1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 4:

Synthesis and Processing of Macromolecules

Translation Initiation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Yves Mechulam1, Sylvain Blanquet2, and Emmanuelle Schmitt3
  • Editor: Susan T. Lovett4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Laboratoire de Biochimie, Ecole Polytechnique, CNRS, UMR 7654, F-91128 Palaiseau cedex, France; 2: Laboratoire de Biochimie, Ecole Polytechnique, CNRS, UMR 7654, F-91128 Palaiseau cedex, France; 3: Laboratoire de Biochimie, Ecole Polytechnique, CNRS, UMR 7654, F-91128 Palaiseau cedex, France; 4: Brandeis University, Waltham, MA
  • Received 06 January 2011 Accepted 23 March 2011 Published 09 June 2011
  • Address correspondence to Yves Mechulam yves@botrytis.polytechnique.fr
image of Translation Initiation
    Preview this reference work article:
    Zoom in
    Zoomout

    Translation Initiation, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/4/2/4_2_2_module-1.gif /docserver/preview/fulltext/ecosalplus/4/2/4_2_2_module-2.gif
  • Abstract:

    Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNA base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria

  • Citation: Mechulam Y, Blanquet S, Schmitt E. 2011. Translation Initiation, EcoSal Plus 2011; doi:10.1128/ecosalplus.4.2.2

Key Concept Ranking

Translation Initiation
0.651013
Gene Expression
0.56486404
Translation Termination
0.53167284
Initiation Complex
0.5018485
Translation Elongation
0.4975259
Chemicals
0.49372318
Elongation Factor Tu
0.47451964
0.651013

