1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 4:

Synthesis and Processing of Macromolecules

The Tat Protein Export Pathway

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Tracy Palmer1, Frank Sargent2, and Ben C. Berks3
  • Editors: James M. Slauch4, Harris Bernstein5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom; 2: Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom; 3: Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; 4: The Schoold of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL; 5: National Institutes of Health, Bethesda, MD
  • Received 20 May 2010 Accepted 28 August 2010 Published 03 November 2010
  • Address correspondence to Tracy Palmer t.palmer@dundee.ac.uk
image of The Tat Protein Export Pathway
    Preview this reference work article:
    Zoom in
    Zoomout

    The Tat Protein Export Pathway, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/4/1/4_3_2_module-1.gif /docserver/preview/fulltext/ecosalplus/4/1/4_3_2_module-2.gif
  • Abstract:

    Proteins that reside partially or completely outside the bacterial cytoplasm require specialized pathways to facilitate their localization. Globular proteins that function in the periplasm must be translocated across the hydrophobic barrier of the inner membrane. While the Sec pathway transports proteins in a predominantly unfolded conformation, the Tat pathway exports folded protein substrates. Protein transport by the Tat machinery is powered solely by the transmembrane proton gradient, and there is no requirement for nucleotide triphosphate hydrolysis. Proteins are targeted to the Tat machinery by N-terminal signal peptides that contain a consensus twin arginine motif. In and there are approximately thirty proteins with twin arginine signal peptides that are transported by the Tat pathway. The majority of these bind complex redox cofactors such as iron sulfur clusters or the molybdopterin cofactor. Here we describe what is known about Tat substrates in and , the function and mechanism of Tat protein export, and how the cofactor insertion step is coordinated to ensure that only correctly assembled substrates are targeted to the Tat machinery.

  • Citation: Palmer, T, Sargent, F, Berks, B. 2010. The Tat Protein Export Pathway, EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.2

Key Concept Ranking

Bacteria and Archaea
0.4136094
Bacterial Cytoplasmic Membrane Proteins
0.38176805
Basic Amino Acids
0.37117243
Bacterial Proteins
0.33488417
0.4136094

