1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 4:

Synthesis and Processing of Macromolecules

Type II Secretion in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Marcella Patrick1, Miranda D. Gray2, Maria Sandkvist3, and Tanya L. Johnson4
  • Editors: James M. Slauch5, Harris Bernstein6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109–0620; 2: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109–0620; 3: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109–0620; 4: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109–0620; 5: The Schoold of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL; 6: National Institutes of Health, Bethesda, MD
  • Received 16 December 2009 Accepted 04 March 2010 Published 19 October 2010
  • Address correspondence to Tanya L. Johnson tanyalj@umich.edu
image of Type II Secretion in <span class="jp-italic">Escherichia coli</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    Type II Secretion in , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/4/1/4_3_4_module-1.gif /docserver/preview/fulltext/ecosalplus/4/1/4_3_4_module-2.gif
  • Abstract:

    The type II secretion system (T2SS) is used by and other gram-negative bacteria to translocate many proteins, including toxins and proteases, across the outer membrane of the cell and into the extracellular space. Depending on the bacterial species, between 12 and 15 genes have been identified that make up a T2SS operon. T2SSs are widespread among gram-negative bacteria, and most appear to possess one or two complete T2SS operons. Once expressed, the multiple protein components that form the T2S system are localized in both the inner and outer membranes, where they assemble into an apparatus that spans the cell envelope. This apparatus supports the secretion of numerous virulence factors; and therefore secretion via this pathway is regarded in many organisms as a major virulence mechanism. Here, we review several of the known T2S substrates that have proven to be critical for the survival and pathogenicity of these bacteria. Recent structural and biochemical information is also reviewed that has improved our current understanding of how the T2S apparatus functions; also reviewed is the role that individual proteins play in this complex system.

  • Citation: Patrick M, Gray M, Sandkvist M, Johnson T. 2010. Type II Secretion in , EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.4

References

1. Filloux A. 2004. The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694:163–179. [PubMed][CrossRef]
2. Johnson TL, Abendroth J, Hol WGJ, Sandkvist M. 2006. Type II secretion: from structure to function. FEMS Microbiol Lett 255:175–186. [PubMed][CrossRef]
3. Sandkvist M. 2001. Biology of type II secretion. Mol Microbiol 40:271–283. [PubMed][CrossRef]
4. Sandkvist M. 2001. Type II secretion and pathogenesis. Infect Immun 69:3523–3535. [PubMed][CrossRef]
5. Nunn D. 1999. Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol. 9:402–408. [PubMed][CrossRef]
6. Schmidt H, Henkel B, Karch H. 1997. A gene cluster closely related to type II secretion pathway operons of Gram-negative bacteria is located on the large plasmid of enterohemorrhagic Escherichia coli O157 strains. FEMS Microbiol Lett 148:265–272. [PubMed][CrossRef]
7. Yang J, Baldi DL, Tauschek M, Strugnell RA, Robins-Browne RM. 2007. Transcriptional regulation of the yghJ-pppA-yghG-gspCDEFGHIJKLM cluster, encoding the type II secretion pathway in enterotoxigenic Escherichia coli. J Bacteriol 189:142–150. [PubMed][CrossRef]
