fragment containing five cob genes and identification of structural genes encoding S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase and cobyrinic acid a,c-diamide synthase. J Bacteriol 172:5968–5979.[PubMed]
259. Friedmann HC. 1965. Partial purification and properties of a single displacement trans-N-glycosidase. J Biol Chem 240:413–418.[PubMed]
260. Blanche F, Thibaut D, Famechon A, Debussche L, Cameron B, Crouzet J. 1992. Precorrin-6x reductase from Pseudomonas denitrificans: purification and characterization of the enzyme and identification of the structural gene. J Bacteriol 174:1036–1042.[PubMed]
261. Erskine PT, Norton E, Cooper JB, Lambert R, Coker A, Lewis G, Spencer P, Sarwar M, Wood SP, Warren MJ, Shoolingin-Jordan PM. 1999. X-ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 Å resolution. Biochemistry 38:4266–4276. [PubMed][CrossRef]
262. Chen P, Ailion M, Weyand N, Roth J. 1995. The end of the cob operon: evidence that the last gene (cobT) catalyzes synthesis of the lower ligand of vitamin B12, dimethylbenzimidazole. J Bacteriol 177:1461–1419.[PubMed]
263. Rondon MR, Escalante-Semerena JC. 1998. High levels of transcription factor RpoS (sigma S) in mviA mutants negatively affect 1,2-propanediol-dependent transcription of the cob/pdu regulon of Salmonella typhimurium LT2. FEMS Microbiol Lett 169:147–153. [PubMed][CrossRef]
264. Penrod JT, Mace CC, Roth JR. 2004. A pH-sensitive function and phenotype: evidence that EutH facilitates diffusion of uncharged ethanolamine in Salmonella enterica. J Bacteriol 186:6885–6890. [PubMed][CrossRef]
265. Thompson TB, Thomas MG, Escalante-Semerena JC, Rayment I. 1998. Three-dimensional structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase from Salmonella typhimurium determined to 2.3 Å resolution. Biochemistry 37:7686–7695. [PubMed][CrossRef]
266. Rondon MR, Escalante-Semerena JC. 1996. In vitro analysis of the interactions between the PocR regulatory protein and the promoter region of the cobalamin biosynthetic (cob) operon of Salmonella typhimurium LT2. J Bacteriol 178:2196–2203.[PubMed]
267. Chang GW, Chang JT. 1975. Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella. Nature 254:150–151. [PubMed][CrossRef]
268. Escalante-Semerena JC. 1999. Regulation of adenosylcobalamin biosynthesis in Salmonella typhimurium, p 577–594. In Banerjee R (ed), Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York, NY.
269. Irion E, Ljungdahl LG. 1965. Isolation of factor III coenzyme and cobyric acid coenzyme plus other B12 factors from Clostridium thermoaceticum. Biochemistry 4:2780–2790. [PubMed][CrossRef]
270. Maggio-Hall LA, Escalante-Semerena JC. 1999. In vitro synthesis of the nucleotide loop of cobalamin by Salmonella typhimurium enzymes. Proc Natl Acad Sci USA 96:11798–11803. [PubMed][CrossRef]
271. Ailion M, Bobik TA, Roth JR. 1993. Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of Salmonella typhimurium. J Bacteriol 175:7200–7208.[PubMed]
272. Andersson D I. 1992. Involvement of the Arc system in redox regulation of the Cob operon in Salmonella typhimurium. Mol. Microbiol. 6:1491–1494. [CrossRef]
273. Renz P. 1999. Biosynthesis of the 5,6-dimethylbenzimidazole moiety of cobalamin and of other bases found in natural corrinoids, p 557–575. In Banerjee R (ed), Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York, NY.
274. Richter-Dahlfors AA, Andersson DI. 1991. Analysis of an anaerobically induced promoter for the cobalamin biosynthetic genes in Salmonella typhimurium. Mol Microbiol 5:1337–1345. [PubMed][CrossRef]
275. Raux E. 1998. Ph.D. thesis. University of London, London, United Kingdom.