References

1. Berks BC. 1996. A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22:393–404. [PubMed][CrossRef]
2. Berks BC, Richardson DJ, Reilly A, Willis AC, Ferguson SJ. 1995. The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J 309(Pt 3):983–992.[PubMed]
3. Dreusch A, Burgisser DM, Heizmann CW, Zumft WG. 1997. Lack of copper insertion into unprocessed cytoplasmic nitrous oxide reductase generated by an R20D substitution in the arginine consensus motif of the signal peptide. Biochim Biophys Acta 1319:311–318. [PubMed][CrossRef]
4. Hoeren FU, Berks BC, Ferguson SJ, McCarthy JE. 1993. Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans. New and conserved structural and regulatory motifs. Eur J Biochem 218:49–57. [PubMed][CrossRef]
5. Zumft WG, Dreusch A, Lochelt S, Cuypers H, Friedrich B, Schneider B. 1992. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. Eur J Biochem 208:31–40. [PubMed][CrossRef]
6. Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH, Cole JA, Turner RJ. 1998. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93:93–101. [PubMed][CrossRef]
7. Clark SA, Theg SM. 1997. A folded protein can be transported across the chloroplast envelope and thylakoid membranes. Mol Biol Cell 8:923–934.[PubMed]
8. Cline K, Ettinger WF, Theg SM. 1992. Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J Biol Chem 267:2688–2696.[PubMed]
9. Mould RM, Robinson C. 1991. A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. J Biol Chem 266:12189–12093.
10. Settles AM, Yonetani A, Baron A, Bush DR, Cline K, Martienssen R. 1997. Sec-independent protein translocation by the maize Hcf106 protein. Science 278:1467–70. [PubMed][CrossRef]
11. Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T. 1998. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17:3640–3650. [PubMed][CrossRef]
12. Cline K, Theg SM. 2007. The Sec and Tat protein translocation pathways in chloroplasts, p 463–492. In Dalbey RE, Koehler CM, and Tamanoi F (ed), Molecular Machines Involved in Protein Transport across Cellular Membranes, vol. XXV. Elsevier, London, United Kingdom.
13. Aldridge C, Cain P, Robinson C. 2009. Protein transport in organelles: protein transport into and across the thylakoid membrane. FEBS J 276:1177–1186.[PubMed]
14. Luke I, Handford JI, Palmer T, Sargent F. 2009. Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB. Arch Microbiol 191:919–925. [PubMed][CrossRef]
15. Yahr TL, Wickner WT. 2001. Functional reconstitution of bacterial Tat translocation in vitro. EMBO J 20:2472–2479. [PubMed][CrossRef]
16. Perlman D, Halvorson HO. 1983. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167:391–409. [PubMed][CrossRef]
17. Desvaux M, Scott-Tucker A, Turner SM, Cooper LM, Huber D, Nataro JP, Henderson IR. 2007. A conserved extended signal peptide region directs posttranslational protein translocation via a novel mechanism. Microbiology 153:59–70. [PubMed][CrossRef]
18. Szabady RL, Peterson JH, Skillman KM, Bernstein HD. 2005. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc Natl Acad Sci USA 102:221–226. [PubMed][CrossRef]
19. Bogsch E, Brink S, Robinson C. 1997. Pathway specificity for a delta pH-dependent precursor thylakoid lumen protein is governed by a ‘Sec-avoidance’ motif in the transfer peptide and a ‘Sec-incompatible’ mature protein. EMBO J 16:3851–3859. [PubMed][CrossRef]
20. Cristobal S, de Gier JW, Nielsen H, von Heijne G. 1999. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 18:2982–2990. [PubMed][CrossRef]
21. Stanley NR, Palmer T, Berks BC. 2000. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275:11591–11596. [PubMed][CrossRef]
22. Halbig D, Wiegert T, Blaudeck N, Freudl R, Sprenger GA. 1999. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur J Biochem 263:543–551. [PubMed][CrossRef]
23. Hinsley AP, Stanley NR, Palmer T, Berks BC. 2001. A naturally occurring bacterial Tat signal peptide lacking one of the ‘invariant’ arginine residues of the consensus targeting motif. FEBS Lett 497:45–49. [PubMed][CrossRef]
24. Ignatova Z, Hornle C, Nurk A, Kasche V. 2002. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery. Biochem Biophys Res Commun 291:146–149. [PubMed][CrossRef]
25. Sargent F, Stanley NR, Berks BC, Palmer T. 1999. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem 274:36073–36082. [PubMed][CrossRef]
26. Lequette Y, Odberg-Ferragut C, Bohin JP, Lacroix JM. 2004. Identification of mdoD, an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures. J Bacteriol 186:3695–3702. [PubMed][CrossRef]
27. Bernhardt TG, de Boer PA. 2003. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 48:1171–1182. [PubMed][CrossRef]
28. Ize B, Stanley NR, Buchanan G, Palmer T. 2003. Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48:1183–1193. [PubMed][CrossRef]
29. Ize B, Porcelli I, Lucchini S, Hinton JC, Berks BC, Palmer T. 2004. Novel phenotypes of Escherichia coli tat mutants revealed by global gene expression and phenotypic analysis. J Biol Chem 279:47543–47554. [PubMed][CrossRef]
30. Sturm A, Schierhorn A, Lindenstrauss U, Lilie H, Bruser T. 2006. YcdB from Escherichia coli reveals a novel class of Tat-dependently translocated hemoproteins. J Biol Chem 281:13972–13978. [PubMed][CrossRef]
31. Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G. 2007. Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides. J Biol Chem 282:8309–8316. [PubMed][CrossRef]
32. DeLisa MP, Samuelson P, Palmer T, Georgiou G. 2002. Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J Biol Chem 277:29825–29831. [PubMed][CrossRef]
33. Widdick DA, Eijlander RT, van Dijl JM, Kuipers OP, Palmer T. 2008. A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. J Mol Biol 375:595–603. [PubMed][CrossRef]
34. Li H, Faury D, Morosoli R. 2006. Impact of amino acid changes in the signal peptide on the secretion of the Tat-dependent xylanase C from Streptomyces lividans. FEMS Microbiol Lett 255:268–274. [PubMed][CrossRef]
35. Mendel S, McCarthy A, Barnett JP, Eijlander RT, Nenninger A, Kuipers OP, Robinson C. 2008. The Escherichia coli TatABC system and a Bacillus subtilis TatAC-type system recognise three distinct targeting determinants in twin-arginine signal peptides. J Mol Biol 375:661–672. [PubMed][CrossRef]
36. Brink S, Bogsch EG, Edwards WR, Hynds PJ, Robinson C. 1998. Targeting of thylakoid proteins by the delta pH-driven twin-arginine translocation pathway requires a specific signal in the hydrophobic domain in conjunction with the twin-arginine motif. FEBS Lett 434:425–430. [PubMed][CrossRef]
37. Dilks K, Rose RW, Hartmann E, Pohlschroder M. 2003. Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:1478–1483. [PubMed][CrossRef]
38. Schaerlaekens K, Van Mellaert L, Lammertyn E, Geukens N, Anne J. 2004. The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology 150:21–31. [PubMed][CrossRef]
39. Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschroder M, Palmer T. 2006. The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci USA 103:17927–17932. [PubMed][CrossRef]
40. Buchanan G, Sargent F, Berks BC, Palmer T. 2001. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Arch Microbiol 177:107–112. [PubMed][CrossRef]
41. Bachmann J, Bauer B, Zwicker K, Ludwig B, Anderka O. 2006. The Rieske protein from Paracoccus denitrificans is inserted into the cytoplasmic membrane by the twin-arginine translocase. FEBS J 273:4817–4830. [PubMed][CrossRef]
42. Blaudeck N, Kreutzenbeck P, Freudl R, Sprenger GA. 2003. Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J Bacteriol 185:2811–2819. [PubMed][CrossRef]
43. Rose RW, Bruser T, Kissinger JC, Pohlschroder M. 2002. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45:943–950. [PubMed][CrossRef]
44. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S. 2005. Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167. [PubMed][CrossRef]
45. Santini CL, Bernadac A, Zhang M, Chanal A, Ize B, Blanco C, Wu LF. 2001. Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276:8159–8164. [PubMed][CrossRef]