References

1. Mukundan MA, Dewey JW, Hershey KF, Thach RE. 1968. Binding of formylmethionyl-tRNA to 30S ribosomal sub-units. Nature 217:1013–1016. [PubMed][CrossRef]
2. Antoun A, Pavlov MY, Lovmar M, Ehrenberg M. 2006. How initiation factors maximize the accuracy of tRNA selection in initiation of bacterial protein synthesis. Mol Cell 23:183–193. [PubMed][CrossRef]
3. Antoun A, Pavlov MY, Lovmar M, Ehrenberg M. 2006. How initiation factors tune the rate of initiation of protein synthesis in bacteria. EMBO J 25:2539–2550. [PubMed][CrossRef]
4. Gualerzi C, Risuleo G, Pon C. 1979. Mechanism of the spontaneous and initiation factor 3-induced dissociation of 30 S.aminoacyl-tRNA.polynucleotide ternary complexes. J Biol Chem 254:44–49. [PubMed]
5. Gualerzi C, Risuleo G, Pon CL. 1977. Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3. Biochemistry 16:1684–1689. [PubMed][CrossRef]
6. Gualerzi CO, Pon CL. 1990. Initiation of mRNA translation in prokaryotes. Biochemistry 29:5881–5889. [PubMed][CrossRef]
7. Hershey JW. 1987. Protein synthesis, p 613–647. In Neidhardt FC, Low KB, Magasanik B, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium. American Society for Microbiology, Washington, DC.
8. Agrawal RK, Sharma MR, Kiel MC, Hirokawa G, Booth TM, Spahn CM, Grassucci RA, Kaji A, Frank J. 2004. Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. Proc Natl Acad Sci USA 101:8900–8905. [PubMed][CrossRef]
9. Hirashima A, Kaji A. 1973. Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid. J Biol Chem 248:7580–7587. [PubMed]
10. Hirokawa G, Kiel MC, Muto A, Selmer M, Raj VS, Liljas A, Igarashi K, Kaji H, Kaji A. 2002. Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. EMBO J 21:2272–2281. [PubMed][CrossRef]
11. Karimi R, Pavlov MY, Buckingham RH, Ehrenberg M. 1999. Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 3:601–609. [PubMed][CrossRef]
12. Pai RD, Zhang W, Schuwirth BS, Hirokawa G, Kaji H, Kaji A, Cate JH. 2008. Structural Insights into ribosome recycling factor interactions with the 70S ribosome. J Mol Biol 376:1334–1347. [PubMed][CrossRef]
13. Peske F, Rodnina MV, Wintermeyer W. 2005. Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell 18:403–412. [PubMed][CrossRef]
14. Pavlov MY, Antoun A, Lovmar M, Ehrenberg M. 2008. Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting. EMBO J 27:1706–1717. [PubMed][CrossRef]
15. Godefroy-Colburn T, Wolfe AD, Dondon J, Grunberg-Manago M, Dessen P, Pantaloni D. 1975. Light-scattering studies showing the effect of initiation factors on the reversible dissociation of E. coli ribosomes. J Mol Biol 94:461–478. [PubMed][CrossRef]
16. Shine J, Dalgarno L. 1974. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346. [PubMed][CrossRef]
17. Wintermeyer W, Gualerzi C. 1983. Effect of Escherichia coli initiation factors on the kinetics of N-Acphe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study. Biochemistry 22:690–694. [PubMed][CrossRef]
18. Calogero RA, Pon CL, Canonaco MA, Gualerzi CO. 1988. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc Natl Acad Sci USA 85:6427–6431. [PubMed][CrossRef]
19. Antoun A, Pavlov MY, Andersson K, Tenson T, Ehrenberg M. 2003. The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO J 22:5593–5601. [PubMed][CrossRef]
20. Grigoriadou C, Marzi S, Kirillov S, Gualerzi CO, Cooperman BS. 2007. A quantitative kinetic scheme for 70 S translation initiation complex formation. J Mol Biol 373:562–572. [PubMed][CrossRef]
21. Moll I, Grill S, Gualerzi CO, Blasi U. 2002. Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43:239–246. [PubMed][CrossRef]
22. Balakin AG, Skripkin EA, Shatsky IN, Bogdanov AA. 1992. Unusual ribosome binding properties of mRNA encoding bacteriophage lambda repressor. Nucleic Acids Res 20:563–571. [PubMed][CrossRef]
23. Brosius J, Palmer ML, Kennedy PJ, Noller HF. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805. [PubMed][CrossRef]
24. Lake JA. 1976. Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. J Mol Biol 105:131–139. [PubMed][CrossRef]
25. Tischendorf GW, Zeichhardt H, Stoffler G. 1974. Location of proteins S5, S13 and S14 on the surface of the 3oS ribosomal subunit from Escherichia coli as determined by immune electron microscopy. Mol Gen Genet 134:209–223. [PubMed][CrossRef]
26. Vasiliev VD, Selivanova OM, Baranov VI, Spirin AS. 1983. Structural study of translating 70 S ribosomes from Escherichia coli. I. Electron microscopy. FEBS Lett 155:167–172. [PubMed][CrossRef]
27. Gabashvili IS, Agrawal RK, Grassucci R, Frank J. 1999. Structure and structural variations of the Escherichia coli 30 S ribosomal subunit as revealed by three-dimensional cryo-electron microscopy. J Mol Biol 286:1285–1291. [PubMed][CrossRef]
28. Lata KR, Agrawal RK, Penczek P, Grassucci R, Zhu J, Frank J. 1996. Three-dimensional reconstruction of the Escherichia coli 30S ribosomal subunit in ice. J Mol Biol 262:43–52. [PubMed][CrossRef]
29. Trakhanov SD, Yusupov MM, Agalarov SC, Garber MB, Ryazantsev SN, Tischenko SV, Shirokov VA. 1987. Crystallization of 70S ribosomes and 30S ribosomal subunits from Thermus thermophilus. FEBS Lett 220:319–322. [CrossRef]
30. Yonath A, Glotz C, Gewitz HS, Bartels KS, von Bohlen K, Makowski I, Wittmann HG. 1988. Characterization of crystals of small ribosomal subunits. J Mol Biol 203:831–834. [PubMed][CrossRef]
31. Yonath A, Harms J, Hansen HA, Bashan A, Schlunzen F, Levin I, Koelln I, Tocilj A, Agmon I, Peretz M, Bartels H, Bennett WS, Krumbholz S, Janell D, Weinstein S, Auerbach T, Avila H, Piolleti M, Morlang S, Franceschi F. 1998. Crystallographic studies on the ribosome, a large macromolecular assembly exhibiting severe nonisomorphism, extreme beam sensitivity and no internal symmetry. Acta Crystallogr A 54:945–955. [PubMed][CrossRef]
32. Yusupov MM, Tischenko SV, Trakhanov SD, Ryazantsev SN, Garber MB. 1987. A new crystalline form of 30S ribosomal subunits from Thermus thermophilus. FEBS Lett 238:113–115. [CrossRef]
33. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A. 2000. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102:615–623. [PubMed][CrossRef]
34. Wimberly BT, Brodersen DE, Clemons WM, Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V. 2000. Structure of the 30S ribosomal subunit. Nature 407:327–339. [PubMed][CrossRef]
35. Yusupova GZ, Yusupov MM, Cate JH, Noller HF. 2001. The path of messenger RNA through the ribosome. Cell 106:233–241. [PubMed][CrossRef]
36. Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH. 2005. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310:827–834. [PubMed][CrossRef]
37. Zhang W, Dunkle JA, Cate JH. 2009. Structures of the ribosome in intermediate states of ratcheting. Science 325:1014–1017. [PubMed][CrossRef]
38. Yusupova G, Jenner L, Rees B, Moras D, Yusupov M. 2006. Structural basis for messenger RNA movement on the ribosome. Nature 444:391–394. [PubMed][CrossRef]
39. Schneider TD, Stormo GD, Gold L. 1986. Information content of binding sites on nucleotide sequences. J Mol Biol 188:415–431. [PubMed][CrossRef]
40. Barrick D, Villanueba K, Childs J, Kalil R, Schneider TD, Lawrence CE, Gold L, Stormo GD. 1994. Quantitative analysis of ribosome binding sites in E. coli. Nucleic Acids Res 22:1287–1295. [PubMed][CrossRef]
41. Dreyfus M. 1988. What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? J Mol Biol 204:79–94. [PubMed][CrossRef]
42. Hartz D, McPheeters DS, Gold L. 1991. Influence of mRNA determinants on translation initiation in Escherichia coli. J Mol Biol 218:83–97. [PubMed][CrossRef]
43. Chen H, Bjerknes M, Kumar R, Jay E. 1994. Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res 22:4953–4957. [PubMed][CrossRef]
44. Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, Gold L. 1992. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol 6:1219–1229. [PubMed][CrossRef]
45. Kaminishi T, Wilson DN, Takemoto C, Harms JM, Kawazoe M, Schluenzen F, Hanawa-Suetsugu K, Shirouzu M, Fucini P, Yokoyama S. 2007. A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction. Structure 15:289–297. [PubMed][CrossRef]
46. Blasi U, Nam K, Hartz D, Gold L, Young R. 1989. Dual translational initiation sites control function of the lambda S gene. EMBO J 8:3501–3510. [PubMed]
47. McPheeters DS, Christensen A, Young ET, Stormo G, Gold L. 1986. Translational regulation of expression of the bacteriophage T4 lysozyme gene. Nucleic Acids Res 14:5813–5826. [PubMed][CrossRef]
48. Ringquist S, MacDonald M, Gibson T, Gold L. 1993. Nature of the ribosomal mRNA track: analysis of ribosome-binding sites containing different sequences and secondary structures. Biochemistry 32:10254–10262. [PubMed][CrossRef]
49. de Smit MH, van Duin J. 1990. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87:7668–7672. [PubMed][CrossRef]
50. Jenner L, Romby P, Rees B, Schulze-Briese C, Springer M, Ehresmann C, Ehresmann B, Moras D, Yusupova G, Yusupov M. 2005. Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding. Science 308:120–123. [PubMed][CrossRef]
