1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Biosynthesis of Membrane Lipids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: John E. Cronan, Jr.1, and Charles O. Rock2
  • Editors: Valley Stewart3, Thomas J. Begley4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Departments of Microbiology and Biochemistry, University of Illinois, Urbana, IL 61801; 2: Protein Science Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38101; 3: University of California, Davis, Davis, CA; 4: University at Albany, Rensselear, NY
  • Received 26 February 2008 Accepted 05 June 2008 Published 07 October 2008
  • Address correspondence to John E. Cronan, Jr.j-cronan@life.uiuc.edu
image of Biosynthesis of Membrane Lipids
    Preview this reference work article:
    Zoom in
    Zoomout

    Biosynthesis of Membrane Lipids, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/1/3_6_4_module-1.gif /docserver/preview/fulltext/ecosalplus/3/1/3_6_4_module-2.gif
  • Abstract:

    The pathways in and (largely by analogy) remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of and for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.

  • Citation: Cronan, Jr. J, Rock C. 2008. Biosynthesis of Membrane Lipids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.4

Key Concept Ranking

Unsaturated Fatty Acids
0.5493473
DNA Polymerase III
0.46097434
Fatty Acid Biosynthesis
0.45567328
0.5493473

References

1. Cronan JE, Rock CO. 1996. Biosynthesis of membrane lipids, p 612–636. In Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. ASM Press, Washington, DC.
2. White SW, Zheng J, Zhang YM, Rock CO. 2005. The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831. [PubMed][CrossRef]
3. De Lay NR, Cronan JE. 2006. Gene-specific random mutagenesis of Escherichia coli in vivo: isolation of temperature-sensitive mutations in the acyl carrier protein of fatty acid synthesis. J Bacteriol 188:287–296. [PubMed][CrossRef]
4. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A. 2005. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537. [PubMed][CrossRef]
5. Gully D, Bouveret E. 2006. A protein network for phospholipid synthesis uncovered by a variant of the tandem affinity purification method in Escherichia coli. Proteomics 6:282–293. [PubMed][CrossRef]
6. Gully D, Moinier D, Loiseau L, Bouveret E. 2003. New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification. FEBS Lett 548:90–96. [PubMed][CrossRef]
7. Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25:117–124. [PubMed][CrossRef]
8. Jayasuriya H, Herath KB, Zhang C, Zink DL, Basilio A, Genilloud O, Diez MT, Vicente F, Gonzalez I, Salazar O, Pelaez F, Cummings R, Ha S, Wang J, Singh SB. 2007. Isolation and structure of platencin: a FabH and FabF dual inhibitor with potent broad-spectrum antibiotic activity. Angew Chem Int Ed Engl 46:4684–4688. [PubMed][CrossRef]
9. Wang J, Kodali S, Lee SH, Galgoci A, Painter R, Dorso K, Racine F, Motyl M, Hernandez L, Tinney E, Colletti SL, Herath K, Cummings R, Salazar O, Gonzalez I, Basilio A, Vicente F, Genilloud O, Pelaez F, Jayasuriya H, Young K, Cully DF, Singh SB. 2007. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc Natl Acad Sci USA 104:7612–7616. [PubMed][CrossRef]
10. Zheng CJ, Sohn MJ, Kim WG. 2006. Atromentin and leucomelone, the first inhibitors specific to enoyl-ACP reductase (FabK) of Streptococcus pneumoniae. J Antibiot (Tokyo) 59:808–812. [PubMed][CrossRef]
11. Zheng CJ, Sohn MJ, Lee S, Hong YS, Kwak JH, Kim WG. 2007. Cephalochromin, a FabI-directed antibacterial of microbial origin. Biochem Biophys Res Commun 362:1107–1112. [PubMed][CrossRef]
12. Campbell JW, Cronan JE Jr. 2001. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol 55:305–332. [PubMed][CrossRef]
13. Heath RJ, White SW, Rock CO. 2002. Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl Microbiol Biotechnol 58:695–703. [PubMed][CrossRef]
14. Heath RJ, White SW, Rock CO. 2001. Lipid biosynthesis as a target for antibacterial agents. Prog Lipid Res 40:467–497. [PubMed][CrossRef]
15. Zhang YM, White SW, Rock CO. 2006. Inhibiting bacterial fatty acid synthesis. J Biol Chem 281:17541–17544. [PubMed][CrossRef]
16. Cronan JE. 2003. Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224. [PubMed][CrossRef]
17. Zhang YM, Rock CO. 2008. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233. [PubMed][CrossRef]
18. Rabinowitch HD, Sklan D, Chace DH, Stevens RD, Fridovich I. 1993. Escherichia coli produces linoleic acid during late stationary phase. J Bacteriol 175:5324–5328.[PubMed]
19. Cronan JE Jr, Rock CO. 1994. The presence of linoleic acid in Escherichia coli cannot be confirmed. J Bacteriol 176:3069–3071.[PubMed]
20. Cronan JE Jr. 1978. Molecular biology of bacterial membrane lipids. Annu Rev Biochem 47:163–189. [PubMed][CrossRef]
21. Cronan JE, Vagelos PR. 1972. Metabolism and function of the membrane phospholipids of Escherichia coli. Biochim Biophys Acta 265:25–60.[PubMed]
22. Hsu L, Jackowski S, Rock CO. 1989. Uptake and acylation of 2-acyl-lysophospholipids by Escherichia coli. J Bacteriol 171:1203–1205.[PubMed]
23. Kol MA, Kuster DW, Boumann HA, de Cock H, Heck AJ, de Kruijff B, de Kroon AI. 2004. Uptake and remodeling of exogenous phosphatidylethanolamine in E. coli. Biochim Biophys Acta 1636:205–212.[PubMed]
24. Osborn MJ, Jones NC, Schindler M. 1978. Incorporation of lipid vesicles by Salmonella. Ann N Y Acad Sci 308:215–225. [PubMed][CrossRef]
25. Doerrler WT, Gibbons HS, Raetz CR. 2004. MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 279:45102–45109. [PubMed][CrossRef]
26. Van Den Bosch H, Williamson JR, Vagelos PR. 1970. Localization of acyl carrier protein in Escherichia coli. Nature 228:338–341. [PubMed][CrossRef]
27. Jackowski S, Edwards HH, Davis D, Rock CO. 1985. Localization of acyl carrier protein in Escherichia coli. J Bacteriol 162:5–8.[PubMed]
28. Cronan JE, Rock CO. 1987. Biosynthesis of membrane lipids, p 3474–3497. In Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, DC.
29. Paoletti L, Lu YJ, Schujman GE, de Mendoza D, Rock CO. 2007. Coupling of fatty acid and phospholipid synthesis in Bacillus subtilis. J Bacteriol 189:5816–5824. [PubMed][CrossRef]
30. Fuqua C, Greenberg EP. 2002. Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695. [PubMed][CrossRef]
31. Raetz CR, Reynolds CM, Trent MS, Bishop RE. 2007. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329. [PubMed][CrossRef]
32. Prescott DJ, Vagelos PR. 1972. Acyl carrier protein. Adv Enzymol Relat Areas Mol Biol 36:269–311. [PubMed][CrossRef]
33. Rock CO, Cronan JE Jr. 1981. Acyl carrier protein from Escherichia coli. Methods Enzymol 71(Pt C):341–351. [CrossRef]
34. Rock CO, Cronan JE Jr. 1979. Re-evaluation of the solution structure of acyl carrier protein. J Biol Chem 254:9778–9785.[PubMed]
35. Qiu X, Janson CA. 2004. Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions. Acta Crystallogr D Biol Crystallogr 60:1545–1554. [PubMed][CrossRef]
36. De Lay NR, Cronan JE. 2007. In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis. J Biol Chem 282:20319–20328. [PubMed][CrossRef]
37. Parris KD, Lin L, Tam A, Mathew R, Hixon J, Stahl M, Fritz CC, Seehra J, Somers WS. 2000. Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites. Structure 8:883–895. [PubMed][CrossRef]
38. Kim Y, Prestegard JH. 1989. A dynamic model for the structure of acyl carrier protein in solution. Biochemistry 28:8792–8797. [PubMed][CrossRef]
39. Kim Y, Prestegard JH. 1990. Refinement of the NMR structures for acyl carrier protein with scalar coupling data. Proteins 8:377–385. [PubMed][CrossRef]
40. Sharma AK, Sharma SK, Surolia A, Surolia N, Sarma SP. 2006. Solution structures of conformationally equilibrium forms of holo-acyl carrier protein (PfACP) from Plasmodium falciparum provides insight into the mechanism of activation of ACPs. Biochemistry 45:6904–6916. [PubMed][CrossRef]
41. Roujeinikova A, Baldock C, Simon WJ, Gilroy J, Baker PJ, Stuitje AR, Rice DW, Slabas AR, Rafferty JB. 2002. X-ray crystallographic studies on butyryl-ACP reveal flexibility of the structure around a putative acyl chain binding site. Structure 10:825–835. [PubMed][CrossRef]
42. Roujeinikova A, Simon WJ, Gilroy J, Rice DW, Rafferty JB, Slabas AR. 2007. Structural studies of fatty acyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that can expand to fit longer substrates. J Mol Biol 365:135–145. [PubMed][CrossRef]
43. Cronan JE Jr. 1982. Molecular properties of short chain acyl thioesters of acyl carrier protein. J Biol Chem 257:5013–5017.[PubMed]
44. Jackowski S, Rock CO. 1983. Ratio of active to inactive forms of acyl carrier protein in Escherichia coli. J Biol Chem 258:15186–15191.[PubMed]