46. Thomas JD, Daniel RA, Errington J, Robinson C. 2001. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol Microbiol 39:47–53. [PubMed][CrossRef]
47. Casadaban MJ, Cohen SN. 1979. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533. [PubMed][CrossRef]
48. Wexler M, Sargent F, Jack RL, Stanley NR, Bogsch EG, Robinson C, Berks BC, Palmer T. 2000. TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export. J Biol Chem 275:16717–16722. [PubMed][CrossRef]
49. Stanley NR, Findlay K, Berks BC, Palmer T. 2001. Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope. J Bacteriol 183:139–144. [PubMed][CrossRef]
50. Bock A, King PW, Blokesch M, Posewitz MC. 2006. Maturation of hydrogenases. Adv Microb Physiol 51:1–71. [PubMed][CrossRef]
51. Olson JW, Maier RJ. 2002. Molecular hydrogen as an energy source for Helicobacter pylori. Science 298:1788–1790. [PubMed][CrossRef]
52. Rodrigue A, Chanal A, Beck K, Muller M, Wu LF. 1999. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274:13223–13228. [PubMed][CrossRef]
53. Berks BC, Sargent F, Palmer T. 2000. The Tat protein export pathway. Mol Microbiol 35:260–774. [PubMed][CrossRef]
54. Dubini A, Sargent F. 2003. Assembly of Tat-dependent [NiFe] hydrogenases: identification of precursor-binding accessory proteins. FEBS Lett 549:141–146. [PubMed][CrossRef]
55. Schubert T, Lenz O, Krause E, Volkmer R, Friedrich B. 2007. Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 66:453–467. [PubMed][CrossRef]
56. Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F. 2004. Coordinating assembly and export of complex bacterial proteins. EMBO J 23:3962–3972. [PubMed][CrossRef]
57. Hatzixanthis K, Palmer T, Sargent F. 2003. A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Mol Microbiol 49:1377–1390. [PubMed][CrossRef]
58. Cline K, McCaffery M. 2007. Evidence for a dynamic and transient pathway through the TAT protein transport machinery. EMBO J 26:3039–3049. [PubMed][CrossRef]
59. Richter S, Lindenstrauss U, Lucke C, Bayliss R, Bruser T. 2007. Functional Tat transport of unstructured, small, hydrophilic proteins. J Biol Chem 282:33257–33264. [PubMed][CrossRef]
60. Berg BL, Stewart V. 1990. Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12. Genetics 125:691–702.[PubMed]
61. Stanley NR, Sargent F, Buchanan G, Shi J, Stewart V, Palmer T, Berks BC. 2002. Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Mol Microbiol 43:1005–1021. [PubMed][CrossRef]
62. Jormakka M, Tornroth S, Byrne B, Iwata S. 2002. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295:1863–1868. [PubMed][CrossRef]
63. Enoch HG, Lester RL. 1975. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem 250:6693–6705.[PubMed]
64. Punginelli C, Ize B, Stanley NR, Stewart V, Sawers G, Berks BC, Palmer T. 2004. mRNA secondary structure modulates translation of Tat-dependent formate dehydrogenase N. J Bacteriol 186:6311–6315. [PubMed][CrossRef]
65. Mandrand-Berthelot MA, Couchoux-Luthaud G, Santini CL, Giordano G. 1988. Mutants of Escherichia coli specifically deficient in respiratory formate dehydrogenase activity. J Gen Microbiol 134:3129–3139.[PubMed]
66. Bilous PT, Weiner JH. 1988. Molecular cloning and expression of the Escherichia coli dimethyl sulfoxide reductase operon. J Bacteriol 170:1511–1518.[PubMed]
67. Sambasivarao D, Scraba DG, Trieber C, Weiner JH. 1990. Organization of dimethyl sulfoxide reductase in the plasma membrane of Escherichia coli. J Bacteriol 172:5938–5948.[PubMed]
68. Simala-Grant JL, Weiner JH. 1996. Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology 142(pt 11):3231–3239. [PubMed][CrossRef]
69. Oresnik IJ, Ladner CL, Turner RJ. 2001. Identification of a twin-arginine leader-binding protein. Mol Microbiol 40:323–331. [PubMed][CrossRef]
70. Lubitz SP, Weiner JH. 2003. The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch Biochem Biophys 418:205–216. [PubMed][CrossRef]
71. Guymer D, Maillard J, Sargent F. 2009. A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K-12. Arch Microbiol 191:519–528. [PubMed][CrossRef]
72. Gon S, Giudici-Orticoni MT, Mejean V, Iobbi-Nivol C. 2001. Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli. J Biol Chem 276:11545–11551. [PubMed][CrossRef]
73. Mejean V, Iobbi-Nivol C, Lepelletier M, Giordano G, Chippaux M, Pascal MC. 1994. TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol 11:1169–1179. [PubMed][CrossRef]
74. Turner RJ, Papish AL, Sargent F. 2004. Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 50:225–238. [PubMed][CrossRef]
75. Genest O, Neumann M, Seduk F, Stocklein W, Mejean V, Leimkuhler S, Iobbi-Nivol C. 2008. Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components. J Biol Chem 283:21433–21440. [PubMed][CrossRef]
76. Hatzixanthis K, Clarke TA, Oubrie A, Richardson DJ, Turner RJ, Sargent F. 2005. Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proc Natl Acad Sci USA 102:8460–8465. [PubMed][CrossRef]
77. Pommier J, Mejean V, Giordano G, Iobbi-Nivol C. 1998. TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli. J Biol Chem 273:16615–16620. [PubMed][CrossRef]
78. Genest O, Ilbert M, Mejean V, Iobbi-Nivol C. 2005. TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature. J Biol Chem 280:15644–15648. [PubMed][CrossRef]
79. Ilbert M, Mejean V, Iobbi-Nivol C. 2004. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins. Microbiology 150:935–943. [PubMed][CrossRef]
80. Guymer D. 2009. Biochemical and physiological investigations of the activities of TorD family chaperones in Escherichia coli and Salmonella enterica serovar typhimurium. PhD thesis, University of Dundee, Dundee.
81. Gon S, Patte JC, Mejean V, Iobbi-Nivol C. 2000. The torYZ (yecK bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli. J Bacteriol 182:5779–5786. [PubMed][CrossRef]
82. Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJ, Moura I, Romao MJ. 1999. Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Structure 7:65–79. [PubMed][CrossRef]
83. Jepson BJ, Mohan S, Clarke TA, Gates AJ, Cole JA, Butler CS, Butt JN, Hemmings AM, Richardson DJ. 2007. Spectropotentiometric and structural analysis of the periplasmic nitrate reductase from Escherichia coli. J Biol Chem 282:6425–6437. [PubMed][CrossRef]
84. Grove J, Tanapongpipat S, Thomas G, Griffiths L, Crooke H, Cole J. 1996. Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol 19:467–481. [PubMed][CrossRef]
85. Maillard J, Spronk CA, Buchanan G, Lyall V, Richardson DJ, Palmer T, Vuister GW, Sargent F. 2007. Structural diversity in twin-arginine signal peptide-binding proteins. Proc Natl Acad Sci USA 104:15641–15646. [PubMed][CrossRef]
86. Potter LC, Cole JA. 1999. Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem J 344(pt 1):69–76. [PubMed][CrossRef]
87. Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL. 1995. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J Bacteriol 177:2813–2820.[PubMed]
88. Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. 1999. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 32:275–287. [PubMed][CrossRef]
89. Rensing C, Grass G. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213. [PubMed][CrossRef]
90. Outten FW, Huffman DL, Hale JA, O’Halloran TV. 2001. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–7. [PubMed][CrossRef]
91. Tetaz TJ, Luke RK. 1983. Plasmid-controlled resistance to copper in Escherichia coli. J Bacteriol 154:1263–1268.[PubMed]
92. Tarry M, Arends SJ, Roversi P, Piette E, Sargent F, Berks BC, Weiss DS, Lea SM. 2009. The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol 386:504–519. [PubMed][CrossRef]
93. Alami M, Luke I, Deitermann S, Eisner G, Koch HG, Brunner J, Muller M. 2003. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 12:937–946. [PubMed][CrossRef]
94. Reddy M. 2007. Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength. J Bacteriol 189:98–108. [PubMed][CrossRef]
95. Samaluru H, SaiSree L, Reddy M. 2007. Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome. J Bacteriol 189:8044–8052. [PubMed][CrossRef]