276. Ravnum S, Andersson DI. 2001. An adenosyl-cobalamin (coenzyme-B12)-repressed translational enhancer in the cob mRNA of Salmonella typhimurium. Mol Microbiol 39:1585–1594. [PubMed][CrossRef]
277. Lundrigan MD, Kadner RJ. 1989. Altered cobalamin metabolism in Escherichia coli btuR mutants affects btuB gene regulation. J Bacteriol 171:154–161.[PubMed]
278. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR. 2002. Genetic control by a metabolite binding mRNA. Chem Biol 9:1043–1049. [PubMed][CrossRef]
279. Nahvi A, Barrick JE, Breaker RR. 2004. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–150. [PubMed][CrossRef]
280. Moser J, Schubert WD, Beier V, Bringemeier I, Jahn D, Heinz DW. 2001. V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 20:6583–6590. [PubMed][CrossRef]
281. Rondon MR, Horswill AR, Escalante-Semerena JC. 1995. DNA polymerase I function is required for the utilization of ethanolamine, 1,2-propanediol, and propionate by Salmonella typhimurium LT2. J Bacteriol 177:7119–7124.[PubMed]
282. Ronzio RA, Barker HA. 1967. Enzymic synthesis of guanosine diphosphate cobinamide by extracts of propionic acid bacteria. Biochemistry 6:2344–2354. [PubMed][CrossRef]
283. Sheppard DE, Penrod JT, Bobik T, Kofoid E, Roth JR. 2004. Evidence that a B12-adenosyl transferase is encoded within the ethanolamine operon of Salmonella enterica. J Bacteriol 186:7635–7644. [PubMed][CrossRef]
284. Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM. 1993. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175:4744–4755.[PubMed]
285. Romeo T. 1996. Post-transcriptional regulation of bacterial carbohydrate metabolism: evidence that the gene product CsrA is a global mRNA decay factor. Res Microbiol 147:505–512. [PubMed][CrossRef]
286. Kräutler B, Moll J, Thauer RK. 1987. The corrinoid from Methanobacterium thermoautotrophicum (Marburg strain). Spectroscopic structure analysis and identification as Co beta-cyano-5′-hydroxybenzimidazolyl-cobamide (factor III). Eur J Biochem 162:275–278. [PubMed][CrossRef]
287. Mazumder TK, Nishio N, Hayashi M, Nagai S. 1986. Production of corrinoids by Methanosarcina barkeri growing on methanol. Biotechnol Lett 8:843–848. [CrossRef]
288. Roessner CA, Williams HJ, Scott AI. 2005. Genetically engineered production of 1-desmethylcobyrinic acid, 1-desmethylcobyrinic acid a,c-diamide, and cobyrinic acid a,c-diamide in Escherichia coli implies a role for CbiD in C-1 methylation in the anaerobic pathway to cobalamin. J Biol Chem 280:16748–16753. [PubMed][CrossRef]
289. Romeo T. 1998. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330. [PubMed][CrossRef]
290. Richter-Dahlfors AA, Andersson DI. 1992. Cobalamin (vitamin B12) repression of the Cob operon in Salmonella typhimurium requires sequences within the leader and the first translated open reading frame. Mol Microbiol 6:743–749. [PubMed][CrossRef]
291. Kulkarni PR, Cui X, Williams JW, Stevens AM, Kulkarni RV. 2006. Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri. Nucleic Acids Res 34:3361–3369. [PubMed][CrossRef]
292. Kajiwara Y, Santander PJ, Roessner CA, Perez LM, Scott AI. 2006. Genetically engineered synthesis and structural characterization of cobalt-precorrin 5A and -5B, two new intermediates on the anaerobic pathway to vitamin B12: definition of the roles of the CbiF and CbiG enzymes. J Am Chem Soc 128:9971–9978. [PubMed][CrossRef]
293. Nou X, Kadner RJ. 2000. Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci USA 97:7190–7195. [PubMed][CrossRef]
294. Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert WD, Nakayashiki T, Murai M, Wall K, Thomann HU, Heinz DW, Inokuchi H, Soll D, Jahn D. 2002. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J Biol Chem 277:48657–48663. [PubMed][CrossRef]