51. Nivinskas R, Malys N, Klausa V, Vaiskunaite R, Gineikiene E. 1999. Post-transcriptional control of bacteriophage T4 gene 25 expression: mRNA secondary structure that enhances translational initiation. J Mol Biol 288:291–304. [PubMed][CrossRef]
52. Sacerdot C, Caillet J, Graffe M, Eyermann F, Ehresmann B, Ehresmann C, Springer M, Romby P. 1998. The Escherichia coli threonyl-tRNA synthetase gene contains a split ribosomal binding site interrupted by a hairpin structure that is essential for autoregulation. Mol Microbiol 29:1077–1090. [PubMed][CrossRef]
53. de Smit MH, van Duin J. 1994. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J Mol Biol 244:144–150. [PubMed][CrossRef]
54. Darfeuille F, Unoson C, Vogel J, Wagner EG. 2007. An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell 26:381–392. [PubMed][CrossRef]
55. de Smit MH, van Duin J. 2003. Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol 331:737–743. [PubMed][CrossRef]
56. Hauryliuk V, Ehrenberg M. 2006. Two-step selection of mRNAs in initiation of protein synthesis. Mol Cell 22:155–156. [PubMed][CrossRef]
57. Studer SM, Joseph S. 2006. Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol Cell 22:105–115. [PubMed][CrossRef]
58. Boni IV, Isaeva DM, Musychenko ML, Tzareva NV. 1991. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res 19:155–162. [PubMed][CrossRef]
59. Draper DE, Reynaldo LP. 1999. RNA binding strategies of ribosomal proteins. Nucleic Acids Res 27:381–388. [PubMed][CrossRef]
60. Hook-Barnard IG, Brickman TJ, McIntosh MA. 2007. Identification of an AU-rich translational enhancer within the Escherichia coli fepB leader RNA. J Bacteriol 189:4028–4037. [PubMed][CrossRef]
61. Komarova AV, Tchufistova LS, Supina EV, Boni IV. 2002. Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation. RNA 8:1137–1147. [PubMed][CrossRef]
62. Ringquist S, Jones T, Snyder EE, Gibson T, Boni I, Gold L. 1995. High-affinity RNA ligands to Escherichia coli ribosomes and ribosomal protein S1: comparison of natural and unnatural binding sites. Biochemistry 34:3640–3648. [PubMed][CrossRef]
63. Sorensen MA, Fricke J, Pedersen S. 1998. Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J Mol Biol 280:561–569. [PubMed][CrossRef]
64. Komarova AV, Tchufistova LS, Dreyfus M, Boni IV. 2005. AU-rich sequences within 5′ untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J Bacteriol 187:1344–1349. [PubMed][CrossRef]
65. Skorski P, Leroy P, Fayet O, Dreyfus M, Hermann-Le Denmat S. 2006. The highly efficient translation initiation region from the Escherichia coli rpsA gene lacks a Shine-Dalgarno element. J Bacteriol 188:6277–6285. [PubMed][CrossRef]
66. Canonaco MA, Gualerzi CO, Pon CL. 1989. Alternative occupancy of a dual ribosomal binding site by mRNA affected by translation initiation factors. Eur J Biochem 182:501–506. [PubMed][CrossRef]
67. La Teana A, Gualerzi CO, Brimacombe R. 1995. From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. RNA 1:772–782. [PubMed]
68. Romby P, Springer M. 2003. Bacterial translational control at atomic resolution. Trends Genet 19:155–161. [PubMed][CrossRef]
69. Schlax PJ, Worhunsky DJ. 2003. Translational repression mechanisms in prokaryotes. Mol Microbiol 48:1157–1169.[PubMed]
70. Ehresmann C, Ehresmann B, Ennifar E, Dumas P, Garber M, Mathy N, Nikulin A, Portier C, Patel D, Serganov A. 2004. Molecular mimicry in translational regulation: the case of ribosomal protein S15. RNA Biol 1:66–73. [PubMed][CrossRef]
71. Philippe C, Eyermann F, Benard L, Portier C, Ehresmann B, Ehresmann C. 1993. Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc Natl Acad Sci USA 90:4394–4398. [PubMed][CrossRef]
72. Marzi S, Myasnikov AG, Serganov A, Ehresmann C, Romby P, Yusupov M, Klaholz BP. 2007. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130:1019–1031. [PubMed][CrossRef]
73. Simonetti A, Marzi S, Jenner L, Myasnikov A, Romby P, Yusupova G, Klaholz BP, Yusupov M. 2009. A structural view of translation initiation in bacteria. Cell Mol Life Sci 66:423–436. [PubMed][CrossRef]
74. Geigenmuller U, Nierhaus KH. 1990. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J 9:4527–4533. [PubMed]
75. Di Giacco V, Marquez V, Qin Y, Pech M, Triana-Alonso FJ, Wilson DN, Nierhaus KH. 2008. Shine-Dalgarno interaction prevents incorporation of noncognate amino acids at the codon following the AUG. Proc Natl Acad Sci USA 105:10715–10720. [PubMed][CrossRef]
76. Dutka S, Meinnel T, Lazennec C, Mechulam Y, Blanquet S. 1993. Role of the 1–72 base pair in tRNAs for the activity of Escherichia coli peptidyl-tRNA hydrolase. Nucleic Acids Res 21:4025–4030. [PubMed][CrossRef]
77. Kössel H, RajBhandary UL. 1968. Studies on polynucleotides. LXXXVI. Enzymic hydrolysis of N-acylaminoacyl-transfer RNA. J Mol Biol 35:539–560. [PubMed][CrossRef]
78. Menninger JR. 1979. Accumulation of peptidyl tRNA is lethal to Escherichia coli. J Bacteriol 137:694–696.
79. Schulman LH, Pelka H. 1975. The structural basis for the resistance of Escherichia coli formylmethionyl transfer ribonucleic acid to cleavage by Escherichia coli peptidyl transfer ribonucleic acid hydrolase. J Biol Chem 250:542–547. [PubMed]
80. Meinnel T, Mechulam Y, Blanquet S. 1993. Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie 75:1061–1075. [PubMed][CrossRef]
81. RajBhandary UL. 1994. Initiator transfer RNAs. J Bacteriol 176:547–552. [PubMed]
82. Meinnel T, Mechulam Y, Le Corre D, Panvert M, Blanquet S, Fayat G. 1991. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site. Proc Natl Acad Sci USA 88:291–295. [PubMed][CrossRef]
83. Schmitt E, Meinnel T, Panvert M, Mechulam Y, Blanquet S. 1993. Two acidic residues of Escherichia coli methionyl-transfer RNA synthetase act as negative discriminants towards the binding of non-cognate transfer RNA anticodons. J Mol Biol 233:615–628. [PubMed][CrossRef]
84. Schulman LH, Pelka H. 1983. Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase. Proc Natl Acad Sci USA 80:6755–6759. [PubMed][CrossRef]
85. Schulman LH, Pelka H. 1988. Anticodon switching changes the identity of methionine and valine transfer RNAs. Science 242:765–768. [PubMed][CrossRef]
86. Meinnel T, Mechulam Y, Lazennec C, Blanquet S, Fayat G. 1993. Critical role of the acceptor stem of tRNAsMet in their aminoacylation by Escherichia coli methionyl-tRNAsynthetase. J Mol Biol 229:26–36. [PubMed][CrossRef]
87. Cory S, Dube SK, Clark BF, Marcker KA. 1968. Separation of two initiator transfer RNAs from E. coli. FEBS Lett 1:259–261. [PubMed][CrossRef]
88. Dube SK, Marcker KA. 1969. The nucleotide sequence of N-formyl-methionyl-transfer RNA. Partial digestion with pancreatic and T-1 ribonuclease and derivation of the total primary structure. Eur J Biochem 8:256–262. [PubMed][CrossRef]
89. Dube SK, Marcker KA, Clark BF, Cory S. 1968. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature 218:232–233. [PubMed][CrossRef]
90. Egan BZ, Weiss JF, Kelmers AD. 1973. Separation and comparison of primary structures of three formylmethionine tRNAs from E. coli K-12 MO. Biochem Biophys Res Commun 55:320–327. [PubMed][CrossRef]
91. Mandal N, RajBhandary UL. 1992. Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12. J Bacteriol 174:7827–7830. [PubMed]
92. Clark BF, Marcker KA. 1966. N-formyl-methionyl-sigma-ribonucleic acid and chain initiation in protein biosynthesis. Polypeptide synthesis directed by a bacteriophage ribonucleic acid in a cell-free system. Nature 211:378–380. [PubMed][CrossRef]
93. Clark BF, Marcker KA. 1966. The role of N-formyl-methionyl-sRNA in protein biosynthesis. J Mol Biol 17:394–406. [PubMed][CrossRef]
94. Marcker K, Sanger F. 1964. N-formyl-methionyl-S-RNA. J Mol Biol 8:835–840. [PubMed][CrossRef]
95. Guillon JM, Heiss S, Soutourina J, Mechulam Y, Laalami S, Grunberg-Manago M, Blanquet S. 1996. Interplay of methionine tRNAs with translation elongation factor Tu and translation initiation factor 2 in Escherichia coli. J Biol Chem 271:22321–22325. [PubMed][CrossRef]
96. Guillon JM, Mechulam Y, Blanquet S, Fayat G. 1993. Importance of formylability and anticodon stem sequence to give a tRNA(Met) an initiator identity in Escherichia coli. J Bacteriol 175:4507–4514. [PubMed]
97. Mangroo D, RajBhandary UL. 1995. Mutants of Escherichia coli initiator tRNA defective in initiation. Effects of overproduction of methionyl-tRNA transformylase and the initiation factors IF2 and IF3. J Biol Chem 270:12203–12209. [PubMed][CrossRef]
98. Seong BL, Lee CP, RajBhandary UL. 1989. Suppression of amber codons in vivo as evidence that mutants derived from Escherichia coli initiator tRNA can act at the step of elongation in protein synthesis. J Biol Chem 264:6504–6508. [PubMed]
99. Varshney U, Lee CP, RajBhandary UL. 1993. From elongator tRNA to initiator tRNA. Proc Natl Acad Sci USA 90:2305–2309. [PubMed][CrossRef]
100. Varshney U, Seong CP Lee BL, RajBhandary UL. 1991. Mutants of initiator tRNA that function both as initiators and elongators. J Biol Chem 266:18018–18024. [PubMed]
101. Varshney U, RajBhandary UL. 1992. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli. J Bacteriol 174:7819–7826. [PubMed]