96. Normark S, Boman HG, Bloom GD. 1971. Cell division in a chain-forming envA mutant of Escherichia coli K12. Fine structure of division sites and effects of EDTA, lysozyme and ampicillin. Acta Pathol Microbiol Scand B Microbiol Immunol 79:651–664.[PubMed]
97. Chan MK, Mukund S, Kletzin A, Adams MW, Rees DC. 1995. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267:1463–1469. [PubMed][CrossRef]
98. Loschi L, Brokx SJ, Hills TL, Zhang G, Bertero MG, Lovering AL, Weiner JH, Strynadka NC. 2004. Structural and biochemical identification of a novel bacterial oxidoreductase. J Biol Chem 279:50391–50400. [PubMed][CrossRef]
99. Brokx SJ, Rothery RA, Zhang G, Ng DP, Weiner JH. 2005. Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Biochemistry 44:10339–10348. [PubMed][CrossRef]
100. Letoffe S, Heuck G, Delepelaire P, Lange N, Wandersman C. 2009. Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Natl Acad Sci USA 106:11719–11724. [PubMed][CrossRef]
101. Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC. 2007. EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7. Mol Microbiol 65:857–875. [PubMed][CrossRef]
102. Neumann M, Mittelstadt G, Iobbi-Nivol C, Saggu M, Lendzian F, Hildebrandt P, Leimkuhler S. 2009. A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli. FEBS J 276:2762–2774. [PubMed][CrossRef]
103. Neumann M, Schulte M, Junemann N, Stocklein W, Leimkuhler S. 2006. Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase. J Biol Chem 281:15701–15708. [PubMed][CrossRef]
104. Neumann M, Stocklein W, Leimkuhler S. 2007. Transfer of the molybdenum cofactor synthesized by Rhodobacter capsulatus MoeA to XdhC and MobA. J Biol Chem 282:28493–28500. [PubMed][CrossRef]
105. Ledeboer NA, Jones BD. 2005. Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar typhimurium on HEp-2 cells and chicken intestinal epithelium. J Bacteriol 187:3214–3226. [PubMed][CrossRef]
106. Holzapfel E, Moser M, Schiltz E, Ueda T, Betton JM, Muller M. 2009. Twin-arginine-dependent translocation of SufI in the absence of cytosolic helper proteins. Biochemistry 48:5096–5105. [PubMed][CrossRef]
107. Graubner W, Schierhorn A, Bruser T. 2007. DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone. J Biol Chem 282:7116–7124. [PubMed][CrossRef]
108. Perez-Rodriguez R, Fisher AC, Perlmutter JD, Hicks MG, Chanal A, Santini CL, Wu LF, Palmer T, DeLisa MP. 2007. An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway. J Mol Biol 367:715–730. [PubMed][CrossRef]
109. Rodrigue A, Batia N, Muller M, Fayet O, Bohm R, Mandrand-Berthelot MA, Wu LF. 1996. Involvement of the GroE chaperonins in the nickel-dependent anaerobic biosynthesis of NiFe-hydrogenases of Escherichia coli. J Bacteriol 178:4453–4460.[PubMed]
110. Bageshwar UK, Whitaker N, Liang FC, Musser SM. 2009. Interconvertibility of lipid- and translocon-bound forms of the bacterial Tat precursor pre-SufI. Mol Microbiol 74:209–226. [PubMed][CrossRef]
111. Shanmugham A, Wong Fong Sang HW, Bollen YJ, Lill H. 2006. Membrane binding of twin arginine preproteins as an early step in translocation. Biochemistry 45:2243–2249. [PubMed][CrossRef]
112. DeLisa MP, Tullman D, Georgiou G. 2003. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA 100:6115–6120.[PubMed]
113. Buchanan G, Maillard J, Nabuurs SB, Richardson DJ, Palmer T, Sargent F. 2008. Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. FEBS Lett 582:3979–3984. [PubMed][CrossRef]
114. Li SY, Chang BY, Lin SC. 2006. Coexpression of TorD enhances the transport of GFP via the TAT pathway. J Biotechnol 122:412–421. [PubMed][CrossRef]
115. Genest O, Seduk F, Ilbert M, Mejean V, Iobbi-Nivol C. 2006. Signal peptide protection by specific chaperone. Biochem Biophys Res Commun 339:991–995. [PubMed][CrossRef]
116. Chan CS, Chang L, Rommens KL, Turner RJ. 2009. Differential interactions between Tat-specific redox enzyme peptides and their chaperones. J Bacteriol 191:2091–2101.[PubMed]
117. Czjzek M, Dos Santos JP, Pommier J, Giordano G, Mejean V, Haser R. 1998. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution. J Mol Biol 284:435–447. [PubMed][CrossRef]
118. Tranier S, Mortier-Barriere I, Ilbert M, Birck C, Iobbi-Nivol C, Mejean V, Samama JP. 2002. Characterization and multiple molecular forms of TorD from Shewanella massilia, the putative chaperone of the molybdoenzyme TorA. Protein Sci 11:2148–2157. [PubMed][CrossRef]
119. Tranier S, Iobbi-Nivol C, Birck C, Ilbert M, Mortier-Barriere I, Mejean V, Samama JP. 2003. A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia. Structure 11:165–174. [PubMed][CrossRef]
120. Jack RL, Dubini A, Palmer T, Sargent F. 2005. Common principles in the biosynthesis of diverse enzymes. Biochem Soc Trans 33:105–107. [PubMed][CrossRef]
121. Guymer D, Maillard J, Agacan MF, Brearley CA, Sargent F. Intrinsic GTPase activity of a bacterial twin-arginine translocation proofreading chaperone induced by domain swapping. FEBS J. 277:511–525. [PubMed][CrossRef]
122. Papish AL, Ladner CL, Turner RJ. 2003. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase. J Biol Chem 278:32501–32506. [PubMed][CrossRef]
123. Kostecki JS, Li H, Turner RJ, DeLisa MP. 2010. Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation. PLoS ONE 5:e9225. [PubMed][CrossRef]
124. Genest O, Mejean V, Iobbi-Nivol C. 2009. Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes. FEMS Microbiol Lett 297:1–9. [PubMed][CrossRef]
125. Sargent F, Berks BC, Palmer T. 2002. Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Arch Microbiol 178:77–84. [PubMed][CrossRef]
126. Winstone TL, Workentine ML, Sarfo KJ, Binding AJ, Haslam BD, Turner RJ. 2006. Physical nature of signal peptide binding to DmsD. Arch Biochem Biophys 455:89–97. [PubMed][CrossRef]
127. Qiu Y, Zhang R, Binkowski TA, Tereshko V, Joachimiak A, Kossiakoff A. 2008. The 1.38 Å crystal structure of DmsD protein from Salmonella typhimurium, a proofreading chaperone on the Tat pathway. Proteins 71:525–533. [PubMed][CrossRef]
128. Ramasamy SK, Clemons WM Jr. 2009. Structure of the twin-arginine signal-binding protein DmsD from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:746–750. [PubMed][CrossRef]
129. Stevens CM, Winstone TM, Turner RJ, Paetzel M. 2009. Structural analysis of a monomeric form of the twin-arginine leader peptide binding chaperone Escherichia coli DmsD. J Mol Biol 389:124–133. [PubMed][CrossRef]
130. Sarfo KJ, Winstone TL, Papish AL, Howell JM, Kadir H, Vogel HJ, Turner RJ. 2004. Folding forms of Escherichia coli DmsD, a twin-arginine leader binding protein. Biochem Biophys Res Commun 315:397–403. [PubMed][CrossRef]
131. Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL, Giordano G. 1998. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol Microbiol 28:435–447. [PubMed][CrossRef]
132. Martinez-Espinosa RM, Dridge EJ, Bonete MJ, Butt JN, Butler CS, Sargent F, Richardson DJ. 2007. Look on the positive side! The orientation, identification and bioenergetics of ‘Archaeal’ membrane-bound nitrate reductases. FEMS Microbiol Lett 276:129–139. [PubMed][CrossRef]
133. Sargent F. 2007. Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology 153:633–651. [PubMed][CrossRef]
134. Ize B, Coulthurst SJ, Hatzixanthis K, Caldelari I, Buchanan G, Barclay EC, Richardson DJ, Palmer T, Sargent F. 2009. Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains. 155:3992–4004.[PubMed]
135. Sargent F. 2007. The twin-arginine transport system: moving folded proteins across membranes. Biochem Soc Trans 35:835–847. [PubMed][CrossRef]
136. Vergnes A, Gouffi-Belhabich K, Blasco F, Giordano G, Magalon A. 2004. Involvement of the molybdenum cofactor biosynthetic machinery in the maturation of the Escherichia coli nitrate reductase A. J Biol Chem 279:41398–41403. [PubMed][CrossRef]
137. Lanciano P, Vergnes A, Grimaldi S, Guigliarelli B, Magalon A. 2007. Biogenesis of a respiratory complex is orchestrated by a single accessory protein. J Biol Chem 282:17468–17474. [PubMed][CrossRef]
138. Nilavongse A, Brondijk TH, Overton TW, Richardson DJ, Leach ER, Cole JA. 2006. The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA. Microbiology 152:3227–3237. [PubMed][CrossRef]