8. Ho TD, Davis BM, Ritchie JM, Waldor MK. 2008. Type 2 secretion promotes enterohemorrhagic Escherichia coli adherence and intestinal colonization. Infect Immun 76:1858–1865. [PubMed][CrossRef]
9. Kulkarni R, Dhakal BK, Slechta ES, Kurtz Z, Mulvey MA, Thanass DG. 2009. Roles of putative type II secretion and type IV pilus systems in the virulence of uropathogenic Escherichia coli. PLoS ONE 4:e4752. [PubMed][CrossRef]
10. Trachman JD, Maas WK. 1998. Temperature regulation of heat-labile enterotoxin (LT) synthesis in Escherichia coli is mediated by an interaction of H-NS protein with the LT A-subunit DNA. J Bacteriol 180:3715–3718.[PubMed]
11. Kunkel SL, Robertson DC.. 1979. Factors affecting release of heat-labile enterotoxin by enterotoxigenic Escherichia coli. Infect Immun 23:652–659.[PubMed]
12. Trachman JD, Yasmin M. 2004. Thermo-osmoregulation of heat-labile enterotoxin expression by Escherichia coli. Curr Microbiol 49:353–360. [PubMed][CrossRef]
13. Francetic O, Belin D, Badaut C, Pugsley AP. 2000. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. EMBO J 19:6697–6703. [PubMed][CrossRef]
14. Chapon-Herve V, Akrim M, Latifi A, Williams P, Lazdunski A, Bally M. 1997. Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa. Mol Microbiol 24:1169–1178. [PubMed][CrossRef]
15. Ball G, Durand E, Lazdunski A, Filloux A. 2002. A novel type II secretion system in Pseudomonas aeruginosa. Mol Microbiol 43:475–485. [PubMed][CrossRef]
16. Jones S, Yu B, Bainton NJ, Birdsall M, Bycroft BW, Chhabra SR, Cox AJR, Golby P, Reeves PJ, Stephens S, Winson MK, Salmond GPC, Stewart GSAB, Williams P. 1993. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J 12:2477–2482.[PubMed]
17. Lindeberg M, Collmer A. 1992. Analysis of eight out genes in a cluster required for pectic enzyme secretion by Erwinia chrysanthemi: sequence comparison with secretion genes from other gram-negative bacteria. J Bacteriol 174:7385–7397.[PubMed]
18. Ding Y, Davis BM, Waldor MK. 2004. Hfq is essential for Vibrio cholerae virulence and downregulates sigma E expression. Mol Microbiol. 53:345–354.[PubMed]
19. Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, MacIntyre S, Stewart GSAB. 1997. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281.[PubMed]
20. Swift S, Lynch MJ, Fish L, Kirke DF, Tomas JM, Stewart GSAB, Williams P. 1999. Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect Immun 67:5192–5199.[PubMed]
21. DebRoy S, Dao J, Soderberg M, Rossier O, Cianciotto NP. 2006. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci USA 103:19146–19151. [PubMed][CrossRef]
22. Dodd HN, Pemberton JM. 1996. Cloning, sequencing, and characterization of the nucH gene encoding an extracellular nuclease from Aeromonas hydrophila JMP636. J Bacteriol 178:3926–3933.[PubMed]
23. Rossier O, Dao J, Cianciotto NP. 2009. A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis. Microbiology 155:882–890. [PubMed][CrossRef]
24. Hu NT, Hung MN, Chiou SJ, Tang F, Chiang DC, Huang HY, Wu CY. 1992. Cloning and characterization of a gene required for the secretion of extracellular enzymes across the outer membrane by Xanthomonas campestris pv. campestris. J Bacteriol 174:2679–2687.[PubMed]
25. Possot OM, Vignon G, Bomchil N, Ebel F, Pugsley AP. 2000. Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE. J Bacteriol 182:2142–2152. [PubMed][CrossRef]