45. Powell GL, Bauza M, Larrabee AR. 1973. The stability of acyl carrier protein in Escherichia coli. J Biol Chem 248:4461–4466.[PubMed]
46. Powell GL, Elovson J, Vagelos PR. 1969. Acyl carrier protein. XII Synthesis and turnover of the prosthetic group of acyl carrier protein in vivo. J Biol Chem 244:5616–5624.[PubMed]
47. Thomas J, Cronan JE. 2005. The enigmatic acyl carrier protein phosphodiesterase of Escherichia coli: genetic and enzymological characterization. J Biol Chem 280:34675–34683. [PubMed][CrossRef]
48. Keating DH, Carey MR, Cronan JE Jr. 1995. The unmodified (apo) form of Escherichia coli acyl carrier protein is a potent inhibitor of cell growth. J Biol Chem 270:22229–22235. [PubMed][CrossRef]
49. De Lay NR, Cronan JE. 2006. A genome rearrangement has orphaned the Escherichia coli K-12 AcpT phosphopantetheinyl transferase from its cognate Escherichia coli O157:H7 substrates. Mol Microbiol 61:232–242. [PubMed][CrossRef]
50. Flugel RS, Hwangbo Y, Lambalot RH, Cronan JE Jr, Walsh CT. 2000. Holo-(acyl carrier protein) synthase and phosphopantetheinyl transfer in Escherichia coli. J Biol Chem 275:959–968. [PubMed][CrossRef]
51. Polacco ML, Cronan JE Jr. 1981. A mutant of Escherichia coli conditionally defective in the synthesis of holo-[acyl carrier protein]. J Biol Chem 256:5750–5754.[PubMed]
52. Lambalot RH, Walsh CT. 1997. Holo-[acyl-carrier-protein] synthase of Escherichia coli. Methods Enzymol 279:254–262. [PubMed][CrossRef]
53. McAllister KA, Peery RB, Zhao G. 2006. Acyl carrier protein synthases from gram-negative, gram-positive, and atypical bacterial species: biochemical and structural properties and physiological implications. J Bacteriol 188:4737–4748. [PubMed][CrossRef]
54. Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT. 1996. A new enzyme superfamily—the phosphopantetheinyl transferases. Chem Biol 3:923–936. [PubMed][CrossRef]
55. Mercer AC, Burkart MD. 2007. The ubiquitous carrier protein—a window to metabolite biosynthesis. Nat Prod Rep 24:750–773. [PubMed][CrossRef]
56. Reuter K, Mofid MR, Marahiel MA, Ficner R. 1999. Crystal structure of the surfactin synthetase-activating enzyme Sfp: a prototype of the 4′-phosphopantetheinyl transferase superfamily. EMBO J 18:6823–6831. [PubMed][CrossRef]
57. Vagelos PR, Larrabes AR. 1967. Acyl carrier protein. IX Acyl carrier protein hydrolase. J Biol Chem 242:1776–1781.[PubMed]
58. Fischl AS, Kennedy EP. 1990. Isolation and properties of acyl carrier protein phosphodiesterase of Escherichia coli. J Bacteriol 172:5445–5449.[PubMed]
59. Ito K, Nakanishi M, Lee WC, Zhi Y, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M. 2008. Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J Biol Chem 283:13889–13896. [PubMed][CrossRef]
60. Nakanishi M, Yatome C, Ishida N, Kitade Y. 2001. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399. [PubMed][CrossRef]
61. Thomas J, Rigden DJ, Cronan JE. 2007. Acyl carrier protein phosphodiesterase (AcpH) of Escherichia coli is a non-canonical member of the HD phosphatase/phosphodiesterase family. Biochemistry 46:129–136. [PubMed][CrossRef]
62. Jiang P, Cronan JE Jr. 1994. Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action. J Bacteriol 176:2814–2821.[PubMed]
63. Rock CO, Jackowski S. 1982. Regulation of phospholipid synthesis in Escherichia coli. Composition of the acyl-acyl carrier protein pool in vivo. J Biol Chem 257:10759–10765.[PubMed]
64. Rawlings M, Cronan JE Jr. 1992. The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J Biol Chem 267:5751–5754.[PubMed]
65. Therisod H, Kennedy EP. 1987. The function of acyl carrier protein in the synthesis of membrane-derived oligosaccharides does not require its phosphopantetheine prosthetic group. Proc Natl Acad Sci USA 84:8235–8238. [PubMed][CrossRef]
66. Therisod H, Weissborn AC, Kennedy EP. 1986. An essential function for acyl carrier protein in the biosynthesis of membrane-derived oligosaccharides of Escherichia coli. Proc Natl Acad Sci USA 83:7236–7240. [PubMed][CrossRef]
67. Maekawa T, Yanagihara K, Ohtsubo E. 1996. Specific nicking at the 3′ ends of the terminal inverted repeat sequences in transposon Tn3 by transposase and an E. coli protein ACP Genes Cells 1:1017–1030. [PubMed][CrossRef]
68. Sharpe PL, Craig NL. 1998. Host proteins can stimulate Tn7 transposition: a novel role for the ribosomal protein L29 and the acyl carrier protein. EMBO J 17:5822–5831. [PubMed][CrossRef]
69. Issartel JP, Koronakis V, Hughes C. 1991. Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 351:759–761. [PubMed][CrossRef]
70. Worsham LM, Earls L, Jolly C, Langston KG, Trent MS, Ernst-Fonberg ML. 2003. Amino acid residues of Escherichia coli acyl carrier protein involved in heterologous protein interactions. Biochemistry 42:167–176. [PubMed][CrossRef]
71. Worsham LM, Langston KG, Ernst-Fonberg ML. 2005. Thermodynamics of a protein acylation: activation of Escherichia coli hemolysin toxin. Biochemistry 44:1329–1337. [PubMed][CrossRef]
72. Worsham LM, Trent MS, Earls L, Jolly C, Ernst-Fonberg ML. 2001. Insights into the catalytic mechanism of HlyC, the internal protein acyltransferase that activates Escherichia coli hemolysin toxin. Biochemistry 40:13607–13616. [PubMed][CrossRef]
73. Lim KB, Walker CR, Guo L, Pellett S, Shabanowitz J, Hunt DF, Hewlett EL, Ludwig A, Goebel W, Welch RA, Hackett M. 2000. Escherichia coli α-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J Biol Chem 275:36698–36702. [PubMed][CrossRef]
74. Heath RJ, Rock CO. 1995. Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem 270:26538–26542. [PubMed][CrossRef]
75. Bloch K. 1971. β-Hydroxydecanoyl thioester dehydrase, p 441–464. In Boyer PD (ed), The Enzymes, 3rd ed. Academic Press, New York, NY.
76. Davis MS, Solbiati J, Cronan JE Jr. 2000. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275:28593–28598. [PubMed][CrossRef]
77. Cronan JE Jr, Waldrop GL. 2002. Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41:407–435. [PubMed][CrossRef]
78. Alberts AW, Vagelos PR. 1972. Acyl-CoA carboxylases. In Boyer PD (ed), The Enzymes. Academic Press, New York, NY.
79. Woehlke G, Dimroth P. 1994. Anaerobic growth of Salmonella typhimurium on L(+)- and D(−)-tartrate involves an oxaloacetate decarboxylase Na+ pump. Arch Microbiol 162:233–237. [PubMed][CrossRef]
80. Woehlke G, Wifling K, Dimroth P. 1992. Sequence of the sodium ion pump oxaloacetate decarboxylase from Salmonella typhimurium. J Biol Chem 267:22798–22803.[PubMed]
81. Choi-Rhee E, Cronan JE. 2003. The biotin carboxylase-biotin carboxyl carrier protein complex of Escherichia coli acetyl-CoA carboxylase. J Biol Chem 278:30806–30812. [PubMed][CrossRef]
82. Nenortas E, Beckett D. 1996. Purification and characterization of intact and truncated forms of the Escherichia coli biotin carboxyl carrier subunit of acetyl-CoA carboxylase. J Biol Chem 271:7559–7567. [PubMed][CrossRef]
83. Guchhait RB, Polakis SE, Dimroth P, Stoll E, Moss J, Lane MD. 1974. Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem 249:6633–6645.[PubMed]
84. Fall RR. 1976. Stabilization of an acetyl-coenzyme A carboxylase complex from Pseudomonas citronellolis. Biochim Biophys Acta 450:475–480.[PubMed]
85. Best EA, Knauf VC. 1993. Organization and nucleotide sequences of the genes encoding the biotin carboxyl carrier protein and biotin carboxylase protein of Pseudomonas aeruginosa acetyl coenzyme A carboxylase. J Bacteriol 175:6881–6889.[PubMed]
86. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006–0008. (Online. doi: 10.1038/msb4100050.) [CrossRef]
87. Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL. 2003. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684. [PubMed][CrossRef]
88. Li SJ, Cronan JE Jr. 1992. The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. J Biol Chem 267:855–863.[PubMed]
89. Li SJ, Rock CO, Cronan JE Jr. 1992. The dedB (usg) open reading frame of Escherichia coli encodes a subunit of acetyl-coenzyme A carboxylase. J Bacteriol 174:5755–5757.[PubMed]
90. Li SJ, Cronan JE Jr. 1993. Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. J Bacteriol 175:332–340.[PubMed]
91. Beckett D. 2007. Biotin sensing: universal influence of biotin status on transcription. Annu Rev Genet 41:443–464. [PubMed][CrossRef]
92. Fall RR, Vagelos PR. 1973. Acetyl coenzyme A carboxylase. Proteolytic modification of biotin carboxyl carrier protein. J Biol Chem 248:2078–2088.[PubMed]
93. Cronan JE Jr. 2001. The biotinyl domain of Escherichia coli acetyl-CoA carboxylase. Evidence that the “thumb” structure is essential and that the domain functions as a dimer. J Biol Chem 276:37355–37364. [PubMed][CrossRef]