139. Minailiuc OM, Ekiel I, Cheng J, Milad M, Ghandi S, Larocque R, Cygler M, Matte A. 2009. NMR solution structure of NapD in complex with NapA1–35 signal peptide. Protein Data Bank (PDB) ID no. 2PQ4_A. http://www.pdb.org.
140. Bernhard M, Schwartz E, Rietdorf J, Friedrich B. 1996. The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. J Bacteriol 178:4522–4529.[PubMed]
141. Menon NK, Robbins J, Peck HD Jr, Chatelus CY, Choi ES, Przybyla AE. 1990. Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 operon containing six open reading frames. J Bacteriol 172:1969–1977.[PubMed]
142. Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD Jr, Przybyla AE. 1994. Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423.[PubMed]
143. Paveglio MT, Tang JS, Unger RE, Barrett EL. 1988. Formate-nitrate respiration in Salmonella typhimurium: studies of two rha-linked fdn genes. J Bacteriol 170:213–217.[PubMed]
144. Luke I, Butland G, Moore K, Buchanan G, Lyall V, Fairhurst SA, Greenblatt JF, Emili A, Palmer T, Sargent F. 2008. Biosynthesis of the respiratory formate dehydrogenases from Escherichia coli: characterization of the FdhE protein. Arch Microbiol 190:685–696. [PubMed][CrossRef]
145. Zhang R, Evdokimova E, Savchenko A, Edwards A, Joachimiak A. 2005. The crystal structure of the FdhE protein from Pseudomonas aeruginosa. Protein Data Bank (PDB) ID no. 2FIYA. http://www.pdb.org.
146. Panahandeh S, Maurer C, Moser M, DeLisa MP, Muller M. 2008. Following the path of a twin-arginine precursor along the TatABC translocase of Escherichia coli. J Biol Chem 283:33267–33275. [PubMed][CrossRef]
147. Richter S, Bruser T. 2005. Targeting of unfolded PhoA to the TAT translocon of Escherichia coli. J Biol Chem 280:42723–42730. [PubMed][CrossRef]
148. Matos CF, Robinson C, Di Cola A. 2008. The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules. EMBO J 27:2055–63. [PubMed][CrossRef]
149. Matos CF, Di Cola A, Robinson C. 2009. TatD is a central component of a Tat translocon-initiated quality control system for exported FeS proteins in Escherichia coli. EMBO Rep 10:474–479. [PubMed][CrossRef]
150. Lindenstrauss U, Matos CF, Graubner W, Robinson C, Bruser T. 2010. Malfolded recombinant Tat substrates are Tat-independently degraded in Escherichia coli. FEBS Lett 584:3644–3648. [PubMed][CrossRef]
151. Jack RL, Sargent F, Berks BC, Sawers G, Palmer T. 2001. Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183:1801–1804. [PubMed][CrossRef]
152. De Leeuw E, Porcelli I, Sargent F, Palmer T, Berks BC. 2001. Membrane interactions and self-association of the TatA and TatB components of the twin-arginine translocation pathway. FEBS Lett 506:143–148. [PubMed][CrossRef]
153. Punginelli C, Maldonado B, Grahl S, Jack R, Alami M, Schroder J, Berks BC, Palmer T. 2007. Cysteine scanning mutagenesis and topological mapping of the Escherichia coli twin-arginine translocase TatC Component. J Bacteriol 189:5482–5494. [PubMed][CrossRef]
154. Blaudeck N, Kreutzenbeck P, Muller M, Sprenger GA, Freudl R. 2005. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB. J Biol Chem 280:3426–3432. [PubMed][CrossRef]
155. Ize B, Gerard F, Zhang M, Chanal A, Voulhoux R, Palmer T, Filloux A, Wu LF. 2002. In vivo dissection of the Tat translocation pathway in Escherichia coli. J Mol Biol 317:327–335. [PubMed][CrossRef]
156. Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM. 2004. Two minimal Tat translocases in Bacillus. Mol Microbiol 54:1319–1325. [PubMed][CrossRef]
157. Jongbloed JD, van der Ploeg R, van Dijl JM. 2006. Bifunctional TatA subunits in minimal Tat protein translocases. Trends Microbiol 14:2–4. [PubMed][CrossRef]
158. Yen MR, Tseng YH, Nguyen EH, Wu LF, Saier MH Jr. 2002. Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol 177:441–450. [PubMed][CrossRef]
159. Hicks MG, Guymer D, Buchanan G, Widdick DA, Caldelari I, Berks BC, Palmer T. 2006. Formation of functional Tat translocases from heterologous components. BMC Microbiol 6:64. [PubMed][CrossRef]
160. Lee PA, Orriss GL, Buchanan G, Greene NP, Bond PJ, Punginelli C, Jack RL, Sansom MS, Berks BC, Palmer T. 2006. Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. J Biol Chem 281:34072–34085. [PubMed][CrossRef]
161. Porcelli I, de Leeuw E, Wallis R, van den Brink-van der E Laan, de Kruijff B, Wallace BA, Palmer T, Berks BC. 2002. Characterization and membrane assembly of the TatA component of the Escherichia coli twin-arginine protein transport system. Biochemistry 41:13690–13697. [PubMed][CrossRef]
162. Gouffi K, Gerard F, Santini CL, Wu LF. 2004. Dual topology of the Escherichia coli TatA protein. J Biol Chem 279:11608–11615. [PubMed][CrossRef]
163. Chan CS, Zlomislic MR, Tieleman DP, Turner RJ. 2007. The TatA subunit of Escherichia coli twin-arginine translocase has an N- in topology. Biochemistry 46:7396–7404. [PubMed][CrossRef]
164. Stevenson LG, Strisovsky K, Clemmer KM, Bhatt S, Freeman M, Rather PN. 2007. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc Natl Acad Sci USA 104:1003–1008. [PubMed][CrossRef]
165. Maegawa S, Koide K, Ito K, Akiyama Y. 2007. The intramembrane active site of GlpG, an E. coli rhomboid protease, is accessible to water and hydrolyses an extramembrane peptide bond of substrates. Mol Microbiol 64:435–447. [PubMed][CrossRef]
166. Wang Y, Zhang Y, Ha Y. 2006. Crystal structure of a rhomboid family intramembrane protease. Nature 444:179–180. [PubMed][CrossRef]
167. Pop OI, Westermann M, Volkmer-Engert R, Schulz D, Lemke C, Schreiber S, Gerlach R, Wetzker R, Muller JP. 2003. Sequence-specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis. J Biol Chem 278:38428–38436. [PubMed][CrossRef]
168. Westermann M, Pop OI, Gerlach R, Appel TR, Schlormann W, Schreiber S, Muller JP. 2006. The TatAd component of the Bacillus subtilis twin-arginine protein transport system forms homo-multimeric complexes in its cytosolic and membrane embedded localisation. Biochim Biophys Acta 1758:443–451. [PubMed][CrossRef]
169. Barnett JP, van der Ploeg R, Eijlander RT, Nenninger A, Mendel S, Rozeboom R, Kuipers OP, van Dijl JM, Robinson C. 2009. The twin-arginine translocation (Tat) systems from Bacillus subtilis display a conserved mode of complex organization and similar substrate recognition requirements. FEBS J 276:232–243. [PubMed][CrossRef]
170. Berthelmann F, Mehner D, Richter S, Lindenstrauss U, Lunsdorf H, Hause G, Bruser T. 2008. Recombinant expression of tatABC and tatAC results in the formation of interacting cytoplasmic TatA tubes in Escherichia coli. J Biol Chem 283:25281–25289. [PubMed][CrossRef]
171. Bogsch EG, Sargent F, Stanley NR, Berks BC, Robinson C, Palmer T. 1998. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273:18003–18006. [PubMed][CrossRef]
172. Gouffi K, Santini CL, Wu LF. 2002. Topology determination and functional analysis of the Escherichia coli TatC protein. FEBS Lett 525:65–70. [PubMed][CrossRef]
173. Behrendt J, Standar K, Lindenstrauss U, Bruser T. 2004. Topological studies on the twin-arginine translocase component TatC. FEMS Microbiol Lett 234:303–308. [PubMed][CrossRef]
174. Ki JJ, Kawarasaki Y, Gam J, Harvey BR, Iverson BL, Georgiou G. 2004. A periplasmic fluorescent reporter protein and its application in high-throughput membrane protein topology analysis. J Mol Biol 341:901–909. [PubMed][CrossRef]
175. Centore RC, Lestini R, Sandler SJ. 2008. XthA (Exonuclease III) regulates loading of RecA onto DNA substrates in log phase Escherichia coli cells. Mol Microbiol 67:88–101.[PubMed]
176. Qiu J, Yoon JH, Shen B. 2005. Search for apoptotic nucleases in yeast: role of Tat-D nuclease in apoptotic DNA degradation. J Biol Chem 280:15370–15379. [PubMed][CrossRef]
177. Lee PA, Buchanan G, Stanley NR, Berks BC, Palmer T. 2002. Truncation analysis of TatA and TatB defines the minimal functional units required for protein translocation. J Bacteriol 184:5871–5879. [PubMed][CrossRef]