26. Jiang B, Howard SP. 1992. The Aeromonas hydrophila exeE gene, required both for protein secretion and normal outer-membrane biogenesis, is a member of a general secretion pathway. Mol Microbiol 6:1351–1361. [PubMed][CrossRef]
27. Francetic O, Badaut C, Rimsky S, Pugsley AP. 2000. The ChiA (YheB) protein of Escherichia coli K-12 is an endochitinase whose gene is negatively controlled by the nucleoid-structuring protein H-NS. Mol Microbiol 35:1506–1517. [PubMed][CrossRef]
28. Connell TD, Metzger DJ, Lynch J, Folster JP. 1998. Endochitinase is transported to the extracellular milieu by the eps-encoded general secretory pathway of Vibrio cholerae. J Bacteriol 180:5591–5600.[PubMed]
29. Donald JW, Hicks MG, Richardson DJ, Palmer T. 2008. The c-type cytochrome OmcA localizes to the outer membrane upon heterologous expression in Escherichia coli. J Bacteriol 190:5127–5131. [PubMed][CrossRef]
30. Shi L, Deng S, Marshall MJ, Wang ZM, Kennedy DW, Dohnalkova AC, Mottaz HM, Hill EA, Gorby YA, Beliaev AS, Richardson DJ, Zachara JM, Fredrickson JK. 2008. Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J Bacteriol 190:5512–5516. [PubMed][CrossRef]
31. Filloux A, Bally M, Murgier M, Wretlind B, Lazdunski A. 1989. Cloning of xcp genes located at the 55-min region of the chromosome and involved in protein secretion in Pseudomonas aeruginosa. Mol Microbiol 3:261–265. [PubMed][CrossRef]
32. Aragon V, Rossier O, Cianciotto NP. 2002. Legionella pneumophila genes that encode lipase and phospholipase C activities. Microbiology 148:2223–2231.[PubMed]
33. Lathem WW, Grys TE, Witowski SE, Torres AG, Kaper JB, Tarr PI, Welch RA. 2002. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol Microbiol 45:277–288. [PubMed][CrossRef]
34. Lindgren V, Wretlind B. 1987. Characterization of a Pseudomonas aeruginosa transposon insertion mutant with defective release of exoenzymes. J Gen Microbiol 133:675–681.[PubMed]
35. Overbye LJ, Sandkvist M, Bagdasarian M. 1993. Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae. Gene 132:101–106. [PubMed][CrossRef]
36. Sandkvist M, Morales V, Bagdasarian M. 1993. A protein required for secretion of cholera toxin through the outer membrane of Vibrio cholerae. Gene 123:81–86. [PubMed][CrossRef]
37. Tauschek M, Gorrell RJ, Strugnell RA, Robins-Browne RM. 2002. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci USA 99:7066–7071. [PubMed][CrossRef]
38. Sixma TK, Pronk SE, Kalk KH, Wartna ES, Vanzanten BAM, Witholt B, Hol WGJ. 1991. Crystal-structure of a cholera toxin-related heat-labile enterotoxin from Escherichia coli. Nature 351:371–377. [PubMed][CrossRef]
39. Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914. [PubMed][CrossRef]
40. Gyles CL, Palchaudhuri S, Maas WK. 1977. Naturally occurring plasmid carrying genes for enterotoxin production and drug-resistance. Science 198:198–199. [PubMed][CrossRef]
41. Takeda Y, Murphy JR. 1978. Bacteriophage conversion of heat-labile enterotoxin in Escherichia coli. J Bacteriol 133:172–177.[PubMed]
42. Imamura S, Kido N, Kato M, Kawase H, Miyama A, Tsuji T. 1997. A unique DNA sequence of human enterotoxigenic Escherichia coli enterotoxin encoded by chromosomal DNA. FEMS Microbiol Lett 146:241–245. [PubMed][CrossRef]
43. Pickett CL, Weinstein DL, Holmes RK. 1987. Genetics of type-IIa heat-labile enterotoxin of Escherichia coli—operon fusions, nucleotide sequence, and hybridization studies. J Bacteriol 169:5180–5187.[PubMed]
44. Yamamoto, Yokota TT. 1983. Sequence of heat-labile enterotoxin of Escherichia coli pathogenic for humans. J Bacteriol 155:728–733.[PubMed]