94. Solbiati J, Chapman-Smith A, Cronan JE Jr. 2002. Stabilization of the biotinoyl domain of Escherichia coli acetyl-CoA carboxylase by interactions between the attached biotin and the protruding “thumb” structure. J Biol Chem 277:21604–21609. [PubMed][CrossRef]
95. Perham RN. 2000. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 69:961–1004. [PubMed][CrossRef]
96. Attwood PV, Wallace JC. 2002. Chemical and catalytic mechanisms of carboxyl transfer reactions in biotin-dependent enzymes. Acc Chem Res 35:113–120. [PubMed][CrossRef]
97. Jitrapakdee S, Wallace JC. 2003. The biotin enzyme family: conserved structural motifs and domain rearrangements. Curr Protein Pept Sci 4:217–229. [PubMed][CrossRef]
98. Shen Y, Chou CY, Chang GG, Tong L. 2006. Is dimerization required for the catalytic activity of bacterial biotin carboxylase? Mol. Cell 22:807–818. [PubMed][CrossRef]
99. Bilder P, Lightle S, Bainbridge G, Ohren J, Finzel B, Sun F, Holley S, Al-Kassim L, Spessard C, Melnick M, Newcomer M, Waldrop GL. 2006. The structure of the carboxyltransferase component of acetyl-CoA carboxylase reveals a zinc-binding motif unique to the bacterial enzyme. Biochemistry 45:1712–1722. [PubMed][CrossRef]
100. Magnuson K, Oh W, Larson TJ, Cronan JE Jr. 1992. Cloning and nucleotide sequence of the fabD gene encoding malonyl coenzyme A-acyl carrier protein transacylase of Escherichia coli. FEBS Lett 299:262–266. [PubMed][CrossRef]
101. Verwoert II, Verbree EC, van der Linden KH, Nijkamp HJ, Stuitje AR. 1992. Cloning, nucleotide sequence, and expression of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase. J Bacteriol 174:2851–2857.[PubMed]
102. Oefner C, Schulz H, D'Arcy A, Dale GE. 2006. Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. Acta Crystallogr D Biol Crystallogr 62:613–618. [PubMed][CrossRef]
103. Serre L, Verbree EC, Dauter Z, Stuitje AR, Derewenda ZS. 1995. The Escherichia coli malonyl-CoA:acyl carrier protein transacylase at 1.5-Å resolution. Crystal structure of a fatty acid synthase component. J Biol Chem 270:12961–12964. [PubMed][CrossRef]
104. Verwoert II, Verhagen EF, van der Linden KH, Verbree EC, Nijkamp HJ, Stuitje AR. 1994. Molecular characterization of an Escherichia coli mutant with a temperature-sensitive malonyl coenzyme A-acyl carrier protein transacylase. FEBS Lett 348:311–316. [PubMed][CrossRef]
105. Arthur CJ, Szafranska A, Evans SE, Findlow SC, Burston SG, Owen P, Clark-Lewis I, Simpson TJ, Crosby J, Crump MP. 2005. Self-malonylation is an intrinsic property of a chemically synthesized type II polyketide synthase acyl carrier protein. Biochemistry 44:15414–15421. [PubMed][CrossRef]
106. Arthur CJ, Szafranska AE, Long J, Mills J, Cox RJ, Findlow SC, Simpson TJ, Crump MP, Crosby J. 2006. The malonyl transferase activity of type II polyketide synthase acyl carrier proteins. Chem Biol 13:587–596. [PubMed][CrossRef]
107. Hitchman TS, Crosby J, Byrom KJ, Cox RJ, Simpson TJ. 1998. Catalytic self-acylation of type II polyketide synthase acyl carrier proteins. Chem Biol 5:35–47. [PubMed][CrossRef]
108. Misra A, Sharma SK, Surolia N, Surolia A. 2007. Self-acylation properties of type II fatty acid biosynthesis acyl carrier protein. Chem Biol 14:775–783. [PubMed][CrossRef]
109. White RH. 1980. Stoichiometry and stereochemistry of deuterium incorporated into fatty acids by cells of Escherichia coli grown on [methyl-2H3]acetate. Biochemistry 19:9–15. [PubMed][CrossRef]
110. Jackowski S, Rock CO. 1987. Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria. J Biol Chem 262:7927–7931.[PubMed]
111. Tsay JT, Rock CO, Jackowski S. 1992. Overproduction of β-ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. J Bacteriol 174:508–513.[PubMed]
112. Alberts AW, Bell RM, Vagelos PR. 1972. Acyl carrier protein. XV. Studies of β-ketoacyl-acyl carrier protein synthetase. J Biol Chem 247:3190–3198.[PubMed]
113. Lowe PN, Rhodes S. 1988. Purification and characterization of [acyl-carrier-protein] acetyltransferase from Escherichia coli. Biochem J 250:789–796.[PubMed]
114. Lobo S, Florova G, Reynolds KA. 2001. A Streptomyces collinus thiolase with novel acetyl-CoA:acyl carrier protein transacylase activity. Biochemistry 40:11955–11964. [PubMed][CrossRef]
115. McGuire KA, Siggaard-Andersen M, Bangera MG, Olsen JG, von Wettstein-Knowles P. 2001. β-Ketoacyl-[acyl carrier protein] synthase I of Escherichia coli: aspects of the condensation mechanism revealed by analyses of mutations in the active site pocket. Biochemistry 40:9836–9845. [PubMed][CrossRef]
116. Jackowski S, Zhang YM, Price AC, White SW, Rock CO. 2002. A missense mutation in the fabB β-ketoacyl-acyl carrier protein synthase I) gene confers thiolactomycin resistance to Escherichia coli. Antimicrob Agents Chemother 46:1246–1252. [PubMed][CrossRef]
117. Heath RJ, Rock CO. 1995. Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and β-ketoacyl-acyl carrier protein synthases in Escherichia coli. J Biol Chem 270:15531–15538. [PubMed][CrossRef]
118. Lai CY, Cronan JE. 2003. β-Ketoacyl-acyl carrier protein synthase III (FabH) is essential for bacterial fatty acid synthesis. J Biol Chem 278:51494–51503. [PubMed][CrossRef]
119. Wright CW. 2007. Recent developments in naturally derived antimalarials: cryptolepine analogues. J Pharm Pharmacol 59:899–904. [PubMed][CrossRef]
120. D'Agnolo G, Rosenfeld IS, Vagelos PR. 1975. β-Ketoacyl-acyl carrier protein synthetase. Characterization of the acyl-enzyme intermediate. J Biol Chem 250:5283–5288.[PubMed]
121. Siggaard-Andersen M, Wissenbach M, Chuck JA, Svendsen I, Olsen JG, von Wettstein-Knowles P. 1994. The fabJ-encoded β-ketoacyl-[acyl carrier protein] synthase IV from Escherichia coli is sensitive to cerulenin and specific for short-chain substrates. Proc Natl Acad Sci USA 91:11027–11031. [PubMed][CrossRef]
122. Magnuson K, Carey MR, Cronan JE Jr. 1995. The putative fabJ gene of Escherichia coli fatty acid synthesis is the fabF gene. J Bacteriol 177:3593–3595.[PubMed]
123. Heath RJ, Rock CO. 2002. The Claisen condensation in biology. Nat Prod Rep 19:581–596. [PubMed][CrossRef]
124. Garwin JL, Klages AL, Cronan JE Jr. 1980. Structural, enzymatic, and genetic studies of β-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli. J Biol Chem 255:11949–11956.[PubMed]
125. Kauppinen S, Siggaard-Anderson M, van Wettstein-Knowles P. 1988. β-Ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of the fabB gene and identification of the cerulenin binding residue. Carlsberg Res Commun 53:357–370. [PubMed][CrossRef]
126. D'Agnolo G, Rosenfeld IS, Vagelos PR. 1975. Multiple forms of β-ketoacyl-acyl carrier protein synthetase in Escherichia coli. J Biol Chem 250:5289–5294.[PubMed]
127. Ulrich AK, de Mendoza D, Garwin JL, Cronan JE Jr. 1983. Genetic and biochemical analyses of Escherichia coli mutants altered in the temperature-dependent regulation of membrane lipid composition. J Bacteriol 154:221–230.[PubMed]
128. Edwards P, Nelsen JS, Metz JG, Dehesh K. 1997. Cloning of the fabF gene in an expression vector and in vitro characterization of recombinant fabF and fabB encoded enzymes from Escherichia coli. FEBS Lett 402:62–66. [PubMed][CrossRef]
129. Cronan JE Jr, Birge CH, Vagelos PR. 1969. Evidence for two genes specifically involved in unsaturated fatty acid biosynthesis in Escherichia coli. J Bacteriol 100:601–604.[PubMed]
130. Garwin JL, Klages AL, Cronan JE Jr. 1980. β-Ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem 255:3263–3265.[PubMed]
131. Clark DP, DeMendoza D, Polacco ML, Cronan JE Jr. 1983. β-Hydroxydecanoyl thio ester dehydrase does not catalyze a rate-limiting step in Escherichia coli unsaturated fatty acid synthesis. Biochemistry 22:5897–5902. [PubMed][CrossRef]
132. de Mendoza D, Klages Ulrich A, Cronan JE Jr. 1983. Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of β-ketoacyl-acyl carrier protein synthase I. J Biol Chem 258:2098–2101.[PubMed]
133. Subrahmanyam S, Cronan JE Jr. 1998. Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol 180:4596–4602.[PubMed]
134. Zhang Y, Cronan JE Jr. 1996. Polar allele duplication for transcriptional analysis of consecutive essential genes: application to a cluster of Escherichia coli fatty acid biosynthetic genes. J Bacteriol 178:3614–3620.[PubMed]
135. Zhang Y, Cronan JE Jr. 1998. Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella typhimurium gene cluster. J Bacteriol 180:3295–3303.[PubMed]
136. Lai CY, Cronan JE. 2004. Isolation and characterization of β-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium. J Bacteriol 186:1869–1878. [PubMed][CrossRef]