102. Guillon J-M, Mechulam Y, Schmitter J-M, Blanquet S, Fayat G. 1992. Disruption of the gene for Met-tRNAMetf formyltransferase severely impairs the growth of Escherichia coli. J Bacteriol 174:4294–4301. [PubMed]
103. Laalami S, Putzer H, Plumbridge J, Grunberg-Manago M. 1991. A severely truncated form of translation initiation factor 2 supports growth of Escherichia coli. J Mol Biol 220:335–349. [PubMed][CrossRef]
104. Petersen HU, Røll T, Grunberg-Manago M, Clark BFC. 1979. Specific interaction of initiator factor IF2 of E. coli with formylmethionyl-tRNAMetf. Biochem Biophys Res Commun 91:1068–1074. [PubMed][CrossRef]
105. Sundari R, Stringer L, Schulman L, Maitra U. 1976. Interaction of initiation factor 2 with initiator tRNA. J Biol Chem 251:3338–3345. [PubMed]
106. Hartz D, McPheeters DS, Gold L. 1989. Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev 3:1899–1912. [PubMed][CrossRef]
107. Mayer C, Kohrer C, Kenny E, Prusko C, RajBhandary UL. 2003. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation. Biochemistry 42:4787–4799. [PubMed][CrossRef]
108. Newton DT, Mangroo C, Creuzenet D. 1999. Formylation is not essential for initiation of protein synthesis in all eubacteria. J Biol Chem 274:22143–22146. [CrossRef] [PubMed]
109. Steiner-Mosonyi M, Creuzenet C, Keates RA, Strub BR, Mangroo D. 2004. The Pseudomonas aeruginosa initiation factor IF-2 is responsible for formylation-independent protein initiation in P. aeruginosa. J Biol Chem 279:52262–52269. [PubMed][CrossRef]
110. Dickerman HW, Steers E Jr, Redfield BG, Weissbach H. 1967. Methionyl soluble ribonucleic acid transformylase. I Purification and partial characterization. J Biol Chem 242:1522–1525. [PubMed]
111. Kahn D, Fromant M, Fayat G, Dessen P, Blanquet S. 1980. Methionyl-transfer-RNA transformylase from Escherichia coli. Purification and characterisation. Eur J Biochem 105:489–497. [PubMed][CrossRef]
112. Giegé, R, Ebel JP, Clark BFC. 1973. Formylation of mischarged E. coli tRNAMetf FEBS Lett 30:291–295. [PubMed][CrossRef]
113. Guillon JM, Meinnel T, Mechulam Y, Lazennec C, Blanquet S, Fayat G. 1992. Nucleotides of tRNA governing the specificity of Escherichia coli methionyl-tRNAMetf formyltransferase. J Mol Biol 224:359–367. [PubMed][CrossRef]
114. Lee CP, Seong BL, RajBhandary UL. 1991. Structural and sequence elements important for recognition of Escherichia coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem. J Biol Chem 266:18012–18017. [PubMed]
115. Marck C, Grosjean H. 2002. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8:1189–1232. [PubMed][CrossRef]
116. Lee CP, Dyson MR, Mandal N, Varshney U, Bahramian B, RajBhandary UL. 1992. Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by Escherichia coli Met-tRNA synthetase and Met-tRNA transformylase. Proc Natl Acad Sci USA 89:9262–9266. [PubMed][CrossRef]
117. Li S, Kumar NV, Varshney U, RajBhandary UL. 1996. Important role of the amino acid attached to tRNA in formylation and in initiation of protein synthesis in Escherichia coli. J Biol Chem 271:1022–1028. [PubMed][CrossRef]
118. Wu XQ, RajBhandary UL. 1997. Effect of the amino acid attached to Escherichia coli initiator tRNA on its affinity for the initiation factor IF2 and on the IF2 dependence of its binding to the ribosome. J Biol Chem 272:1891–1895. [PubMed][CrossRef]
119. Schmitt E, Blanquet S, Mechulam Y. 1996. Structure of crystalline Escherichia coli methionyl-tRNAfMet formyltransferase: comparison with glycinamide ribonucleotide formyltransferase. EMBO J 15:4749–4758. [PubMed]
120. Schmitt E, Panvert M, Blanquet S, Mechulam Y. 1998. Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. EMBO J 17:6819–6826. [PubMed][CrossRef]
121. Janiak F, Dell VA, Abrahamson J, Watson B, Miller D, Johnson A. 1990. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu·GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Biochemistry 29:4268–4277. [PubMed][CrossRef]
122. Tanada S, Kawakami M, Nishio K, Takemura S. 1982. Interaction of aminoacyl-tRNA with bacterial elongation factor Tu: GTP complex: effects of the amino group of amino acid esterified to tRNA, the amino acid side chain, and tRNA structure. J Biochem 91:291–299. [PubMed]
123. Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270:1464–1472. [PubMed][CrossRef]
124. Nissen P, Thirup S, Kjeldgaard M, Nyborg J. 1999. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 7:143–156. [PubMed][CrossRef]
125. Atherly A, Menninger JR. 1972. Mutant E. coli strain with temperature sensitive peptidyl-transfer RNA hydrolase. Nat New Biol 240:245–246.
126. Garcia-Villegas MR, De La Vega FM, Galindo JM, Segura M, Buckingham RH, Guarneros G. 1991. Peptidyl-tRNA hydrolase is involved in lambda inhibition of host protein synthesis. EMBO J 10:3549–3555. [PubMed]
127. Menez J, Heurgue-Hamard V, Buckingham RH. 2000. Sequestration of specific tRNA species cognate to the last sense codon of an overproduced gratuitous protein. Nucleic Acids Res 28:4725–4732. [PubMed][CrossRef]
128. Fromant M, Plateau P, Schmitt E, Mechulam Y, Blanquet S. 1999. Receptor site for the 5'-phosphate of elongator tRNAs governs substrate selection by peptidyl-tRNA hydrolase. Biochemistry 38:4982–4987. [PubMed][CrossRef]
129. Schmitt E, Mechulam Y, Fromant M, Plateau P, Blanquet S. 1997. Crystal structure at 1.2 Å resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase. EMBO J 16:4760–4769. [PubMed][CrossRef]
130. Hartz D, Binkley J, Hollingsworth T, Gold L. 1990. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev 4:1790–1800. [PubMed][CrossRef]
131. Seong BL, RajBhandary UL. 1987. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc Natl Acad Sci USA 84:334–338. [PubMed][CrossRef]
132. Wrede P, Woo NH, Rich A. 1979. Initiator tRNAs have a unique anticodon loop conformation. Proc Natl Acad Sci USA 76:3289–3293. [PubMed][CrossRef]
133. Barraud P, Schmitt E, Mechulam Y, Dardel F, Tisne C. 2008. A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis. Nucleic Acids Res. 36:4894–4901. [PubMed][CrossRef]
134. Kennell D, Riezman H. 1977. Transcription and translation initiation frequencies of the Escherichia coli lac operon. J Mol Biol 114:1–21. [PubMed][CrossRef]
135. Choi SK, Lee JH, Zoll WL, Merrick WC, Dever TE. 1998. Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280:1757–1760. [PubMed][CrossRef]
136. Lee JH, Choi SK, Roll-Mecak A, Burley SK, Dever TE. 1999. Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci USA 96:4342–4347. [PubMed][CrossRef]
137. Howe JG, Hershey JW. 1982. Immunochemical analysis of molecular forms of protein synthesis initiation factors in crude cell lysates of Escherichia coli. Arch Biochem Biophys 214:446–451. [PubMed][CrossRef]
138. Plumbridge JA, Deville F, Sacerdot C, Petersen HU, Cenatiempo Y, Cozzone A, Grunberg-Manago M, Hershey JW. 1985. Two translational initiation sites in the infB gene are used to express initiation factor IF2 alpha and IF2 beta in Escherichia coli. EMBO J 4:223–229. [PubMed]
139. Sacerdot C, Dessen P, Hershey JWB, Plumbridge JA, Grunberg-Manago M. 1984. Sequence of the initiation factor IF2 gene: unusual protein features and homologies with elongation factors. Proc Natl Acad Sci USA 81:7787–7791. [PubMed][CrossRef]
140. Nyengaard NR, Mortensen KK, Lassen SF, Hershey JW, Sperling-Petersen HU. 1991. Tandem translation of E. coli initiation factor IF2 beta: purification and characterization in vitro of two active forms. Biochem Biophys Res Commun 181:1572–1579. [PubMed][CrossRef]
141. Howe JG, Hershey JW. 1984. The rate of evolutionary divergence of initiation factors IF2 and IF3 in various bacterial species determined quantitatively by immunoblotting. Arch Microbiol 140:187–192. [PubMed][CrossRef]
142. Hubert M, Nyengaard NR, Shazand K, Mortensen KK, Lassen SF, Grunberg-Manago M, Sperling-Petersen HU. 1992. Tandem translation of Bacillus subtilis initiation factor IF2 in E. coli Over-expression of infBB.su in E coli and purification of alpha- and beta-forms of IF2B.su. FEBS Lett 312:132–138. [PubMed][CrossRef]
143. Sacerdot C, Vachon G, Laalami S, Morel-Deville F, Cenatiempo Y, Grunberg-Manago M. 1992. Both forms of translational initiation factor IF2 (α and β) are required for maximal growth of Escherichia coli. J Mol Biol 225:67–80. [PubMed][CrossRef]
144. Roll-Mecak A, Cao C, Dever TE, Burley SK. 2000. X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103:781–792. [PubMed][CrossRef]
145. Moreno JM, Drskjotersen L, Kristensen JE, Mortensen KK, Sperling-Petersen HU. 1999. Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome. FEBS Lett 455:130–134. [PubMed][CrossRef]
146. Moreno JM, Kildsgaard J, Siwanowicz I, Mortensen KK, Sperling-Petersen HU. 1998. Binding of Escherichia coli initiation factor IF2 to 30S ribosomal subunits: a functional role for the N-terminus of the factor. Biochem Biophys Res Commun 252:465–471. [PubMed][CrossRef]
147. Mortensen KK, Kildsgaard J, Moreno JM, Steffensen SA, Egebjerg J, Sperling-Petersen HU. 1998. A six-domain structural model for Escherichia coli translation initiation factor IF2. Characterisation of twelve surface epitopes. Biochem Mol Biol Int 46:1027–1041. [PubMed]