295. Shipman LW, Li D, Roessner CA, Scott AI, Sacchettini JC. 2001. Crystal structure of precorrin-8x methyl mutase. Structure 9:587–596. [PubMed][CrossRef]
296. Smith CA, Rayment I. 1996. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys J 70:1590–1602. [PubMed][CrossRef]
297. Xue Y, Wei Z, Li X, Gong W. 2006. The crystal structure of putative precorrin isomerase CbiC in cobalamin biosynthesis. J Struct Biol 153:307–311. [PubMed][CrossRef]
298. Brinsmade SR, Escalante-Semerena JC. 2004. The eutD gene of Salmonella enterica encodes a protein with phosphotransacetylase enzyme activity. J Bacteriol 186:1890–1892. [PubMed][CrossRef]
299. Brindley AA, Raux E, Leech HK, Schubert HL, Warren MJ. 2003. A story of chelatase evolution: identification and characterization of a small 13–15-kDa “ancestral” cobaltochelatase (CbiXS) in the archaea. J Biol Chem 278:22388–22395. [PubMed][CrossRef]
300. Model P, Jovanovic G, Dworkin J. 1997. The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol 24:255–261. [PubMed][CrossRef]
301. Pejchal R, Ludwig ML. 2005. Cobalamin-independent methionine synthase (MetE): a face-to-face double barrel that evolved by gene duplication. PLoS Biol 3:e31. [CrossRef]
302. Rondon MR, Escalante-Semerena JC. 1992. The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium. J Bacteriol 174:2267–2272.[PubMed]
303. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474. [PubMed][CrossRef]
304. Friedmann HC, Thauer RK (ed). 1992. Macrocyclic Tetrapyrrole Biosynthesis in Bacteria, vol. 3. Academic Press, Inc., New York, NY.
305. Shively JM, Bock E, Westphal K, Cannon GC. 1977. Icosahedral inclusions (carboxysomes) of Nitrobacter agilis. J Bacteriol 132:673–635.[PubMed]
306. Havemann GD, Bobik TA. 2003. Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol 185:5086–5095. [PubMed][CrossRef]
307. Keller JP, Smith PM, Benach J, Christendat D, deTitta GT, Hunt JF. 2002. The crystal structure of MT0146/CbiT suggests that the putative precorrin-8w decarboxylase is a methyltransferase. Structure 10:1475–1487. [PubMed][CrossRef]
308. Hart GJ, Miller AD, Leeper FJ, Battersby AR. 1987. Biosynthesis of the natural porphyrins: proof that hydroxymethylbilane synthase (prophobilinogen deaminase) uses a novel binding group in its catalytic action. J Chem Soc Chem Commun 23:1762–1764. [CrossRef]
309. Lawrence JG, Roth JR. 1995. The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli. J Bacteriol 177:6371–6380.[PubMed]
310. Roy I, Leadlay PF. 1992. Physical map location of the new Escherichia coli gene sbm. J Bacteriol 174:5763–5764.[PubMed]
311. Toraya T. 1999. Diol dehydratase and glycerol dehydratase, p 783–809. In Banerjee R (ed), Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York, NY.
312. Li JM, Russell CS, Cosloy SD. 1989. The structure of the Escherichia coli hemB gene. Gene 75:177–184. [PubMed][CrossRef]
313. Fresquet V, Williams L, Raushel FM. 2004. Mechanism of cobyrinic acid a,c-diamide synthetase from Salmonella typhimurium LT2. Biochemistry 43:10619–10627. [PubMed][CrossRef]
314. O’Toole GA, Trzebiatowski JR, Escalante-Semerena JC. 1994. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J Biol Chem 269:26503–26511.[PubMed]
315. Zhou ZS, Peariso K, Penner-Hahn JE, Matthews RG. 1999. Identification of the zinc ligands in cobalamin-independent methionine synthase (MetE) from Escherichia coli. Biochemistry 38:15915–15926. [PubMed][CrossRef]
ecosalplus.3.6.3.8.citations
ecosalplus/3/1
content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.8
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.3.8
2008-08-05
2017-11-19