45. Yu J, Webb H, Hirst TR. 1992. A homolog of the Escherichia coli DsbA protein involved in disulfide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol Microbiol 6:1949–1958. [PubMed][CrossRef]
46. Horstman AL, Kuehn MJ. 2000. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 275:12489–12496. [PubMed][CrossRef]
47. Lariviere S, Gyles CL, Barnum DA. 1973. Preliminary characterization of heat-labile enterotoxin of Escherichia coli F11(P155). J Infect Dis 128:312–320.[PubMed]
48. Wensink J, Gankema H, Jansen WH, Guinee PAM, Witholt B. 1978. Isolation of membranes of an enterotoxigenic strain of Escherichia coli and distribution of enterotoxin activity in different subcellular fractions. Biochim Biophys Acta 514:128–136. [PubMed][CrossRef]
49. Horstman AL, Bauman SJ, Kuehn MJ. 2004. Lipopolysaccharide 3-deoxy-D-manno-octulosonic acid (Kdo) core determines bacterial association of secreted toxins. J Biol Chem 279:8070–8075. [PubMed][CrossRef]
50. Spangler BD. 1992. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647.[PubMed]
51. Fleckenstein JM, Lindler LE, Elsinghorst EA, Dale JB. 2000. Identification of a gene within a pathogenicity island of enterotoxigenic Escherichia coli H10407 required for maximal secretion of the heat-labile enterotoxin. Infect Immun 68:2766–2774. [PubMed][CrossRef]
52. Fukuta S, Magnani JL, Twiddy EM, Holmes RK, Ginsburg V. 1988. Comparison of the carbohydrate binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect Immun 56:1748–1753.[PubMed]
53. Lencer WI, Tsai B. 2003. The intracellular voyage of cholera toxin: going retro. Trends Biochem Sci 28:639–645. [PubMed][CrossRef]
54. Tsai B, Rodighiero C, Lencer WI, Rapoport TA. 2001. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948. [PubMed][CrossRef]
55. Berberov EM, Zhou Y, Francis DH, Scott MA, Kachman SD, Moxey RA. 2004. Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect Immun 72:3914–3924. [PubMed][CrossRef]
56. Zhang WP, Berberov EM, Freeling J, He D, Moxley RA, Francis DH. 2006. Significance of heat-stable and heat-labile enterotoxins in porcine colibacillosis in an additive model for pathogenicity studies. Infect Immun 74:3107–3114. [PubMed][CrossRef]
57. Li XB, Roseman S. 2004. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA 101:627–631. [PubMed][CrossRef]
58. Yamano N, Oura N, Wang JY, Fujishima S. 1997. Cloning and sequencing of the genes for N-acetylglucosamine use that construct divergent operons (nagE-nagAC) from Vibrio cholerae non-O1. Biosci Biotechnol Biochem 61:1349–1353. [PubMed][CrossRef]
59. Wang SL, Chang WT. 1997. Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl Environ Microbiol 63:380–386.[PubMed]
60. Reguera G, Kolter R. 2005. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 187:3551–3555. [PubMed][CrossRef]
61. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. 2005. Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827. [PubMed][CrossRef]
62. Nalin DR, Daya V, Reid A, Levine MM, Cisneros L. 1979. Adsorption and growth of Vibrio cholerae on chitin. Infect Immun 25:768–770.[PubMed]
63. Amako K, Shimodori S, Imoto T, Miake S, Umeda A. 1987. Effects of chitin and its soluble derivatives on survival of Vibrio cholerae O1 at low temperature. Appl Environ Microbiol 53:603–605.[PubMed]
64. Francetic O, Lory S, Pugsley AP. 1998. A second prepilin peptidase gene in Escherichia coli K-12. Mol Microbiol 27:763–775. [PubMed][CrossRef]
65. Elliott SJ, Sperandio V, Giron JA, Shin S, Mellies JL, Wainwright L, Hutcheson SW, McDaniel TK, Kaper JB. 2000. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 68:6115–6126. [PubMed][CrossRef]