148. Laursen BS, Mortensen KK, Sperling-Petersen HU, Hoffman DW. 2003. A conserved structural motif at the N terminus of bacterial translation initiation factor IF2. J Biol Chem 278:16320–16328. [PubMed][CrossRef]
149. Laursen BS, Kjaergaard AC, Mortensen KK, Hoffman DW, Sperling-Petersen HU. 2004. The N-terminal domain (IF2N) of bacterial translation initiation factor IF2 is connected to the conserved C-terminal domains by a flexible linker. Protein Sci 13:230–239. [PubMed][CrossRef]
150. Vetter IR, Wittinghofer A. 2001. The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304. [PubMed][CrossRef]
151. Meunier S, Spurio R, Czisch M, Wechselberger R, Guenneugues M, Gualerzi CO, Boelens R. 2000. Structure of the fMet-tRNA(fMet)-binding domain of B. stearothermophilus initiation factor IF2. EMBO J 19:1918–1926. [PubMed][CrossRef]
152. Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J. 2005. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121:703–712. [PubMed][CrossRef]
153. Rasmussen LC, Oliveira CL, Jensen JM, Pedersen JS, Sperling-Petersen HU, Mortensen KK. 2008. Solution structure of C-terminal Escherichia coli translation initiation factor IF2 by small-angle X-ray scattering. Biochemistry 47:5590–5598. [PubMed][CrossRef]
154. Simonetti A, Marzi S, Myasnikov AG, Fabbretti A, Yusupov M, Gualerzi CO, Klaholz BP. 2008. Structure of the 30S translation initiation complex. Nature 455:416–420. [PubMed][CrossRef]
155. Wienk H, Tomaselli S, Bernard C, Spurio R, Picone D, Gualerzi CO, Boelens R. 2005. Solution structure of the C1-subdomain of Bacillus stearothermophilus translation initiation factor IF2. Protein Sci 14:2461–2468. [PubMed][CrossRef]
156. Anderson JS, Bretscher MS, Clark BF, Marcker KA. 1967. A GTP requirement for binding initiator tRNA to ribosomes. Nature 215:490–492. [PubMed][CrossRef]
157. Leder P, Nau MM. 1967. Initiation of protein synthesis. 3. Factor-GTP-codon-dependent binding of F-met-tRNA to ribosomes. Proc Natl Acad Sci USA 58:774–781. [PubMed][CrossRef]
158. Ohta T, Sarkar S, Thach RE. 1967. The role of guanosine 5′-triphosphate in the initiation of peptide synthesis. 3. Binding of formylmethionyl-tRNA to ribosomes. Proc Natl Acad Sci USA 58:1638–1644. [PubMed][CrossRef]
159. Ohta T, Thach RE. 1968. Binding of formylmethionyl-tRNA and aminoacyl-tRNA to ribosomes. Nature 219:238–243. [PubMed][CrossRef]
160. Salas M, Hille MB, Last JA, Wahba AJ, Ochoa S. 1967. Translation of the genetic message, Ii. Effect of initiation factors on the binding of formyl-methionyl-tRNA to ribosomes. Proc Natl Acad Sci USA 57:387–394.[PubMed]
161. Stanley WM Jr, Salas M, Wahba AJ, Ochoa S. 1966. Translation of the genetic message: factors involved in the initiation of protein synthesis. Proc Natl Acad Sci USA 56:290–295. [PubMed][CrossRef]
162. Hershey JW, Thach RE. 1967. Role of guanosine 5′-triphosphate in the initiation of peptide synthesis. I. Synthesis of formylmethionyl-puromycin. Proc Natl Acad Sci USA 57:759–766. [PubMed][CrossRef]
163. Kolakofsky D, Ohta T, Thach RE. 1968. Junction of the 50S ribosomal subunit with the 30S initiation complex. Nature 220:244–247. [PubMed][CrossRef]
164. Thach RE, Dewey KF, Mykolajewycz N. 1967. Role of guanosine 5′-triphosphate in the initiation of peptide synthesis. II. Synthesis of dipeptides. Proc Natl Acad Sci USA 57:1103–1109. [PubMed][CrossRef]
165. Kolakofsky D, Dewey KF, Hershey JW, Thach RE. 1968. Guanosine 5′-triphosphatase activity of initiation factor f2. Proc Natl Acad Sci USA 61:1066–1070. [PubMed][CrossRef]
166. Kolakofsky D, Dewey K, Thach RE. 1969. Purification and properties of initiation factor f2. Nature 223:694–697. [PubMed][CrossRef]
167. Lockwood AH, Chakraborty PR, Maitra U. 1971. A complex between initiation factor IF2, guanosine triphosphate, and fMet-tRNA: an intermediate in initiation complex formation. Proc Natl Acad Sci USA 68:3122–3126. [PubMed][CrossRef]
168. Dubnoff JS, Lockwood AH, Maitra U. 1972. Studies on the role of guanosine triphosphate in polypeptide chain initiation in Escherichia coli. J Biol Chem 247:2884–2894. [PubMed]
169. Lockwood AH, Sarkar P, Maitra U. 1972. Release of polypeptide chain initiation factor IF-2 during initiation complex formation. Proc Natl Acad Sci USA 69:3602–3605. [PubMed][CrossRef]
170. Gualerzi CO, Severini M, Spurio R, La Teana A, Pon CL. 1991. Molecular dissection of translation initiation factor IF2. Evidence for two structural and functional domains. J Biol Chem 266:16356–16362. [PubMed]
171. Spurio R, Brandi L, Caserta E, Pon CL, Gualerzi CO, Misselwitz R, Krafft C, Welfle K, Welfle H. 2000. The C-terminal subdomain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J Biol Chem 275:2447–2454. [PubMed][CrossRef]
172. Guenneugues M, Caserta E, Brandi L, Spurio R, Meunier S, Pon CL, Boelens R, Gualerzi CO. 2000. Mapping the fMet-tRNA(f)(Met) binding site of initiation factor IF2. EMBO J 19:5233–5240. [PubMed][CrossRef]
173. Szkaradkiewicz K, Zuleeg T, Limmer S, Sprinzl M. 2000. Interaction of fMet-tRNAfMet and fMet-AMP with the C-terminal domain of Thermus thermophilus translation initiation factor 2. Eur J Biochem 267:4290–4299. [PubMed][CrossRef]
174. Canonaco MA, Calogero RA, Gualerzi CO. 1986. Mechanism of translational initiation in prokaryotes. Evidence for a direct effect of IF2 on the activity of the 30S ribosomal subunit. FEBS Lett 207:198–204. [PubMed][CrossRef]
175. Grigoriadou C, Marzi S, Pan D, Gualerzi CO, Cooperman BS. 2007. The translational fidelity function of IF3 during transition from the 30S initiation complex to the 70S initiation complex. J Mol Biol 373:551–561. [PubMed][CrossRef]
176. Luchin S, Putzer H, Hershey JW, Cenatiempo Y, Grunberg-Manago M, Laalami S. 1999. In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J Biol Chem 274:6074–6079. [PubMed][CrossRef]
177. Tomsic J, Vitali LA, Daviter T, Savelsbergh A, Spurio R, Striebeck P, Wintermeyer W, Rodnina MV, Gualerzi CO. 2000. Late events of translation initiation in bacteria: a kinetic analysis. EMBO J 19:2127–2136. [PubMed][CrossRef]
178. Algire MA, Maag D, Lorsch JR. 2005. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol Cell 20:251–262. [PubMed][CrossRef]
179. Cheung YN, Maag D, Mitchell SF, Fekete CA, Algire MA, Takacs JE, Shirokikh N, Pestova T, Lorsch JR, Hinnebusch AG. 2007. Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo. Genes Dev 21:1217–1230. [PubMed][CrossRef]
180. Yatime L, Mechulam Y, Blanquet S, Schmitt E. 2007. Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states. Proc Natl Acad Sci USA 104:18445–18450. [PubMed][CrossRef]
181. Kyrpides NC, Woese CR. 1998. Universally conserved translation initiation factors. Proc Natl Acad Sci USA 95:224–228. [PubMed][CrossRef]
182. Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CU. 2000. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403:332–335. [PubMed][CrossRef]
183. Unbehaun A, Borukhov SI, Hellen CU, Pestova TV. 2004. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev 18:3078–3093. [PubMed][CrossRef]
184. Lee JH, Pestova TV, Shin BS, Cao C, Choi SK, Dever TE. 2002. Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci USA 99:16689–16694. [PubMed][CrossRef]
185. Shin BS, Maag D, Roll-Mecak A, Arefin MS, Burley SK, Lorsch JR, Dever TE. 2002. Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111:1015–1025. [PubMed][CrossRef]
186. Guillon L, Schmitt E, Blanquet S, Mechulam Y. 2005. Initiator tRNA binding by e/aIF5B, the eukaryotic/archaeal homologue of bacterial initiation factor IF2. Biochemistry 44:15594–15601. [PubMed][CrossRef]
187. Myasnikov AG, Marzi S, Simonetti A, Giuliodori AM, Gualerzi CO, Yusupova G, Yusupov M, Klaholz BP. 2005. Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome. Nat Struct Mol Biol 12:1145–1149. [PubMed][CrossRef]
188. Sette M, Spurio R, van Tilborg P, Gualerzi CO, Boelens R. 1999. Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. RNA 5:82–92. [PubMed][CrossRef]
189. Sands JF, Cummings HS, Sacerdot C, Dondon L, Grunberg-Manago M, Hershey JW. 1987. Cloning and mapping of infA, the gene for protein synthesis initiation factor IF1. Nucleic Acids Res 15:5157–5168. [PubMed][CrossRef]
190. Hirose T, Ideue T, Wakasugi T, Sugiura M. 1999. The chloroplast infA gene with a functional UUG initiation codon. FEBS Lett 445:169–172. [PubMed][CrossRef]
191. Gaur R, Grasso D, Datta PP, Krishna PD, Das G, Spencer A, Agrawal RK, Spremulli L, Varshney U. 2008. A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors. Mol Cell 29:180–190. [PubMed][CrossRef]
192. Cummings HS, Hershey JW. 1994. Translation initiation factor IF1 is essential for cell viability in Escherichia coli. J Bacteriol 176:198–205. [PubMed]
193. Moazed D, Samaha RR, Gualerzi C, Noller HF. 1995. Specific protection of 16S RNA by translational initiation factors. J Mol Biol 248:207–210. [PubMed]
194. Dahlquist KD, Puglisi JD. 2000. Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. J Mol Biol 299:1–15. [PubMed][CrossRef]
195. Croitoru V, Bucheli-Witschel M, Hagg P, Abdulkarim F, Isaksson LA. 2004. Generation and characterization of functional mutants in the translation initiation factor IF1 of Escherichia coli. Eur J Biochem 271:534–544. [PubMed][CrossRef]