137. Birge CH, Silbert DF, Vagelos PR. 1967. A β-hydroxydecanoyl-ACP dehydrase specific for saturated fatty acid biosynthesis in E. coli. Biochem Biophys Res Commun 29:808–814. [PubMed][CrossRef]
138. Mizugaki M, Swindell AC, Wakil SJ. 1968. Intermediate- and long-chain β-hydroxyacyl-ACP dehydrases from E. coli fatty acid synthetase. Biochem Biophys Res Commun 33:520–527. [PubMed][CrossRef]
139. Heath RJ, Rock CO. 1996. Roles of the FabA and FabZ β-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem 271:27795–27801. [PubMed][CrossRef]
140. Mohan S, Kelly TM, Eveland SS, Raetz CR, Anderson MS. 1994. An Escherichia coli gene (fabZ) encoding (3R)-hydroxymyristoyl acyl carrier protein dehydrase. Relation to fabA and suppression of mutations in lipid A biosynthesis. J Biol Chem 269:32896–32903.[PubMed]
141. Kimber MS, Martin F, Lu Y, Houston S, Vedadi M, Dharamsi A, Fiebig KM, Schmid M, Rock CO. 2004. The structure of (3R)-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Pseudomonas aeruginosa. J Biol Chem 279:52593–52602. [PubMed][CrossRef]
142. Wang H, Cronan JE. 2004. Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues. J Biol Chem 279:34489–34495. [PubMed][CrossRef]
143. Weeks G, Wakil SJ. 1968. Studies on the mechanism of fatty acid synthesis. 18. Preparation and general properties of the enoyl acyl carrier protein reductases from Escherichia coli. J Biol Chem 243:1180–1189.[PubMed]
144. Bergler H, Fuchsbichler S, Hogenauer G, Turnowsky F. 1996. The enoyl-[acyl-carrier-protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA. Eur J Biochem 242:689–694. [PubMed][CrossRef]
145. Turnowsky F, Fuchs K, Jeschek C, Hogenauer G. 1989. envM genes of Salmonella typhimurium and Escherichia coli. J Bacteriol 171:6555–6565.[PubMed]
146. Kater MM, Koningstein GM, Nijkamp HJ, Stuitje AR. 1994. The use of a hybrid genetic system to study the functional relationship between prokaryotic and plant multi-enzyme fatty acid synthetase complexes. Plant Mol Biol 25:771–790. [PubMed][CrossRef]
147. Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO. 1999. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114. [PubMed][CrossRef]
148. McMurry LM, Oethinger M, Levy SB. 1998. Triclosan targets lipid synthesis. Nature 394:531–532. [PubMed][CrossRef]
149. Bergler H, Wallner P, Ebeling A, Leitinger B, Fuchsbichler S, Aschauer H, Kollenz G, Hogenauer G, Turnowsky F. 1994. Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli. J Biol Chem 269:5493–5496.[PubMed]
150. Rafi S, Novichenok P, Kolappan S, Zhang X, Stratton CF, Rawat R, Kisker C, Simmerling C, Tonge PJ. 2006. Structure of acyl carrier protein bound to FabI, the FASII enoyl reductase from Escherichia coli. J Biol Chem 281:39285–39293. [PubMed][CrossRef]
151. Guerra DJ, Browse JA. 1990. Escherichia coli β-hydroxydecanoyl thioester dehydrase reacts with native C10 acyl-acyl-carrier proteins of plant and bacterial origin. Arch Biochem Biophys 280:336–345. [PubMed][CrossRef]
152. Leesong M, Henderson BS, Gillig JR, Schwab JM, Smith JL. 1996. Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site. Structure 4:253–264. [PubMed][CrossRef]
153. Silbert DF, Vagelos PR. 1967. Fatty acid mutant of E. coli lacking a β-hydroxydecanoyl thioester dehydrase. Proc Natl Acad Sci USA 58:1579–1586. [PubMed][CrossRef]
154. Cronan JE Jr, Gelmann EP. 1973. An estimate of the minimum amount of unsaturated fatty acid required for growth of Escherichia coli. J Biol Chem 248:1188–1195.[PubMed]
155. Clark D, Lightner V, Edgar R, Modrich P, Cronan JE Jr, Bell RM. 1980. Regulation of phospholipid biosynthesis in Escherichia coli. Cloning of the structural gene for the biosynthetic sn-glycerol-3-phosphate dehydrogenase. J Biol Chem 255:714–717.[PubMed]
156. Schwab J, Henderson J. 1990. Enzyme-catalyzed allylic rearrangements. Chem Rev 90:1203–1245. [CrossRef]
157. Cronan JE Jr, Li WB, Coleman R, Narasimhan M, de Mendoza D, Schwab JM. 1988. Derived amino acid sequence and identification of active site residues of Escherichia coli β-hydroxydecanoyl thioester dehydrase. J Biol Chem 263:4641–4646.[PubMed]
158. Abdel-Hamid AM, Cronan JE. 2007. Coordinate expression of the acetyl coenzyme A carboxylase genes, accB and accC, is necessary for normal regulation of biotin synthesis in Escherichia coli. J Bacteriol 189:369–376. [PubMed][CrossRef]
159. James ES, Cronan JE. 2004. Expression of two Escherichia coli acetyl-CoA carboxylase subunits is autoregulated. J Biol Chem 279:2520–2527. [PubMed][CrossRef]
160. Karow M, Fayet O, Georgopoulos C. 1992. The lethal phenotype caused by null mutations in the Escherichia coli htrB gene is suppressed by mutations in the accBC operon, encoding two subunits of acetyl coenzyme A carboxylase. J Bacteriol 174:7407–7418.[PubMed]
161. Campbell JW, Cronan JE Jr. 2001. Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. J Bacteriol 183:5982–5990. [PubMed][CrossRef]
162. Henry MF, Cronan JE Jr. 1992. A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell 70:671–679. [PubMed][CrossRef]
163. Henry MF, Cronan JE Jr. 1991. Escherichia coli transcription factor that both activates fatty acid synthesis and represses fatty acid degradation. J Mol Biol 222:843–849. [PubMed][CrossRef]
164. Nunn WD, Giffin K, Clark D, Cronan JE Jr. 1983. Role for fadR in unsaturated fatty acid biosynthesis in Escherichia coli. J Bacteriol 154:554–560.[PubMed]
165. DiRusso CC, Metzger AK, Heimert TL. 1993. Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis in Escherichia coli by FadR. Mol Microbiol 7:311–322. [PubMed][CrossRef]
166. Collado-Vides J, Magasanik B, Gralla JD. 1991. Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev 55:371–394.[PubMed]
167. DiRusso CC, Heimert TL, Metzger AK. 1992. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J Biol Chem 267:8685–8691.[PubMed]
168. Raman N, Black PN, DiRusso CC. 1997. Characterization of the fatty acid-responsive transcription factor FadR. Biochemical and genetic analyses of the native conformation and functional domains. J Biol Chem 272:30645–30650. [PubMed][CrossRef]
169. Raman N, DiRusso CC. 1995. Analysis of acyl coenzyme A binding to the transcription factor FadR and identification of amino acid residues in the carboxyl terminus required for ligand binding. J Biol Chem 270:1092–1097. [PubMed][CrossRef]
170. van Aalten DM, DiRusso CC, Knudsen J. 2001. The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR. EMBO J 20:2041–2050. [PubMed][CrossRef]
171. van Aalten DM, DiRusso CC, Knudsen J, Wierenga RK. 2000. Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. EMBO J 19:5167–5177. [PubMed][CrossRef]
172. Xu Y, Heath RJ, Li Z, Rock CO, White SW. 2001. The FadR. DNA complex. Transcriptional control of fatty acid metabolism in Escherichia coli. J Biol Chem 276:17373–17379. [PubMed][CrossRef]
173. McCue L, Thompson W, Carmack C, Ryan MP, Liu JS, Derbyshire V, Lawrence CE. 2001. Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. Nucleic Acids Res 29:774–782. [PubMed][CrossRef]
174. Zhang YM, Marrakchi H, Rock CO. 2002. The FabR (YijC) transcription factor regulates unsaturated fatty acid biosynthesis in Escherichia coli. J Biol Chem 277:15558–15565. [PubMed][CrossRef]
175. Mayer KM, Shanklin J. 2007. Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach. BMC Plant Biol 7:1. [CrossRef]
176. Voelker TA, Davies HM. 1994. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol 176:7320–7327.[PubMed]
177. Spencer AK, Greenspan AD, Cronan JE Jr. 1978. Thioesterases I and II of Escherichia coli. Hydrolysis of native acyl-acyl carrier protein thioesters. J Biol Chem 253:5922–5926.[PubMed]
178. Barnes EM Jr, Wakil SJ. 1968. Studies on the mechanism of fatty acid synthesis. XIX. Preparation and general properties of palmityl thioesterase. J Biol Chem 243:2955–2962.[PubMed]
179. Cho H, Cronan JE Jr. 1993. Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. J Biol Chem 268:9238–9245.[PubMed]
180. Cho H, Cronan JE Jr. 1995. Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J Biol Chem 270:4216–4219. [PubMed][CrossRef]
181. Klinke S, Ren Q, Witholt B, Kessler B. 1999. Production of medium-chain-length poly(3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli. Appl Environ Microbiol 65:540–548.[PubMed]
182. Cronan JE Jr. 1997. In vivo evidence that acyl coenzyme A regulates DNA binding by the Escherichia coli FadR global transcription factor. J Bacteriol 179:1819–1823.[PubMed]
183. Cho H, Cronan JE Jr. 1994. “Protease I” of Escherichia coli functions as a thioesterase in vivo. J Bacteriol 176:1793–1795.[PubMed]