66. Grys TE, Siege MB, Lathem WW, Welch RA. 2005. The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. Infect Immun 73:1295–1303. [PubMed][CrossRef]
67. Szabady RL, Lokuta MA, Walters KB, Huttenlocher A, Welch RA. 2009. Modulation of neutrophil function by a secreted mucinase of Escherichia coli O157:H7. Plos Pathog 5:e1000320. [PubMed][CrossRef]
68. Finkelstein RA, Boesman-Finkelstein M, Holt P. 1983. Vibrio cholerae hemagglutinin lectin protease hydrolyzes fibronectin and ovomucin: Burnet, F.M. revisited. Proc Natl Acad Sci USA 80:1092–1095. [PubMed][CrossRef]
69. Häse CC, Finkelstein RA. 1990. Comparison of the Vibrio cholerae hemagglutinin protease and the Pseudomonas aeruginosa elastase. Infect Immun 58:4011–4015.[PubMed]
70. Bally M, Filloux A, Akrim M, Ball G, Lazdunski A, Tommassen J. 1992. Protein secretion in Pseudomonas aeruginosa—characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase. Mol Microbiol 6:1121–1131. [PubMed][CrossRef]
71. Puskárová, A, Ferianc P, Kormanec J, Homerova D, Farewell A, Nyström T. 2002. Regulation of yodA encoding a novel cadmium-induced protein in Escherichia coli. Microbiology 148:3801–3811.[PubMed]
72. David G, Blondeau K, Schiltz M, Penel S, Lewit-Bentley A. 2003. YodA from Escherichia coli is a metal-binding, lipocalin-like protein. J Biol Chem 278:43728–43735. [PubMed][CrossRef]
73. Kershaw CJ, Brown NL, Hobman JL. 2007. Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Biochem Biophys Res Commun 364:66–71. [PubMed][CrossRef]
74. Flower DR, North ACT, Attwood TK. 1993. Structure and sequence relationships in the lipocalins and related proteins. Protein Sci 2:753–761. [PubMed][CrossRef]
75. Le Bouguenec C, Lalioui L, Du Merle L, Jouve M, Courcoux P, Bouzari S, Selvarangan R, Nowicki BJ, Germani Y, Andremont A, Gounon P, Garcia MI. 2001. Characterization of AfaE adhesins produced by extraintestinal and intestinal human Escherichia coli isolates: PCR assays for detection of afa adhesins that do or do not recognize Dr blood group antigens. J Clin Microbiol 39:1738–1745. [PubMed][CrossRef]
76. Medof ME, Kinoshita T, Nussenzweig V. 1984. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (Daf) into their membranes. J Exp Med 160:1558–1578. [PubMed][CrossRef]
77. Anderson KL, Billington J, Pettigrew D, Cota E, Simpson P, Roversi P, Chen HA, Urvil P, Du Merle L, Barlow PN, Medof ME, Smith RAG, Nowicki B, Le Bouguenec C, Lea SM, Matthews S. 2004. An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol Cell 15:647–657. [PubMed][CrossRef]
78. Zalewska B, Piatek R, Bury K, Samet A, Nowicki B, Nowicki S, Kur J. 2005. A surface-exposed DraD protein of uropathogenic Escherichia coli bearing Dr fimbriae may be expressed and secreted independently from DraC usher and DraE adhesin. Microbiology 151:2477–2486. [PubMed][CrossRef]
79. Zalewska-Piatek B, Bury K, Piatek R, Bruzdziak P, Kur J. 2008. Type II secretory pathway for surface secretion of DraD invasin from the uropathogenic Escherichia coli Dr(+) strain. J Bacteriol 190:5044–5056. [PubMed][CrossRef]
80. Planet PJ, Kachlany SC, DeSalle R, Figurski DH. 2001. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 98:2503–2508. [PubMed][CrossRef]
81. Robien MA, Krumm BE, Sandkvst M, Hol WGJ. 2003. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J Mol Biol 333:657–674. [PubMed][CrossRef]
82. Camberg, Sandkvist JLM. 2005. Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol 187:249–256. [PubMed][CrossRef]