196. Croitoru VV, Bucheli-Witschel M, Isaksson LA. 2005. In vivo involvement of mutated initiation factor IF1 in gene expression control at the translational level. FEBS Lett 579:995–1000. [PubMed][CrossRef]
197. Gualerzi CO, Spurio R, La Teana A, Calogero R, Celano B, Pon CL. 1989. Site-directed mutagenesis of Escherichia coli translation initiation factor IF1. Identification of the amino acid involved in its ribosomal binding and recycling. Protein Eng 3:133–138. [PubMed][CrossRef]
198. Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Hartsch T, Wimberly BT, Ramakrishnan V. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291:498–501. [PubMed][CrossRef]
199. Pon CL, Gualerzi CO. 1984. Mechanism of protein biosynthesis in prokaryotic cells. Effect of initiation factor IF1 on the initial rate of 30 S initiation complex formation. FEBS Lett 175:203–207. [PubMed][CrossRef]
200. Stringer EA, Sarkar P, Maitra U. 1977. Function of initiation factor 1 in the binding and release of initiation factor 2 from ribosomal initiation complexes in Escherichia coli. J Biol Chem 252:1739–1744. [PubMed]
201. Battiste JL, Pestova TV, Hellen CU, Wagner G. 2000. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol Cell 5:109–119. [PubMed][CrossRef]
202. Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, Algire MA, Lorsch JR, Ramakrishnan V. 2007. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 26:41–50. [PubMed][CrossRef]
203. Yu Y, Marintchev A, Kolupaeva VG, Unbehaun A, Veryasova T, Lai SC, Hong P, Wagner G, Hellen CU, Pestova TV. 2009. Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res 37:5167–5182. [PubMed][CrossRef]
204. Fekete CA, Mitchell SF, Cherkasova VA, Applefield D, Algire MA, Maag D, Saini AK, Lorsch JR, Hinnebusch AG. 2007. N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection. EMBO J 26:1602–1614. [PubMed][CrossRef]
205. Mitchell SF, Lorsch JR. 2008. Should I stay or should I go? Eukaryotic translation initiation factors 1 and 1A control start codon recognition. J Biol Chem 283:27345–27349. [PubMed][CrossRef]
206. Saini AK, Nanda JS, Lorsch JR, Hinnebusch AG. Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNA(i)(Met) binding to the ribosome. Genes Dev 24:97–110. [PubMed][CrossRef]
207. Lorsch J, Dever T. 2010. Molecular view of 43S complex formation and start site selection in eukaryotic translation initiation. J Biol Chem 285:21203–21207. [PubMed][CrossRef]
208. Naaktgeboren N, Roobol K, Voorma HO. 1977. The effect of initiation factor IF-1 on the dissociation of 70-S ribosomes of Escherichia coli. Eur J Biochem 72:49–56. [PubMed][CrossRef]
209. Zucker FH, Hershey JW. 1986. Binding of Escherichia coli protein synthesis initiation factor IF1 to 30S ribosomal subunits measured by fluorescence polarization. Biochemistry 25:3682–3690. [PubMed][CrossRef]
210. Milon P, Konevega AL, Gualerzi CO, Rodnina MV. 2008. Kinetic checkpoint at a late step in translation initiation. Mol Cell 30:712–720. [PubMed][CrossRef]
211. Qin D, Fredrick K. 2009. Control of translation initiation involves a factor-induced rearrangement of helix 44 of 16S ribosomal RNA. Mol Microbiol 71:1239–1249. [PubMed][CrossRef]
212. Caserta E, Tomsic J, Spurio R, La Teana A, Pon CL, Gualerzi CO. 2006. Translation initiation factor IF2 interacts with the 30S ribosomal subunit via two separate binding sites. J Mol Biol 362:787–799. [PubMed][CrossRef]
213. Celano B, Pawlik RT, Gualerzi CO. 1988. Interaction of Escherichia coli translation-initiation factor IF-1 with ribosomes. Eur J Biochem 178:351–355.[PubMed]
214. Boileau G, Butler P, Hershey JW, Traut RR. 1983. Direct cross-links between initiation factors 1, 2, and 3 and ribosomal proteins promoted by 2-iminothiolane. Biochemistry 22:3162–3170. [PubMed][CrossRef]
215. Kapralou S, Fabbretti A, Garulli C, Spurio R, Gualerzi CO, Dahlberg AE, Pon CL. 2008. Translation initiation factor IF1 of Bacillus stearothermophilus and Thermus thermophilus substitute for Escherichia coli IF1 in vivo and in vitro without a direct IF1-IF2 interaction. Mol Microbiol 70:1368–1377. [PubMed][CrossRef]
216. Sacerdot C, Fayat G, Dessen P, Springer M, Plumbridge JA, Grunberg-Manago M, Blanquet S. 1982. Sequence of a 1.26-kb DNA fragment containing the structural gene for E.coli initiation factor IF3: presence of an AUU initiator codon. EMBO J 1:311–315. [PubMed]
217. Olsson CL, Graffe M, Springer M, Hershey JW. 1996. Physiological effects of translation initiation factor IF3 and ribosomal protein L20 limitation in Escherichia coli. Mol Gen Genet 250:705–714. [PubMed]
218. Sacerdot C, Engst E, de Cock K, Graffe M, Dardel F, Springer M. 1999. Mutations that alter initiation codon discrimination by Escherichia coli initiation factor IF3. J Mol Biol 288:803–810. [PubMed][CrossRef]
219. Fortier PL, Schmitter JM, Garcia C, Dardel F. 1994. The N-terminal half of initiation factor IF3 is folded as a stable independent domain. Biochimie 76:376–383. [PubMed][CrossRef]
220. Kycia JH, Biou V, Shu F, Gerchman SE, Graziano V, Ramakrishnan V. 1995. Prokaryotic translation initiation factor IF3 is an elongated protein consisting of two crystallizable domains. Biochemistry 34:6183–6187. [PubMed][CrossRef]
221. Moreau M, de Cock E, Fortier PL, Garcia C, Albaret C, Blanquet S, Lallemand JY, Dardel F. 1997. Heteronuclear NMR studies of E. coli translation initiation factor IF3 Evidence that the inter-domain region is disordered in solution. J Mol Biol 266:15–22. [CrossRef][PubMed]
222. Biou V, Shu F, Ramakrishnan V. 1995. X-ray crystallography shows that translational initiation factor IF3 consists of two compact α/β domains linked by an α helix. EMBO J 14:4056–4064. [PubMed]
223. Garcia C, Fortier PL, Blanquet S, Lallemand JY, Dardel F. 1995. 1H and 15N resonance assignment and structure of the N-terminal domain of Escherichia coli initiation factor 3. Eur J Biochem 228:395–402. [PubMed][CrossRef]
224. Garcia C, Fortier PL, Blanquet S, Lallemand JY, Dardel F. 1995. Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3 Homology with the U1A protein of the eukaryotic spliceosome. J Mol Biol 254:247–259. [PubMed][CrossRef]
225. Hua Y, Raleigh DP. 1998. Conformational analysis of the interdomain linker of the central homology region of chloroplast initiation factor IF3 supports a structural model of two compact domains connected by a flexible tether. FEBS Lett 433:153–156. [PubMed][CrossRef]
226. Hua Y, Raleigh DP. 1998. On the global architecture of initiation factor IF3: a comparative study of the linker regions from the Escherichia coli protein and the Bacillus stearothermophilus protein. J Mol Biol 278:871–878. [PubMed][CrossRef]
227. Lammi M, Pon CL, Gualerzi CO. 1987. The NH2-terminal cleavage of Escherichia coli translational initiation factor IF3. A mechanism to control the intracellular level of the factor? FEBS Lett 215:115–121. [PubMed][CrossRef]
228. Petrelli D, LaTeana A, Garofalo C, Spurio R, Pon CL, Gualerzi CO. 2001. Translation initiation factor IF3: two domains, five functions, one mechanism? EMBO J 20:4560–4569. [PubMed][CrossRef]
229. De Bellis D, Liveris D, Goss D, Ringquist S, Schwartz I. 1992. Structure-function analysis of Escherichia coli translation initiation factor IF3: tyrosine 107 and lysine 110 are required for ribosome binding. Biochemistry 31:11984–11990. [PubMed][CrossRef]
230. Petrelli D, Garofalo C, Lammi M, Spurio R, Pon CL, Gualerzi CO, La Teana A. 2003. Mapping the active sites of bacterial translation initiation factor IF3. J Mol Biol 331:541–556. [PubMed][CrossRef]
231. Stoffler G, Stoffler-Meilicke M. 1984. Immunoelectron microscopy of ribosomes. Annu Rev Biophys Bioeng 13:303–330. [PubMed][CrossRef]
232. McCutcheon JP, Agrawal RK, Philips SM, Grassucci RA, Gerchman SE, Clemons WM Jr, Ramakrishnan V, Frank J. 1999. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc Natl Acad Sci USA 96:4301–4306.[PubMed]
233. Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F. 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 20:1829–1839. [PubMed][CrossRef]
234. Dallas A, Noller HF. 2001. Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol Cell 8:855–864. [PubMed][CrossRef]
235. Muralikrishna P, Wickstrom E. 1989. Escherichia coli initiation factor 3 protein binding to 30S ribosomal subunits alters the accessibility of nucleotides within the conserved central region of 16S rRNA. Biochemistry 28:7505–7510. [PubMed][CrossRef]
236. Tapprich WE, Goss DJ, Dahlberg AE. 1989. Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis. Proc Natl Acad Sci USA 86:4927–4931. [PubMed][CrossRef]
237. Ehresmann C, Moine H, Mougel M, Dondon J, Grunberg-Manago M, Ebel JP, Ehresmann B. 1986. Cross-linking of initiation factor IF3 to Escherichia coli 30S ribosomal subunit by trans-diamminedichloroplatinum(II): characterization of two cross-linking sites in 16S rRNA; a possible way of functioning for IF3. Nucleic Acids Res 14:4803–4821. [PubMed][CrossRef]