184. Ichihara S, Matsubara Y, Kato C, Akasaka K, Mizushima S. 1993. Molecular cloning, sequencing, and mapping of the gene encoding protease I and characterization of proteinase and proteinase-defective Escherichia coli mutants. J Bacteriol 175:1032–1037.[PubMed]
185. Kragelund BB, Knudsen J, Poulsen FM. 1999. Acyl-coenzyme A binding protein (ACBP). Biochim Biophys Acta 1441:150–161.[PubMed]
186. Lawson DM, Derewenda U, Serre L, Ferri S, Szittner R, Wei Y, Meighen EA, Derewenda ZS. 1994. Structure of a myristoyl-ACP-specific thioesterase from Vibrio harveyi. Biochemistry 33:9382–9388. [PubMed][CrossRef]
187. Li J, Szittner R, Derewenda ZS, Meighen EA. 1996. Conversion of serine-114 to cysteine-114 and the role of the active site nucleophile in acyl transfer by myristoyl-ACP thioesterase from Vibrio harveyi. Biochemistry 35:9967–9973. [PubMed][CrossRef]
188. Karasawa K, Yokoyama K, Setaka M, Nojima S. 1999. The Escherichia coli pldC gene encoding lysophospholipase L(1) is identical to the apeA and tesA genes encoding protease I and thioesterase I, respectively. J Biochem (Tokyo) 126:445–448.[PubMed]
189. Doi O, Nojima S. 1975. Lysophospholipase of Escherichia coli. J Biol Chem 250:5208–5214.[PubMed]
190. Lo YC, Lin SC, Shaw JF, Liaw YC. 2003. Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol 330:539–551. [PubMed][CrossRef]
191. Lee LC, Lee YL, Leu RJ, Shaw JF. 2006. Functional role of catalytic triad and oxyanion hole-forming residues on enzyme activity of Escherichia coli thioesterase I/protease I/phospholipase L1. Biochem J 397:69–76. [PubMed][CrossRef]
192. Lee LC, Liaw YC, Lee YL, Shaw JF. 2007. Enhanced preference for pi-bond containing substrates is correlated to Pro110 in the substrate-binding tunnel of Escherichia coli thioesterase I/protease I/lysophospholipase L(1). Biochim Biophys Acta 1774:959–967.[PubMed]
193. Tyukhtenko SI, Litvinchuk AV, Chang CF, Lo YC, Lee SJ, Shaw JF, Liaw YC, Huang TH. 2003. Sequential structural changes of Escherichia coli thioesterase/protease I in the serial formation of Michaelis and tetrahedral complexes with diethyl p-nitrophenyl phosphate. Biochemistry 42:8289–8297. [PubMed][CrossRef]
194. Bonner WM, Bloch K. 1972. Purification and properties of fatty acyl thioesterase I from Escherichia coli. J Biol Chem 247:3123–3133.[PubMed]
195. Narasimhan ML, Lampi JL, Cronan JE Jr. 1986. Genetic and biochemical characterization of an Escherichia coli K-12 mutant deficient in acyl-coenzyme A thioesterase II. J Bacteriol 165:911–917.[PubMed]
196. Liu LX, Heveker N, Fackler OT, Arold S, Le Gall S, Janvier K, Peterlin BM, Dumas C, Schwartz O, Benichou S, Benarous R. 2000. Mutation of a conserved residue (D123) required for oligomerization of human immunodeficiency virus type 1 Nef protein abolishes interaction with human thioesterase and results in impairment of Nef biological functions. J Virol 74:5310–5319. [PubMed][CrossRef]
197. Liu LX, Margottin F, Le Gall S, Schwartz O, Selig L, Benarous R, Benichou S. 1997. Binding of HIV-1 Nef to a novel thioesterase enzyme correlates with Nef-mediated CD4 down-regulation. J Biol Chem 272:13779–13785. [PubMed][CrossRef]
198. Li J, Derewenda U, Dauter Z, Smith S, Derewenda ZS. 2000. Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme. Nat Struct Biol 7:555–559. [PubMed][CrossRef]
199. Zheng Z, Gong Q, Liu T, Deng Y, Chen JC, Chen GQ. 2004. Thioesterase II of Escherichia coli plays an important role in 3-hydroxydecanoic acid production. Appl Environ Microbiol 70:3807–3813. [PubMed][CrossRef]
200. Kaplan A, Boyer PD. 1968. Catalysis of water oxygen and of acetate incorporation into fatty acids by Escherichia coli fatty acid synthetase. J Biol Chem 243:4077–4082.[PubMed]
201. Monson KD, Hayes JM. 1980. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. Evidence regarding the coupling of fatty acid and phospholipid synthesis. J Biol Chem 255:11435–11441.[PubMed]
202. Larson T, Ehrmann M, Boos W. 1883. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem 258:5428–5432.
203. Heath RJ, Jackowski S, Rock CO. 1994. Guanosine tetraphosphate inhibition of fatty acid and phospholipid synthesis in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase (plsB). J Biol Chem 269:26584–26590.[PubMed]
204. Mindich L. 1972. Control of fatty acid synthesis in bacteria. J Bacteriol 110:96–102.[PubMed]
205. Cronan JE Jr, Weisberg LJ, Allen RG. 1975. Regulation of membrane lipid synthesis in Escherichia coli. Accumulation of free fatty acids of abnormal length during inhibition of phospholipid synthesis. J Biol Chem 250:5835–5840.[PubMed]
206. Cooper CL, Jackowski S, Rock CO. 1987. Fatty acid metabolism in sn-glycerol-3-phosphate acyltransferase (plsB) mutants. J Bacteriol 169:605–611.[PubMed]
207. Nunn WD, Kelly DL, Stumfall MY. 1977. Regulation of fatty acid synthesis during the cessation of phospholipid biosynthesis in Escherichia coli. J Bacteriol 132:526–531.[PubMed]
208. Barbin A, Peypoux F, Michel G. 1970. Composition phospholipidique de mutants thermosensibles d'Escherichia coli K 12. Biochim Biophys Acta 218:453–462.[PubMed]
209. Cronan JE Jr. 1968. Phospholipid alterations during growth of Escherichia coli. J Bacteriol 95:2054–2061.[PubMed]
210. Dormann P, Voelker TA, Ohlrogge JB. 1995. Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins. Arch Biochem Biophys 316:612–618. [PubMed][CrossRef]
211. Klein K, Steinberg R, Fiethen B, Overath P. 1971. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem 19:442–450. [PubMed][CrossRef]
212. Morgan-Kiss RM, Cronan JE. 2004. The Escherichia coli fadK (ydiD) gene encodes an anaerobically regulated short chain acyl-CoA synthetase. J Biol Chem 279:37324–37333. [PubMed][CrossRef]
213. Heath RJ, Rock CO. 1996. Inhibition of β-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia col. J Biol Chem 271:10996–11000. [PubMed][CrossRef]
214. Heath RJ, Rock CO. 1996. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J Biol Chem 271:1833–1836. [PubMed][CrossRef]
215. Marr AG, Ingraham JL. 1962. Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84:1260–1267.[PubMed]
216. Garwin JL, Cronan JE Jr. 1980. Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis. J Bacteriol 141:1457–1459.[PubMed]
217. de Mendoza D, Garwin JL, Cronan JE Jr. 1982. Overproduction of cis-vaccenic acid and altered temperature control of fatty acid synthesis in a mutant of Escherichia coli. J Bacteriol 151:1608–1611.[PubMed]
218. Tsay JT, Oh W, Larson TJ, Jackowski S, Rock CO. 1992. Isolation and characterization of the β-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J Biol Chem 267:6807–6814.[PubMed]
219. Kito M, Lubin M, Pizer LI. 1969. A mutant of Escherichia coli defective in phosphatidic acid synthesis. Biochem Biophys Res Commun 34:454–458. [PubMed][CrossRef]
220. Kito M, Pizer LI. 1969. Phosphatidic acid synthesis in Escherichia coli. J Bacteriol 97:1321–1327.[PubMed]
221. Kito M, Pizer LI. 1969. Purification and regulatory properties of the biosynthetic L-glycerol 3-phosphate dehydrogenase from Escherichia coli. J Biol Chem 244:3316–3323.[PubMed]
222. Cronan JE Jr, Bell RM. 1974. Mutants of Escherichia coli defective in membrane phospholipid synthesis: mapping of sn-glycerol 3-phosphate acyltransferase Km mutants. J Bacteriol 120:227–233.[PubMed]
223. Bell RM, Cronan JE Jr. 1975. Mutants of Escherichia coli defective in membrane phospholipid synthesis. Phenotypic suppression of sn-glycerol-3-phosphate acyltransferase Km mutants by loss of feedback inhibition of the biosynthetic sn-glycerol-3-phosphate dehydrogenase. J Biol Chem 250:7153–7158.[PubMed]
224. Goelz SE, Cronan JE Jr. 1980. The positional distribution of fatty acids in Escherichia coli phospholipids is not regulated by sn-glycerol 3-phosphate levels. J Bacteriol 144:462–464.[PubMed]
225. Bell RM. 1975. Mutants of Escherichia coli defective in membrane phospholipid synthesis. Properties of wild type and Km defective sn-glycerol-3-phosphate acyltransferase activities. J Biol Chem 250:7147–7152.[PubMed]
226. Heath RJ, Rock CO. 1998. A conserved histidine is essential for glycerolipid acyltransferase catalysis. J Bacteriol 180:1425–1430.[PubMed]
227. Larson TJ, Ludtke DN, Bell RM. 1984. sn-Glycerol-3-phosphate auxotrophy of plsB strains of Escherichia coli: evidence that a second mutation, plsX, is required. J Bacteriol 160:711–717.[PubMed]
228. Lu YJ, Zhang YM, Grimes KD, Qi J, Lee RE, Rock CO. 2006. Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens. Mol Cell 23:765–772. [PubMed][CrossRef]
229. Yoshimura M, Oshima T, Ogasawara N. 2007. Involvement of the YneS/YgiH and PlsX proteins in phospholipid biosynthesis in both Bacillus subtilis and Escherichia coli. BMC Microbiol 7:69. [CrossRef]