83. Camberg JL, Johnson TL, Patrick M, Abendroth J, Hol WGJ, Sandkvist M. 2007. Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J. 26:19–27. [PubMed][CrossRef]
84. Abendroth J, Murphy P, Sandkvist M, Bagdasarian M, Hol WGJ. 2005. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J Mol Biol 348:845–855. [PubMed][CrossRef]
85. Py B, Loiseau L, Barras F. 1999. Assembly of the type II secretion machinery of Erwinia chrysanthemi: direct interaction and associated conformational change between OutE, the putative ATP-binding component and the membrane protein OutL. J Mol Biol 289:659–670. [PubMed][CrossRef]
86. Sandkvist M, Bagdasarian M, Howard SP, Dirita VJ. 1995. Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J 14:1664–1673.[PubMed]
87. Sandkvist M, Hough LP, Bagdasarian MM, Bagdasarian M. 1999. Direct interaction of the EpsL and EpsM proteins of the general secretion apparatus in Vibrio cholerae. J Bacteriol 181:3129–3135.[PubMed]
88. Douet V, Loiseau L, Barras F, Py B. 2004. Systematic analysis, by the yeast two-hybrid, of protein interaction between components of the type II secretory machinery of Erwinia chrysanthemi. Res Microbiol 155:71–75. [PubMed][CrossRef]
89. Lee HM, Chen JR, Lee HL, Leu WM, Chen LY, Hu NT. 2004. Functional dissection of the XpsN (GspC) protein of the Xanthomonas campestris pv. campestris type II secretion machinery. J Bacteriol 186:2946–2955. [PubMed][CrossRef]
90. Py B, Loiseau L, Barras F. 2001. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep 2:244–248. [PubMed][CrossRef]
91. Robert V, Filloux A, Michel GP. 2005. Role of XcpP in the functionality of the Pseudomonas aeruginosa secreton. Res Microbiol 156:880–886. [PubMed][CrossRef]
92. Sandkvist M, Keith JM, Bagdasarian M, Howard SP. 2000. Two regions of EpsL involved in species-specific protein-protein interactions with EpsE and EpsM of the general secretion pathway in Vibrio cholerae. J Bacteriol 182:742–748. [PubMed][CrossRef]
93. Tsai RT, Leu WM, Chen LY, Hu NT. 2002. A reversibly dissociable ternary complex formed by XpsL, XpsM and XpsN of the Xanthomonas campestris pv. campestris type II secretion apparatus. Biochem J 367:865–871. [PubMed][CrossRef]
94. Abendroth J, Kreger AC, Hol WGJ. 2009. The dimer formed by the periplasmic domain of EpsL from the type 2 secretion system of Vibrio parahaemolyticus. J Struct Biol 168:313–322. [PubMed][CrossRef]
95. Abendroth J, Rice AE, McLuskey K, Bagdasarian M, Hol WGJ. 2004. The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J Mol Biol 338:585–596. [PubMed][CrossRef]
96. Johnson TL, Scott ME, Sandkvist M. 2007. Mapping critical interactive sites within the periplasmic domain of the Vibrio cholerae type II secretion protein EpsM. J Bacteriol 189:9082–9089. [PubMed][CrossRef]
97. Abendroth J, Mitchell DD, Korotkov KV, Johnson TL, Kreger A, Sandkvist M, Hol WGJ. 2009. The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. J Struct Biol 166:303–315. [PubMed][CrossRef]
98. Arts J, de Groot A, Ball G, Durand E, El Khattabi M, Filloux A, Tommassen J, Koster M. 2007. Interaction domains in the Pseudomonas aeruginosa type II secretory apparatus component XcpS (GspF). Microbiology 153:1582–1592. [PubMed][CrossRef]
99. Gerard-Vincent M, Robert V, Ball G, Bleves S, Michel GPF, Lazdunski A, Filloux A. 2002. Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type II secretion apparatus. Mol Microbiol 44:1651–1665. [PubMed][CrossRef]