238. Firpo MA, Connelly MB, Goss DJ, Dahlberg AE. 1996. Mutations at two invariant nucleotides in the 3’-minor domain of Escherichia coli 16S rRNA affecting translational initiation and initiation factor 3 function. J Biol Chem 271:4693–4698. [PubMed][CrossRef]
239. Shapkina TG, Dolan MA, Babin P, Wollenzien P. 2000. Initiation factor 3-induced structural changes in the 30S ribosomal subunit and in complexes containing tRNA(f)(Met) and mRNA. J Mol Biol 299:615–628. [PubMed][CrossRef]
240. Fabbretti A, Pon CL, Hennelly SP, Hill WE, Lodmell JS, Gualerzi CO. 2007. The real-time path of translation factor IF3 onto and off the ribosome. Mol Cell 25:285–296. [PubMed][CrossRef]
241. Hennelly SP, Antoun A, Ehrenberg M, Gualerzi CO, Knight W, Lodmell JS, Hill WE. 2005. A time-resolved investigation of ribosomal subunit association. J Mol Biol 346:1243–1258. [PubMed][CrossRef]
242. Fletcher CM, Pestova TV, Hellen CU, Wagner G. 1999. Structure and interactions of the translation initiation factor eIF1. EMBO J 18:2631–2637. [PubMed][CrossRef]
243. Reibarkh M, Yamamoto Y, Singh CR, del Rio F, Fahmy A, Lee B, Luna RE, Ii M, Wagner G, Asano K. 2008. Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J Biol Chem 283:1094–1103. [PubMed][CrossRef]
244. Lomakin IB, Kolupaeva VG, Marintchev A, Wagner G, Pestova TV. 2003. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev 17:2786–2797. [PubMed][CrossRef]
245. Lomakin IB, Shirokikh NE, Yusupov MM, Hellen CU, Pestova TV. 2006. The fidelity of translation initiation: reciprocal activities of eIF1, IF3 and YciH. EMBO J 25:196–210. [PubMed][CrossRef]
246. Pestova TV, Kolupaeva VG. 2002. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16:2906–2922. [PubMed][CrossRef]
247. Korostelev A, Trakhanov S, Laurberg M, Noller HF. 2006. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–1077. [PubMed][CrossRef]
248. Noller HF, Hoang L, Fredrick K. 2005. The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett 579:855–858. [PubMed][CrossRef]
249. Selmer M, Dunham CM, Weixlbaumer FV t. Murphy A, Petry S, Kelley AC, Weir JR, Ramakrishnan V. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942. [PubMed][CrossRef]
250. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896. [PubMed][CrossRef]
251. Prince JB, Taylor BH, Thurlow DL, Ofengand J, Zimmermann RA. 1982. Covalent crosslinking of tRNA1Val to 16S RNA at the ribosomal P site: identification of crosslinked residues. Proc Natl Acad Sci USA 79:5450–5454. [PubMed][CrossRef]
252. Doring T, Mitchell P, Osswald M, Bochkariov D, Brimacombe R. 1994. The decoding region of 16S RNA; a cross-linking study of the ribosomal A, P and E sites using tRNA derivatized at position 32 in the anticodon loop. EMBO J 13:2677–2685. [PubMed]
253. Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. 2001. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci USA 98:4899–4903. [PubMed][CrossRef]
254. Dubnoff JS, Maitra U. 1971. Isolation and properties of polypeptide chain initiation factor FII from Escherichia coli: evidence for a dual function. Proc Natl Acad Sci USA 68:318–323. [PubMed][CrossRef]
255. Iwasaki K, Sabol S, Wahba AJ, Ochoa S. 1968. Translation of the genetic message. VII. Role of initiation factors in formation of the chain initiation complex with Escherichia coli ribosomes. Arch Biochem Biophys 125:542–547. [PubMed][CrossRef]
256. Noll M, Noll H. 1972. Mechanism and control of initiation in the translation of R17 RNA. Nat New Biol 238:225–228.[PubMed]
257. Revel M, Brawerman G, Lelong JC, Gros F. 1968. Function of three protein factors and ribosomal subunits in the initiation of protein synthesis. Nature 219:1016–1021. [PubMed][CrossRef]
258. Sabol S, Ochoa S. 1971. Ribosomal binding of labelled initiation factor F3. Nat New Biol 234:233–236. [PubMed]
259. Subramanian AR, Davis BD. 1970. Activity of initiation factor F3 in dissociating Escherichia coli ribosomes. Nature 228:1273–1275. [PubMed][CrossRef]
260. Gualerzi C, Pon CL, Kaji A. 1971. Initiation factor dependent release of aminoacyl-tRNAs from complexes of 30S ribosomal subunits, synthetic polynucleotide and aminoacyl tRNA. Biochem Biophys Res Commun 45:1312–1319. [PubMed][CrossRef]
261. Pon CL, Gualerzi C. 1974. Effect of initiation factor 3 binding on the 30S ribosomal subunits of Escherichia coli. Proc Natl Acad Sci USA 71:4950–4954. [PubMed][CrossRef]
262. Risuleo G, Gualerzi C, Pon C. 1976. Specificity and properties of the destabilization, induced by initiation factor IF-3, of ternary complexes of the 30-S ribosomal subunit, aminoacyl-tRNA and polynucleotides. Eur J Biochem 67:603–613. [PubMed][CrossRef]
263. La Teana A, Pon CL, Gualerzi CO. 1993. Translation of mRNAs with degenerate initiation triplet AUU displays high initiation factor 2 dependence and is subject to initiation factor 3 repression. Proc Natl Acad Sci USA 90:4161–4165. [PubMed][CrossRef]
264. Maar D, Liveris D, Sussman JK, Ringquist S, Moll I, Heredia N, Kil A, Blasi U, Schwartz I, Simons RW. 2008. A single mutation in the IF3 N-terminal domain perturbs the fidelity of translation initiation at three levels. J Mol Biol 383:937–944. [PubMed][CrossRef]
265. Meinnel T, Sacerdot C, Graffe M, Blanquet S, Springer M. 1999. Discrimination by Escherichia coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules. J Mol Biol 290:825–837. [PubMed][CrossRef]
266. O’Connor M, Gregory ST, Rajbhandary UL, Dahlberg AE. 2001. Altered discrimination of start codons and initiator tRNAs by mutant initiation factor 3. RNA 7:969–978. [PubMed][CrossRef]
267. Sacerdot C, Chiaruttini C, Engst K, Graffe M, Milet M, Mathy N, Dondon J, Springer M. 1996. The role of the AUU initiation codon in the negative feedback regulation of the gene for translation initiation factor IF3 in Escherichia coli. Mol Microbiol 21:331–346. [PubMed][CrossRef]
268. Sussman JK, Simons EL, Simons RW. 1996. Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo. Mol Microbiol 21:347–360. [PubMed][CrossRef]
269. Tedin K, Moll I, Grill S, Resch A, Graschopf A, Gualerzi CO, Blasi U. 1999. Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs. Mol Microbiol 31:67–77. [PubMed][CrossRef]
270. Butler JS, Springer M, Dondon J, Graffe M, Grunberg-Manago M. 1986. Escherichia coli protein synthesis initiation factor IF3 controls its own gene expression at the translational level in vivo. J Mol Biol 192:767–780. [PubMed][CrossRef]
271. Gold L, Stormo G, Saunders R. 1984. Escherichia coli translational initiation factor IF3: a unique case of translational regulation. Proc Natl Acad Sci USA 81:7061–7065. [PubMed][CrossRef]
272. Hoang L, Fredrick K, Noller HF. 2004. Creating ribosomes with an all-RNA 30S subunit P site. Proc Natl Acad Sci USA 101:12439–12443. [PubMed][CrossRef]
273. Lancaster L, Noller HF. 2005. Involvement of 16S rRNA nucleotides G1338 and A1339 in discrimination of initiator tRNA. Mol Cell 20:623–632. [PubMed][CrossRef]
274. Brock JE, Pourshahian S, Giliberti J, Limbach PA, Janssen GR. 2008. Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5′-terminal AUG. RNA 14:2159–2169. [PubMed][CrossRef]
275. Martin-Farmer J, Janssen GR. 1999. A downstream CA repeat sequence increases translation from leadered and unleadered mRNA in Escherichia coli. Mol Microbiol 31:1025–1038. [PubMed][CrossRef]
276. Moll I, Hirokawa G, Kiel MC, Kaji A, Blasi U. 2004. Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res 32:3354–3363. [PubMed][CrossRef]
277. O’Donnell SM, Janssen GR. 2002. Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coli. J Bacteriol 184:6730–6733. [PubMed][CrossRef]
278. Udagawa T, Shimizu Y, Ueda T. 2004. Evidence for the translation initiation of leaderless mRNAs by the intact 70S ribosome without its dissociation into subunits in eubacteria. J Biol Chem 279:8539–8546. [PubMed][CrossRef]
279. Grill S, Gualerzi CO, Londei P, Blasi U. 2000. Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J 19:4101–4110. [PubMed][CrossRef]
280. Grill S, Moll I, Hasenohrl D, Gualerzi CO, Blasi U. 2001. Modulation of ribosomal recruitment to 5′-terminal start codons by translation initiation factors IF2 and IF3. FEBS Lett 495:167–171. [PubMed][CrossRef]
281. Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I. 2009. An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? Mol Cell 33:227–236. [PubMed][CrossRef]
282. O’Donnell SM, Janssen GR. 2001. The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5′ untranslated leader. J Bacteriol 183:1277–1283. [PubMed][CrossRef]
283. Spanjaard RA, van Duin J. 1989. Translational reinitiation in the presence and absence of a Shine-Dalgarno sequence. Nucleic Acids Res 17:5501–5507. [PubMed][CrossRef]
284. Tolstrup N, Sensen CW, Garrett RA, Clausen IG. 2000. Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus. Extremophiles 4:175–179. [PubMed][CrossRef]
285. Benelli D, Maone E, Londei P. 2003. Two different mechanisms for ribosome/mRNA interaction in archaeal translation initiation. Mol Microbiol 50:635–643. [PubMed][CrossRef]
ecosalplus.4.2.2.citations
ecosalplus/4/2
content/journal/ecosalplus/10.1128/ecosalplus.4.2.2
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.4.2.2
2011-06-09
2017-05-29