230. Heath RJ, Rock CO. 1999. A missense mutation accounts for the defect in the glycerol-3-phosphate acyltransferase expressed in the plsB26 mutant. J Bacteriol 181:1944–1946.[PubMed]
231. Polacco ML, Cronan JE Jr. 1977. Mechanism of the apparent regulation of Escherichia coli unsaturated fatty acid synthesis by exogenous oleic acid. J Biol Chem 252:5488–5490.[PubMed]
232. Coleman J. 1990. Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity. J Biol Chem 265:17215–17221.[PubMed]
233. Coleman J. 1992. Characterization of the Escherichia coli gene for 1-acyl-sn-glycerol-3-phosphate acyltransferase (plsC). Mol Gen Genet 232:295–303.[PubMed]
234. Brown AP, Coleman J, Tommey AM, Watson MD, Slabas AR. 1994. Isolation and characterization of a maize cDNA that complements a 1-acyl sn-glycerol-3-phosphate acyltransferase mutant of Escherichia coli and encodes a protein which has similarities to other acyltransferases. Plant Mol Biol 26:211–223. [PubMed][CrossRef]
235. Hanke C, Wolter FP, Coleman J, Peterek G, Frentzen M. 1995. A plant acyltransferase involved in triacylglycerol biosynthesis complements an Escherichia coli sn-1-acylglycerol-3-phosphate acyltransferase mutant. Eur J Biochem 232:806–810. [PubMed][CrossRef]
236. West J, Tompkins CK, Balantac N, Nudelman E, Meengs B, White T, Bursten S, Coleman J, Kumar A, Singer JW, Leung DW. 1997. Cloning and expression of two human lysophosphatidic acid acyltransferase cDNAs that enhance cytokine-induced signaling responses in cells. DNA Cell Biol 16:691–701.[PubMed]
237. Heath RJ, Goldfine H, Rock CO. 1997. A gene (plsD) from Clostridium butyricum that functionally substitutes for the sn-glycerol-3-phosphate acyltransferase gene (plsB) of Escherichia coli. J Bacteriol 179:7257–7263.[PubMed]
238. Icho T. 1988. Membrane-bound phosphatases in Escherichia coli: sequence of the pgpB gene and dual subcellular localization of the pgpB product. J Bacteriol 170:5117–5124.[PubMed]
239. Rock CO, Goelz SE, Cronan JE Jr. 1981. Phospholipid synthesis in Escherichia coli. Characteristics of fatty acid transfer from acyl-acyl carrier protein to sn-glycerol 3-phosphate. J Biol Chem 256:736–742.[PubMed]
240. Carter JR Jr. 1968. Cytidine triphosphate: phosphatidic acid cytidyltransferase in Escherichia coli. J Lipid Res 9:748–754.[PubMed]
241. Kanfer J, Kennedy EP. 1964. Metabolism and function of bacterial lipids. II. biosynthesis of phospholipids in Escherichia coli. J Biol Chem 239:1720–1726.[PubMed]
242. Tunaitis E, Cronan JE Jr. 1973. Characterization of the cardiolipin synthetase activity of Escherichia coli envelopes. Arch Biochem Biophys 155:420–427. [PubMed][CrossRef]
243. Raetz CR, Kennedy EP. 1973. Function of cytidine diphosphate-diglyceride and deoxycytidine diphosphate-diglyceride in the biogenesis of membrane lipids in Escherichia coli. J Biol Chem 248:1098–1105.[PubMed]
244. Dowhan W. 1997. CDP-diacylglycerol synthase of microorganisms. Biochim Biophys Acta 1348:157–165.[PubMed]
245. Ganong BR, Leonard JM, Raetz CR. 1980. Phosphatidic acid accumulation in the membranes of Escherichia coli mutants defective in CDP-diglyceride synthetase. J Biol Chem 255:1623–1629.[PubMed]
246. Ganong BR, Raetz CR. 1982. Massive accumulation of phosphatidic acid in conditionally lethal CDP-diglyceride synthetase mutants and cytidine auxotrophs of Escherichia coli. J Biol Chem 257:389–394.[PubMed]
247. Ganong BR, Raetz CR. 1983. pH-sensitive CDP-diglyceride synthetase mutants of Escherichia coli: phenotypic suppression by mutations at a second site. J Bacteriol 153:731–738.[PubMed]
248. Vance JE. 2003. Molecular and cell biology of phosphatidylserine and phosphatidylethanolamine metabolism. Prog Nucleic Acid Res Mol Biol 75:69–111. [PubMed][CrossRef]
249. Louie K, Dowhan W. 1980. Investigations on the association of phosphatidylserine synthase with the ribosomal component from Escherichia coli. J Biol Chem 255:1124–1127.[PubMed]
250. Linde K, Gröbner G, Rilfors L. 2004. Lipid dependence and activity control of phosphatidylserine synthase from Escherichia coli. FEBS Lett 575:77–80. [PubMed][CrossRef]
251. Louie K, Chen YC, Dowhan W. 1986. Substrate-induced membrane association of phosphatidylserine synthase from Escherichia coli. J Bacteriol 165:805–812.[PubMed]
252. Rilfors L, Niemi A, Haraldsson S, Edwards K, Andersson AS, Dowhan W. 1999. Reconstituted phosphatidylserine synthase from Escherichia coli is activated by anionic phospholipids and micelle-forming amphiphiles. Biochim Biophys Acta 1438:281–294.[PubMed]
253. Raetz CR, Carman GM, Dowhan W, Jiang RT, Waszkuc W, Loffredo W, Tsai MD. 1987. Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast. Biochemistry 26:4022–4027. [PubMed][CrossRef]
254. Satre M, Kennedy EP. 1978. Identification of bound pyruvate essential for the activity of phosphatidylserine decarboxylase of Escherichia coli. J Biol Chem 253:479–483.[PubMed]
255. Dowhan W, Li QX. 1992. Phosphatidylserine decarboxylase from Escherichia coli. Methods Enzymol 209:348–359. [PubMed][CrossRef]
256. Li QX, Dowhan W. 1990. Studies on the mechanism of formation of the pyruvate prosthetic group of phosphatidylserine decarboxylase from Escherichia coli. J Biol Chem 265:4111–4115.[PubMed]
257. Hawrot E, Kennedy EP. 1975. Biogenesis of membrane lipids: mutants of Escherichia coli with temperature-sensitive phosphatidylserine decarboxylase. Proc Natl Acad Sci USA 72:1112–1116. [PubMed][CrossRef]
258. Hawrot E, Kennedy EP. 1976. Conditional lethal phosphatidylserine decarboxylase mutants of Escherichia coli. Mapping of the structural gene for phosphatidylserine decarboxylase. Mol Gen Genet 148:271–279. [PubMed][CrossRef]
259. Hawrot E, Kennedy EP. 1978. Phospholipid composition and membrane function in phosphatidylserine decarboxylase mutants of Escherichia coli. J Biol Chem 253:8213–8220.[PubMed]
260. Tyhach RJ, Hawrot E, Satre M, Kennedy EP. 1979. Increased synthesis of phosphatidylserine decarboxylase in a strain of Escherichia coli bearing a hybrid plasmid. Altered association of enzyme with the membrane. J Biol Chem 254:627–633.[PubMed]
261. DeChavigny A, Heacock PN, Dowhan W. 1991. Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem 266:10710.
262. Dowhan W, Mileykovskaya E, Bogdanov M. 2004. Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta 1666:19–39. [PubMed][CrossRef]
263. Homma H, Nishijima M, Kobayashi T, Okuyama H, Nojima S. 1981. Incorporation and metabolism of 2-acyl lysophospholipids by Escherichia coli. Biochim Biophys Acta 663:1–13.[PubMed]
264. Ray TK, Cronan JE Jr. 1976. Activation of long chain fatty acids with acyl carrier protein: demonstration of a new enzyme, acyl-acyl carrier protein synthetase, in Escherichia coli. Proc Natl Acad Sci USA 73:4374–4378. [PubMed][CrossRef]
265. Cooper CL, Hsu L, Jackowski S, Rock CO. 1989. 2-Acylglycerolphosphoethanolamine acyltransferase/acyl-acyl carrier protein synthetase is a membrane-associated acyl carrier protein binding protein. J Biol Chem 264:7384–7389.[PubMed]
266. Rock CO, Cronan JE Jr. 1979. Solubilization, purification, and salt activation of acyl-acyl carrier protein synthetase from Escherichia coli. J Biol Chem 254:7116–7122.[PubMed]
267. Rock CO, Jackowski S. 1985. Pathways for the incorporation of exogenous fatty acids into phosphatidylethanolamine in Escherichia coli. J Biol Chem 260:12720–12724.[PubMed]
268. Shanklin J. 2000. Overexpression and purification of the Escherichia coli inner membrane enzyme acyl-acyl carrier protein synthase in an active form. Protein Expr Purif 18:355–360. [PubMed][CrossRef]
269. Hsu L, Jackowski S, Rock CO. 1991. Isolation and characterization of Escherichia coli K-12 mutants lacking both 2-acyl-glycerophosphoethanolamine acyltransferase and acyl-acyl carrier protein synthetase activity. J Biol Chem 266:13783–13788.[PubMed]
270. Jackowski S, Hsu L, Rock CO. 1992. 2-Acylglycerophosphoethanolamine acyltransferase/acyl-[acyl-carrier- protein] synthetase from Escherichia coli. Methods Enzymol 209:111–117. [PubMed][CrossRef]
271. Dowhan W. 1992. Phosphatidylglycerophosphate synthase from Escherichia coli. Methods Enzymol 209:313–321. [PubMed][CrossRef]
272. Shopsis CS, Engel R, Tropp BE. 1974. The inhibition of phosphatidylglycerol synthesis in Escherichia coli by 3,4-dihydroxybutyl-1-phosphonate. J Biol Chem 249:2473–2477.[PubMed]
273. Ke L, Engel R, Tropp BE. 1992. The phosphonic acid analog of phosphatidylglycerol phosphate: influence on Escherichia coli growth and physiology. Biochim Biophys Acta 1128:250–257.[PubMed]
274. Heacock PN, Dowhan W. 1987. Construction of a lethal mutation in the synthesis of the major acidic phospholipids of Escherichia coli. J Biol Chem 262:13044–13049.[PubMed]