178. Hicks MG, Lee PA, Georgiou G, Berks BC, Palmer T. 2005. Positive selection for loss-of-function tat mutations identifies critical residues required for TatA activity. J Bacteriol 187:2920–2925. [PubMed][CrossRef]
179. Barrett CM, Mathers JE, Robinson C. 2003. Identification of key regions within the Escherichia coli TatAB subunits. FEBS Lett 537:42–46. [PubMed][CrossRef]
180. Barrett CM, Robinson C. 2005. Evidence for interactions between domains of TatA and TatB from mutagenesis of the TatABC subunits of the twin-arginine translocase. FEBS J 272:2261–2275. [PubMed][CrossRef]
181. Greene NP, Porcelli I, Buchanan G, Hicks MG, Schermann SM, Palmer T, Berks BC. 2007. Cysteine scanning mutagenesis and disulfide mapping studies of the TatA component of the bacterial twin arginine translocase. J Biol Chem 282:23937–23945. [PubMed][CrossRef]
182. Hicks MG, de Leeuw E, Porcelli I, Buchanan G, Berks BC, Palmer T. 2003. The Escherichia coli twin-arginine translocase: conserved residues of TatA and TatB family components involved in protein transport. FEBS Lett 539:61–67. [PubMed][CrossRef]
183. Allen SC, Barrett CM, Ray N, Robinson C. 2002. Essential cytoplasmic domains in the Escherichia coli TatC protein. J Biol Chem 277:10362–10366. [PubMed][CrossRef]
184. Buchanan G, de Leeuw E, Stanley NR, Wexler M, Berks BC, Sargent F, Palmer T. 2002. Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol 43:1457–1470. [PubMed][CrossRef]
185. Holzapfel E, Eisner G, Alami M, Barrett CM, Buchanan G, Luke I, Betton JM, Robinson C, Palmer T, Moser M, Muller M. 2007. The entire N-terminal half of TatC is involved in twin-arginine precursor binding. Biochemistry 46:2892–2898. [PubMed][CrossRef]
186. Strauch EM, Georgiou G. 2007. Escherichia coli tatC mutations that suppress defective twin-arginine transporter signal peptides. J Mol Biol 374:283–291. [PubMed][CrossRef]
187. Kreutzenbeck P, Kroger C, Lausberg F, Blaudeck N, Sprenger GA, Freudl R. 2007. Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities. J Biol Chem 282:7903–7911. [PubMed][CrossRef]
188. Fikes JD, Bankaitis VA, Ryan JP, Bassford PJ Jr. 1987. Mutational alterations affecting the export competence of a truncated but fully functional maltose-binding protein signal peptide. J Bacteriol 169:2345–2351.[PubMed]
189. Behrendt J, Lindenstrauss U, Bruser T. 2007. The TatBC complex formation suppresses a modular TatB-multimerization in Escherichia coli. FEBS Lett 581:4085–4090. [PubMed][CrossRef]
190. Orriss GL, Tarry MJ, Ize B, Sargent F, Lea SM, Palmer T, Berks BC. 2007. TatBC, TatB, and TatC form structurally autonomous units within the twin arginine protein transport system of Escherichia coli. FEBS Lett 581:4091–4097. [PubMed][CrossRef]
191. McDevitt CA, Buchanan G, Sargent F, Palmer T, Berks BC. 2006. Subunit composition and in vivo substrate-binding characteristics of Escherichia coli Tat protein complexes expressed at native levels. FEBS J 273:5656–5568. [PubMed][CrossRef]
192. Oates J, Barrett CM, Barnett JP, Byrne KG, Bolhuis A, Robinson C. 2005. The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex. J Mol Biol 346:295–305. [PubMed][CrossRef]
193. Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC. 2005. The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci USA 102:10482–10486. [PubMed][CrossRef]
194. Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S, Berry RM, Palmer T, Berks BC. 2008. Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci USA 105:15376–15381. [PubMed][CrossRef]
195. Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C. 2001. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276:20213–20219. [PubMed][CrossRef]
196. De Leeuw E, Granjon T, Porcelli I, Alami M, Carr SB, Muller M, Sargent F, Palmer T, Berks BC. 2002. Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. J Mol Biol 322:1135–1146. [PubMed][CrossRef]
197. Oates J, Mathers J, Mangels D, Kuhlbrandt W, Robinson C, Model K. 2003. Consensus structural features of purified bacterial TatABC complexes. J Mol Biol 330:277–286. [PubMed][CrossRef]
198. Tarry MJ, Schafer E, Chen S, Buchanan G, Greene NP, Lea SM, Palmer T, Saibil HR, Berks BC. 2009. Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system. Proc Natl Acad Sci USA 106:13284–13289. [PubMed][CrossRef]
199. Sargent F, Gohlke U, De Leeuw E, Stanley NR, Palmer T, Saibil HR, Berks BC. 2001. Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur J Biochem 268:3361–3367. [PubMed][CrossRef]
200. Dabney-Smith C, Cline K. 2009. Clustering of C-terminal stromal domains of Tha4 homo-oligomers during translocation by the Tat protein transport system. Mol Biol Cell 20:2060–2069.
201. Cline K, Mori H. 2001. Thylakoid ΔpH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J Cell Biol 154:719–729. [PubMed][CrossRef]
202. Gerard F, Cline K. 2006. Efficient twin arginine translocation (Tat) pathway transport of a precursor protein covalently anchored to its initial cpTatC binding site. J Biol Chem 281:6130–6135. [PubMed][CrossRef]
203. Ma X, Cline K. Multiple precursor proteins bind individual Tat receptor complexes and are collectively transported. EMBO J 29:1477–1488.
204. Mori H, Cline K. 2002. A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase. J Cell Biol 157:205–210. [PubMed][CrossRef]
205. Dabney-Smith C, Mori H, Cline K. 2006. Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport. J Biol Chem 281:5476–5483.[PubMed]
206. Bruser T, Sanders C. 2003. An alternative model of the twin arginine translocation system. Microbiol Res 158:7–17. [PubMed][CrossRef]
207. Bageshwar UK, Musser SM. 2007. Two electrical potential-dependent steps are required for transport by the Escherichia coli Tat machinery. J Cell Biol 179:87–99. [PubMed][CrossRef]
208. Ichihara S, Suzuki T, Suzuki M, Mizushima S. 1986. Molecular cloning and sequencing of the sppA gene and characterization of the encoded protease IV, a signal peptide peptidase, of Escherichia coli. J Biol Chem 261:9405–9411.[PubMed]
209. Alami M, Trescher D, Wu LF, Muller M. 2002. Separate analysis of twin-arginine translocation (Tat)-specific membrane binding and translocation in Escherichia coli. J Biol Chem 277:20499–20503. [PubMed][CrossRef]
210. Di Cola A, Robinson C. 2005. Large-scale translocation reversal within the thylakoid Tat system in vivo. J Cell Biol 171:281–289. [PubMed][CrossRef]
211. Droge MJ, Boersma YL, Braun PG, Buining RJ, Julsing MK, Selles KG, van Dijl JM, Quax WJ. 2006. Phage display of an intracellular carboxylesterase of Bacillus subtilis: comparison of Sec and Tat pathway export capabilities. Appl Environ Microbiol 72:4589–4595. [PubMed][CrossRef]
212. Fisher AC, DeLisa MP. 2009. Efficient isolation of soluble intracellular single-chain antibodies using the twin-arginine translocation machinery. J Mol Biol 385:299–311. [PubMed][CrossRef]
213. Fisher AC, Kim W, DeLisa MP. 2006. Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway. Protein Sci 15:449–458. [PubMed][CrossRef]
214. Paschke M, Hohne W. 2005. A twin-arginine translocation (Tat)-mediated phage display system. Gene 350:79–88. [PubMed][CrossRef]
215. Thammawong P, Kasinrerk W, Turner RJ, Tayapiwatana C. 2006. Twin-arginine signal peptide attributes effective display of CD147 to filamentous phage. Appl Microbiol Biotechnol 69:697–703. [PubMed][CrossRef]
216. Bruser T. 2007. The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production. Appl Microbiol Biotechnol 76:35–45. [PubMed][CrossRef]
217. Mickael CS, Lam PK, Berberov EM, Allan B, Potter AA, Koster W. Salmonella enterica serovar Enteritidis tatB and tatC mutants are impaired in Caco-2 cell invasion in vitro and show reduced systemic spread in chickens. Infect Immun 78:3493–3505. [PubMed][CrossRef]
218. Pradel N, Ye C, Livrelli V, Xu J, Joly B, Wu LF. 2003. Contribution of the twin arginine translocation system to the virulence of enterohemorrhagic Escherichia coli O157:H7. Infect Immun 71:4908–4916. [PubMed][CrossRef]
ecosalplus.4.3.2.citations
ecosalplus/4/1
content/journal/ecosalplus/10.1128/ecosalplus.4.3.2
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.4.3.2
2010-11-03
2016-08-26