Abstract:

This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B) biosynthesis. It also discusses the role of coenzyme B in the physiology of serovar Typhimurium LT2 and . John Roth's seminal contributions to the field of coenzyme B biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In and serovar Typhimurium, uro’gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike , serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Roman numerals identify different moieties of the coenzyme and the gene products involved in their synthesis and attachment to the corrin ring. The pyrrolic rings of the corrin ring are identified by uppercase letters. FMN, flavin mononucleotide; Me, methyl group.

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

GltX, glutamyl-tRNA synthetase (EC 6.1.1.17); HemA, NADPH-dependent glutamyl-tRNA reductase (EC 1.2.1.70); HemL, glutamate-1-semialdehyde 2,1-aminomutase (EC 5.4.3.8); HemB, PBG synthase (EC 4.2.1.24); HemC, hydroxymethylbilane synthase (EC 2.5.1.61); HemD, uro’gen III synthase (EC 4.2.1.75).

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

CysG, sirohydrochlorin ferrochelatase (EC 4.99.1.4); CbiK, sirohydrochlorin cobaltochelatase (EC 4.99.1.3).

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Six amidations and the attachment of the 5′-deoxyadenosyl upper ligand yield adenosylcobyric acid, which is condensed with aminopropanol -2-phosphate to yield adenosylcobinamide phosphate, the product of the de novo corrin ring biosynthetic pathway. Modified from M. V. Fonseca and J. C. Escalante-Semerena ( 126 ).

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

The reduction of co(III)rrinoids to co(II)rrinoids is achieved by dihydroflavins present in the cell, without the need for an enzyme. The reduction of co(II)rrinoids to co(I)rrinoids is thermodynamically unfavorable, takes place in the active site of the adenosyltransferase, and is driven by the generation of a four-coordinate co(II)rrinoid species with high enough redox potential to allow electron transfer from the semiquinone of reduced flavodoxin A. Flavodoxin A is reduced by the NADPH-dependent ferredoxin (flavodoxin) protein reductase (Fpr) enzyme. FAD, flavin adenine dinucleotide; FADH, reduced flavin adenine dinucleotide; FMN, flavin mononucleotide.

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Although the CobU enzyme is bifunctional, only its guanylyltransferase activity is essential for de novo AdoCbl biosynthesis. The kinase activity of CobU is required for salvaging cobinamide from the environment. The activation of DMB, the lower ligand base of AdoCbl, is catalyzed by the CobT enzyme, which can use either NaMN or NAD as the substrate. When NAD is the substrate, CobT yields a unique dinucleotide known as α-DAD. The synthesis of α-DAD requires the activity of an as-yet-unidentified hydrolase to yield α-ribazole phosphate, the cosubstrate for the AdoCbl-5′- synthase (CobS) enzyme. The dephosphorylation of AdoCbl-5′- by the CobC phosphatase yields the final product of the pathway.

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

In the figure, the arrows that show the effector site for the 1,2-Pdl–PocR complex represent the activation of the indicated genes.

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Protein requirements and intermediates in the synthesis of cobalamin in and serovar Typhimurium

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8
Generic image for table
Table 2

PDB codes for enzymes involved in AdoCbl synthesis in serovar Typhimurium and

Citation: Escalante-Semerena J, Warren M. 2008. Biosynthesis and Use of Cobalamin (B), EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.3.8

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error