275. Nagahama H, Oshima T, Mori H, Matsumoto K, Hara H. 2007. Hyperexpression of the osmB gene in an acidic phospholipid-deficient Escherichia coli mutant. J Gen Appl Microbiol 53:143–151. [PubMed][CrossRef]
276. Nagahama H, Sakamoto Y, Matsumoto K, Hara H. 2006. RcsA-dependent and -independent growth defects caused by the activated Rcs phosphorelay system in the Escherichia coli pgsA null mutant. J Gen Appl Microbiol 52:91–98. [PubMed][CrossRef]
277. Dillon DA, Wu WI, Riedel B, Wissing JB, Dowhan W, Carman GM. 1996. The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J Biol Chem 271:30548–30553. [PubMed][CrossRef]
278. Dowhan W, Funk CR. 1992. Phosphatidylglycerophosphate phosphatase from Escherichia coli. Methods Enzymol 209:224–230. [PubMed][CrossRef]
279. Funk CR, Zimniak L, Dowhan W. 1992. The pgpA and pgpB genes of Escherichia coli are not essential: evidence for a third phosphatidylglycerophosphate phosphatase. J Bacteriol 174:205–213.[PubMed]
280. El Ghachi M, Derbise A, Bouhss A, Mengin-Lecreulx D. 2005. Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli. J Biol Chem 280:18689–18695. [PubMed][CrossRef]
281. Nishijima S, Asami Y, Uetake N, Yamagoe S, Ohta A, Shibuya I. 1988. Disruption of the Escherichia coli cls gene responsible for cardiolipin synthesis. J Bacteriol 170:775–780.[PubMed]
282. Tropp BE. 1997. Cardiolipin synthase from Escherichia coli. Biochim Biophys Acta 1348:192–200.[PubMed]
283. Hirschberg CB, Kennedy EP. 1972. Mechanism of the enzymatic synthesis of cardiolipin in Escherichia coli. Proc Natl Acad Sci USA 69:648–651. [PubMed][CrossRef]
284. Pluschke G, Hirota Y, Overath P. 1978. Function of phospholipids in Escherichia coli. Characterization of a mutant deficient in cardiolipin synthesis. J Biol Chem 253:5048–5055.[PubMed]
285. Shibuya I, Miyazaki C, Ohta A. 1985. Alteration of phospholipid composition by combined defects in phosphatidylserine and cardiolipin synthases and physiological consequences in Escherichia coli. J Bacteriol 161:1086–1092.[PubMed]
286. Hiraoka S, Matsuzaki H, Shibuya I. 1993. Active increase in cardiolipin synthesis in the stationary growth phase and its physiological significance in Escherichia coli. FEBS Lett 336:221–224. [PubMed][CrossRef]
287. Tropp BE, Ragolia L, Xia W, Dowhan W, Milkman R, Rudd KE, Ivanisevic R, Savic DJ. 1995. Identity of the Escherichia coli cls and nov genes. J Bacteriol 177:5155–5157.[PubMed]
288. Guo D, Tropp BE. 2000. A second Escherichia coli protein with CL synthase activity. Biochim Biophys Acta 1483:263–274.[PubMed]
289. Shibuya I, Yamagoe S, Miyazaki C, Matsuzaki H, Ohta A. 1985. Biosynthesis of novel acidic phospholipid analogs in Escherichia coli. J Bacteriol 161:473–477.[PubMed]
290. Grogan DW, Cronan JE Jr. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441.[PubMed]
291. Chang YY, Cronan JE Jr. 1999. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33:249–259. [PubMed][CrossRef]
292. Grogan DW, Cronan JE Jr. 1986. Characterization of Escherichia coli mutants completely defective in synthesis of cyclopropane fatty acids. J Bacteriol 166:872–877.[PubMed]
293. Kim BH, Kim S, Kim HG, Lee J, Lee IS, Park YK. 2005. The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. Microbiology 151:209–218. [PubMed][CrossRef]
294. Wang AY, Grogan DW, Cronan JE Jr. 1992. Cyclopropane fatty acid synthase of Escherichia coli: deduced amino acid sequence, purification, and studies of the enzyme active site. Biochemistry 31:11020–11028. [PubMed][CrossRef]
295. Courtois F, Guerard C, Thomas X, Ploux O. 2004. Escherichia coli cyclopropane fatty acid synthase. Eur J Biochem 271:4769–4778. [PubMed][CrossRef]
296. Iwig DF, Grippe AT, McIntyre TA, Booker SJ. 2004. Isotope and elemental effects indicate a rate-limiting methyl transfer as the initial step in the reaction catalyzed by Escherichia coli cyclopropane fatty acid synthase. Biochemistry 43:13510–13524. [PubMed][CrossRef]
297. Wang AY, Cronan JE Jr. 1994. The growth phase-dependent synthesis of cyclopropane fatty acids in Escherichia coli is the result of an RpoS(KatF)-dependent promoter plus enzyme instability. Mol Microbiol 11:1009–1017. [PubMed][CrossRef]
298. Chang YY, Eichel J, Cronan JE Jr. 2000. Metabolic instability of Escherichia coli cyclopropane fatty acid synthase is due to RpoH-dependent proteolysis. J Bacteriol 182:4288–4294. [PubMed][CrossRef]
299. Guianvarc'h D, Drujon T, Leang TE, Courtois F, Ploux O. 2006. Identification of new inhibitors of Escherichia coli cyclopropane fatty acid synthase using a colorimetric assay. Biochim Biophys Acta 1764:1381–1388.[PubMed]
300. Courtois F, Ploux O. 2005. Escherichia coli cyclopropane fatty acid synthase: is a bound bicarbonate ion the active-site base? Biochemistry 44:13583–13590. [PubMed][CrossRef]
301. Iwig DF, Uchida A, Stromberg JA, Booker SJ. 2005. The activity of Escherichia coli cyclopropane fatty acid synthase depends on the presence of bicarbonate. J Am Chem Soc 127:11612–11613. [PubMed][CrossRef]
302. Wang J, Soisson SM, Young K, Shoop W, Kodali S, Galgoci A, Painter R, Parthasarathy G, Tang YS, Cummings R, Ha S, Dorso K, Motyl M, Jayasuriya H, Ondeyka J, Herath K, Zhang C, Hernandez L, Allocco J, Basilio A, Tormo JR, Genilloud O, Vicente F, Pelaez F, Colwell L, Lee SH, Michael B, Felcetto T, Gill C, Silver LL, Hermes JD, Bartizal K, Barrett J, Schmatz D, Becker JW, Cully D, Singh SB. 2006. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441:358–361. [PubMed][CrossRef]
303. Freiberg C, Pohlmann J, Nell PG, Endermann R, Schuhmacher J, Newton B, Otteneder M, Lampe T, Habich D, Ziegelbauer K. 2006. Novel bacterial acetyl coenzyme A carboxylase inhibitors with antibiotic efficacy in vivo. Antimicrob Agents Chemother 50:2707–2712. [PubMed][CrossRef]
304. Freiberg C, Brunner NA, Schiffer G, Lampe T, Pohlmann J, Brands M, Raabe M, Habich D, Ziegelbauer K. 2004. Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J Biol Chem 279:26066–26073. [PubMed][CrossRef]
305. Mackay JP, Sunde M, Lowry JA, Crossley M, Matthews JM. 2007. Protein interactions: is seeing believing? Trends Biochem. Sci 32:530–531. [PubMed][CrossRef]
306. Seyfzadeh M, Keener J, Nomura M. 1993. spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. Proc Natl Acad Sci USA 90:11004–11008. [PubMed][CrossRef]
307. Battesti A, Bouveret E. 2006. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol 62:1048–1063. [PubMed][CrossRef]
308. Jackowski S, Murphy CM, Cronan JE Jr, Rock CO. 1989. Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. J Biol Chem 264:7624–7629.[PubMed]
309. Zhuang Z, Song F, Martin BM, Dunaway-Mariano D. 2002. The YbgC protein encoded by the ybgC gene of the tol-pal gene cluster of Haemophilus influenzae catalyzes acyl-coenzyme A thioester hydrolysis. FEBS Lett 516:161–163. [PubMed][CrossRef]
310. Kang Y, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM, Blattner FR. 2004. Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930. [PubMed][CrossRef]
311. Crawford MJ, Thomsen-Zieger N, Ray M, Schachtner J, Roos DS, Seeber F. 2006. Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J 25:3214–3222. [PubMed][CrossRef]
312. Seeber F, Aliverti A, Zanetti G. 2005. The plant-type ferredoxin-NADP+ reductase/ferredoxin redox system as a possible drug target against apicomplexan human parasites. Curr Pharm Des 11:3159–3172. [PubMed][CrossRef]
313. Thomsen-Zieger N, Schachtner J, Seeber F. 2003. Apicomplexan parasites contain a single lipoic acid synthase located in the plastid. FEBS Lett 547:80–86. [PubMed][CrossRef]
314. Tehlivets O, Scheuringer K, Kohlwein SD. 2007. Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255–270.[PubMed]
315. Marrakchi H, Choi KH, Rock CO. 2002. A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem 277:44809–44816. [PubMed][CrossRef]
316. Zhang YM, Zhu K, Frank MW, Rock CO. 2007. A Pseudomonas aeruginosa transcription factor that senses fatty acid structure. Mol Microbiol 66:622–632. [PubMed][CrossRef]
317. Massengo-Tiasse RP, Cronan JE. 2008. Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. J Biol Chem 283:1308–1316. [PubMed][CrossRef]
318. Zhang YM, Lu YJ, Rock CO. 2004. The reductase steps of the type II fatty acid synthase as antimicrobial targets. Lipids 39:1055–1060. [PubMed][CrossRef]
319. Heath RJ, Rock CO. 2000. A triclosan-resistant bacterial enzyme. Nature 406:145–146. [PubMed][CrossRef]
ecosalplus.3.6.4.citations
ecosalplus/3/1
content/journal/ecosalplus/10.1128/ecosalplus.3.6.4
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.3.6.4
2008-10-07
2017-07-29