Abstract:

Proteins that reside partially or completely outside the bacterial cytoplasm require specialized pathways to facilitate their localization. Globular proteins that function in the periplasm must be translocated across the hydrophobic barrier of the inner membrane. While the Sec pathway transports proteins in a predominantly unfolded conformation, the Tat pathway exports folded protein substrates. Protein transport by the Tat machinery is powered solely by the transmembrane proton gradient, and there is no requirement for nucleotide triphosphate hydrolysis. Proteins are targeted to the Tat machinery by N-terminal signal peptides that contain a consensus twin arginine motif. In and there are approximately thirty proteins with twin arginine signal peptides that are transported by the Tat pathway. The majority of these bind complex redox cofactors such as iron sulfur clusters or the molybdopterin cofactor. Here we describe what is known about Tat substrates in and , the function and mechanism of Tat protein export, and how the cofactor insertion step is coordinated to ensure that only correctly assembled substrates are targeted to the Tat machinery.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Both Sec and Tat signal peptides show a recognizable tripartite structure with a polar (basic) n-region, a hydrophobic h-region, and a polar c-region that contains the recognition site for signal peptidase (shown as AxA in the figure, although generally residues at the -3 and -1 positions relative to the cleavage site are any amino acid with a small, neutral side chain; reference 16 ). The vast majority of Sec-targeting signal peptides in have a length between 15 (for the signal peptide of the lipoprotein CsgG) and 37 amino acids (FimO signal peptide). Some occasionally have longer length, for example, the unusually long signal peptides associated with autotransporter proteins such as Ag43 ( 17 , 18 ). However, the vast majority of Sec signal peptides are fewer than 24 amino acids long. Tat signal peptides have a conserved motif, S-R-R-x-F-L-K, that is found at the n-region/h-region boundary and are generally markedly longer than Sec signal peptides, varying in length in from 25 (YedY signal peptide) to 50 (YagT signal peptide) amino acids. Other differences include the fact that the h-regions of Tat signal peptides are less hydrophobic than Sec signals and that they often contain one or more basic residues in the c-region that are almost never found in Sec signal peptides and that act as a Sec-avoidance signal ( 19 , 20 ).