Abstract:

Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNA base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The involved partners are schematized using the color code indicated in the center of the figure.

Citation: Mechulam Y, Blanquet S, Schmitt E. 2011. Translation Initiation, EcoSal Plus 2011; doi:10.1128/ecosalplus.4.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

(A) Ribbon representation of the 16S rRNA. In the three panels, the four domains are colored as follows: 5′ domain, red; central domain, green; 3′ major domain, yellow; 3′ minor domain, blue. Morphological elements are indicated. (B) Same as panel A, but the ribosomal proteins are shown as grey ribbons. Panels A and B were drawn by using the coordinates of the 30S subunit in the PDB file 1J5E ( 34 ). (C) Position of the three tRNA sites. The 30S subunit is represented as a surface, using the same orientation as in panels A and B. The three tRNAs are colored as follows: A-site tRNA, red; P-site tRNA, blue; E-site tRNA, cyan. Panel C was drawn by using the coordinates in the PDB file 2HGP ( 38 ). Figure 2 was drawn with PyMol (DeLano Scientific LLC).

Citation: Mechulam Y, Blanquet S, Schmitt E. 2011. Translation Initiation, EcoSal Plus 2011; doi:10.1128/ecosalplus.4.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The sequence of tRNA is shown in the cloverleaf representation. Important parts are boxed using the color code indicated on the figure.

Citation: Mechulam Y, Blanquet S, Schmitt E. 2011. Translation Initiation, EcoSal Plus 2011; doi:10.1128/ecosalplus.4.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The N-terminal domain of the enzyme is green, and its C-terminal domain is yellow. Bases 1 and 72, at the top of the acceptor stem of tRNA, are separated by loop 1 protruding out of the enzyme. The figure was drawn using the coordinates in the PDB file 2FMT ( 120 ). Figure 4 was drawn with PyMol (DeLano Scientific LLC).

Citation: Mechulam Y, Blanquet S, Schmitt E. 2011. Translation Initiation, EcoSal Plus 2011; doi:10.1128/ecosalplus.4.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The PDB files used to draw the cartoon are indicated below each picture. In some cases, the PDB files of corresponding homologues are also indicated. Topologies of IF3 domains, eIF1, IF1, and eIF1A, are indicated. Figure 5 was drawn with PyMol (DeLano Scientific LLC).

Citation: Mechulam Y, Blanquet S, Schmitt E. 2011. Translation Initiation, EcoSal Plus 2011; doi:10.1128/ecosalplus.4.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

The IF1 barrel is colored, with β-strands in yellow, turns in green, and helices in red. Its topology is indicated. The G530 loop is cyan, S12 is dark blue, and H44 is orange. Bases A1492 and A1493 are shown as orange sticks. The view is drawn from PDB file 1HR0 ( 198 ). (B) Cartoon representation of the anticodon stem-loop of tRNA bound to the A site of the 30S subunit of . Color coding is the same as that in panel A for H44, S12, and G530 loop. mRNA is green, and ASL tRNA is yellow. The A-site codon is labeled in green, and the Phe codon is labeled in yellow. The view is drawn from PDB file 2J00 ( 249 ). (C) Interaction of the anticodon loop of initiator tRNA in the P site with mRNA and with the 30S subunit. tRNA is shown as cyan sticks. mRNA is shown as yellow sticks. The anticodon sequence is labeled in cyan, and the AUG codon is labeled in yellow. Bases G966, C1400, A790, G1338, and A1339 are shown as sticks. S9 tail and the side chain of K127 are schematized in red. The view is drawn from PDB file 2J00 ( 249 ). Figure 6 was drawn with PyMol (DeLano Scientific LLC).

Citation: Mechulam Y, Blanquet S, Schmitt E. 2011. Translation Initiation, EcoSal Plus 2011; doi:10.1128/ecosalplus.4.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error