Abstract:

The pathways in and (largely by analogy) remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of and for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The first committed step in fatty acid synthesis is the formation of malonyl-CoA by acetyl-CoA carboxylase (ACC). The overall ACC reaction proceeds by two half reactions. First, AccC activates CO and carboxylates biotin attached to AccB. The AccAD complex then carboxylates acetyl-CoA to malonyl-CoA. Malonyl-CoA is converted to malonyl-ACP by malonyl transacylase (FabD). Fatty acid synthesis is initiated by FabH, which condenses malonyl-ACP with acetyl-CoA. An important reaction is the conversion of the primary gene product, apo-ACP, to ACP by the transfer of the 4′-phosphopantetheine (P-PanSH) group from CoA to serine-36 of the protein by AcpS. The ACP prosthetic group also undergoes metabolic turnover through hydrolysis of the prosthetic group by ACP hydrolase, AcpH.

Citation: Cronan, Jr. J, Rock C. 2008. Biosynthesis of Membrane Lipids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

There are four steps in fatty acid elongation. Each new cycle of 2-carbon elongation is initiated by the condensation of acyl-ACP and malonyl-ACP by one of the elongation condensing enzymes, FabB or FabF. The next step is the reduction of the 3-ketoacyl-ACP by the NADPH-dependent FabG. This 3-hydroxylacyl-ACP is dehydrated to -2-acyl-ACP by FabZ. The final step is the NADH-dependent reduction of enoyl-ACP to acyl-ACP by FabI.

Citation: Cronan, Jr. J, Rock C. 2008. Biosynthesis of Membrane Lipids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Unsaturated fatty acids arise from a branch in the biosynthetic pathway at the 3-hydroxydecanoyl-ACP intermediate. FabA is a unique 3-hydroxyacyl-ACP dehydratase that is capable of forming -2-decenoyl-ACP and isomerizing this intermediate to -3-decenoyl-ACP. FabA is very selective for the 10-carbon substrates in vivo. FabB is absolutely required for the subsequent elongation of -3-decenoyl-ACP to 16:1-ACP. Interestingly, 16:1-ACP is a poor substrate for FabB, and its elongation to 18:1-ACP is controlled by the activity of FabF. FabF is a naturally temperature-sensitive enzyme, and this property accounts for the greater proportion of 18:1 in bacteria grown at low temperatures compared with those grown at higher temperatures. The -3-decenoyl-ACP is used by FabI followed by elongation by either FabB or FabF to form palmitic acid, the major saturated fatty acid in .

Citation: Cronan, Jr. J, Rock C. 2008. Biosynthesis of Membrane Lipids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

There are two acyltransferase systems in and other bacteria. The glycerol-P backbone is supplied from dihydroxyacetone phosphate (DHAP) by glycerol-P synthase (GpsA). The predominant pathway for G3P acylation is the PlsB acyltransferase that transfers the acyl-ACP end products of fatty acid biosynthesis to position 1 of G3P, forming 1-acyl-G3P (LPA). is capable of converting exogenous fatty acids to acyl-CoA, which are also excellent substrates for the PlsB acyltransferase. A minor route in is PlsY. This acyltransferase exclusively uses acyl-phosphate as a substrate, which is generated from acyl-ACP by PlsX. The acylation of LPA is catalyzed by PlsC, an acyltransferase that is capable of utilizing both acyl-ACP and acyl-CoA. GpsA, PlsB, and PlsC are essential enzymes in .

Citation: Cronan, Jr. J, Rock C. 2008. Biosynthesis of Membrane Lipids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

CDP-diacylglycerol is the key intermediate in the formation of phospholipids in bacteria that is produced from phosphatidic acid by CDP-diacylglycerol synthase (Cds). The major phospholipid in is phosphatidylethanolamine (PE), which is formed by the exchange of serine (Ser) for the CMP of CDP-diacylglycerol catalyzed by phosphatidylserine (PS) synthase (PssA). PS is a short-lived intermediate that is rapidly decarboxylated to PE by PS decarboxylase (Psd). The second most abundant phospholipid, phosphatidylglycerol (PG), is formed from CDP-diacylglycerol by the exchange of G3P for CMP to form phosphatidylglycerol-P (PgsA). This intermediate is rapidly dephosphorylated by one of two phosphatases, PgpA and PgpB, to form PG, although other enzymes can perform this reaction (see text). Cardiolipin (CL) is produced from the condensation of two PG molecules by CL synthase (Cls).

Citation: Cronan, Jr. J, Rock C. 2008. Biosynthesis of Membrane Lipids, EcoSal Plus 2008; doi:10.1128/ecosalplus.3.6.4
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error