Citation: Palmer, T, Sargent, F, Berks, B. 2010. The Tat Protein Export Pathway, EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Fluorescence light microscopy images of  strain MC4100 (A) ( 47 ; ) and the cognate deletion strain DADE (B) ( 48 ) producing GFP fused to the TorA signal peptide from plasmid pRR-GFP ( 45 ). Halos of GFP are observed in a strain, whereas only diffuse cytoplasmic fluorescence is seen when the Tat system is inactive. Note that arabinose-resistant isolates of the two strains were used. Subcellular fractionation reveals that the GFP detected in the strain resides in the periplasmic compartment (data not shown). We thank Dr. Berengere Ize for providing the images.

Citation: Palmer, T, Sargent, F, Berks, B. 2010. The Tat Protein Export Pathway, EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Tat precursor proteins are believed to interact (a) either directly with the Tat machinery or (b) with the lipid bilayer before diffusing laterally toward the Tat channel ( 110 , 111 ). The Tat translocase itself is proposed to reject precursor proteins that are not folded (Tat Quality Control) ( 112 ). Complex proteins, such as cofactor-containing respiratory enzymes, undergo a second tier of quality control called “Tat Proofreading.” Here, the signal peptide is bound tightly by a target-specific cytoplasmic chaperone, shown in green (step 1). In some cases, a second molecule of the chaperone binds elsewhere on the apoenzyme. The redox cofactor is then loaded (step 2), and partner subunits may also bind where appropriate (not depicted) before the chaperones are released (step 3).

Citation: Palmer, T, Sargent, F, Berks, B. 2010. The Tat Protein Export Pathway, EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

(A) The primary sequence of the TorA signal peptide. The twin arginine motif is highlighted in dark blue, and the TorD-binding epitope is highlighted in cyan. The arrow indicates the signal peptidase I (LepB) cleavage site. (B) Crystal structure of the TorD homologue from (PDB ID no. 1N1C). The model shows an intertwined dimer of two protomers (blue and yellow). (C) Crystal structure of the DmsD protein from (PDB ID no. 3EPF). In this case the model shows a monomeric form of the protein. (D) The primary sequence of the NapA signal peptide. The twin arginine motif is highlighted in dark blue, and the NapD binding epitope is highlighted in cyan. The arrow indicates the LepB cleavage site. (E) A model of the high-resolution solution NMR structure of the NapD protein (PDB ID no. 2JSX). (F) A model of the NMR-derived solution structure of a complex between NapD and residues 1 to 35 of the NapA twin arginine signal peptide (PDB ID no. 2PQ4).

Citation: Palmer, T, Sargent, F, Berks, B. 2010. The Tat Protein Export Pathway, EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

(A and C) Genetic context of the operon in K-12 (A) and LT2 (C). The distance, in base pairs, between genes is indicated. (B and D) The mRNA between and in (B) and LT2 (D) can potentially fold into a stem-loop structure. (E and F) Genetic context of the gene in K-12 (A) and LT2 (C). The distance, in base pairs, between genes is indicated.

Citation: Palmer, T, Sargent, F, Berks, B. 2010. The Tat Protein Export Pathway, EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Citation: Palmer, T, Sargent, F, Berks, B. 2010. The Tat Protein Export Pathway, EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

(A) The amino acid sequence of TatA is shown, with predicted secondary structure above. α-helical regions are represented as cylinders, and β-sheet is indicated as arrows. The essential glycine residue at the boundary between the transmembrane and amphipathic α-helices is boxed. (B to E) Alternative topological arrangements of the TatA protein proposed in different studies (see main text).

Citation: Palmer, T, Sargent, F, Berks, B. 2010. The Tat Protein Export Pathway, EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

(Top) Under resting conditions the TatBC complex and tetrameric units of TatA exist as separate assemblies in the membrane. . A folded substrate protein docks at the TatBC complex, binding by virtue of its twin arginine signal peptide. TatA tetramers assemble onto the substrate-bound TatBC complex to form the transport channel in a process requiring the proton motive force (Δp). . The substrate is transported across the membrane through a channel formed by TatA. It is not known whether the proton motive force is needed to drive this step. . The translocated substrate is released, its signal peptide is cleaved, and the TatABC complex dissociates to give the TatBC complex and separate multimers of TatA. Note that, for clarity, only one TatBC pair in the TatBC complex and only some of the necessary TatA molecules are depicted.

Citation: Palmer, T, Sargent, F, Berks, B. 2010. The Tat Protein Export Pathway, EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

The known or likely and Tat substrate proteins

Citation: Palmer, T, Sargent, F, Berks, B. 2010. The Tat Protein Export Pathway, EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.2

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error