100. Lybarger SR, Johnson TL, Gray MD, Sikora AE, Sandkvist M. 2009. Docking and assembly of the type II secretion complex of Vibrio cholerae. J Bacteriol 191:3149–3161. [PubMed][CrossRef]
101. Bleves S, Gerard-Vincent M, Lazdunski A, Filloux A. 1999. Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa. J Bacteriol 181:4012–4019.[PubMed]
102. Possot OM, Gerard-Vincent M, Pugsley AP. 1999. Membrane association and multimerization of secreton component PulC. J Bacteriol 181:4004–4011.[PubMed]
103. Korotkov KV, Krumm B, Bagdasarian M, Hol WG. 2006. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J Mol Biol 363:311–321. [PubMed][CrossRef]
104. Bouley J, Condemine G, Shevchik VE. 2001. The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J Mol Biol 308:205–219. [PubMed][CrossRef]
105. Brok R, Van Gelder P, Winterhalter M, Ziese U, Koster AJ, de Cock H, Koster M, Tommassen J, Bitter W. 1999. The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. J Mol Biol 294:1169–1179. [PubMed][CrossRef]
106. Hardie KR, Lory S, Pugsley AP. 1996. Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J 15:978–988.[PubMed]
107. Shevchik VE, Condemine C. 1998. Functional characterization of the Erwinia chrysanthemi OutS protein, an element of a type II secretion system. Microbiology 144:3219–3228. [PubMed][CrossRef]
108. Viarre V, Cascales E, Ball G, Michel GPF, Filloux A, Voulhoux R. 2009. HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J Biol Chem 284:33815–33823. [PubMed][CrossRef]
109. Bitter W, Koster M, Latijnhouwers M, de Cock H, Tommassen J. 1998. Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 27:209–219. [PubMed][CrossRef]
110. Chami M, Guilvout I, Gregorini M, Remigy HW, Muller SA, Valerio M, Engel A, Pugsley AP, Bayan N. 2005. Structural insights into the secretin PulD and its trypsin resistant core. J Biol Chem 280:37732–37741. [PubMed][CrossRef]
111. Nouwen N, Stahlberg H, Pugsley AP, Engel A. 2000. Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J 19:2229–2236. [PubMed][CrossRef]
112. Guilvout I, Hardie KR, Sauvonnet N, Pugsley AP. 1999. Genetic dissection of the outer membrane secretin PulD: are there distinct domains for multimerization and secretion specificity? J Bacteriol 181:7212–7220.[PubMed]
113. Korotkov KV, Gray MD, Kreger A, Turley S, Sandkvist M, Hol WGJ. 2009. Calcium is essential for the major pseudopilin in the type 2 secretion system. J Biol Chem 284:25466–25470. [PubMed][CrossRef]
114. Lindeberg M, Salmond GP, Collmer A. 1996. Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC and OutD as candidate gatekeepers of species-specific secretion of proteins via the type II pathway. Mol Microbiol 20:175–190. [PubMed][CrossRef]
115. Shevchik VE, Robert-Baudouy J, Condemine G. 1997. Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J 16:3007–3016. [PubMed][CrossRef]
116. Nunn DN, Lory S. 1993. Cleavage, methylation, and localization of the Pseudomonas aeruginosa export proteins XcpT, XcpU, XcpV, and XcpW. J Bacteriol 175:4375–4382.[PubMed]
117. Hu NT, Leu WM, Lee MS, Chen A, Chen SC, Song YL, Chen LY. 2002. XpsG, the major pseudopilin in Xanthomonas campestris pv. campestris, forms a pilus-like structure between cytoplasmic and outer membranes. Biochem J 365:205–211. [PubMed][CrossRef]
118. Durand E, Bernadac A, Ball G, Lazdunski A, Sturgis JN, Filloux A. 2003. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J Bacteriol 185:2749–2758. [PubMed][CrossRef]
119. Köhler R, Schafer K, Muller S, Vignon G, Diederichs K, Philippsen A, Ringler P, Pugsley AP, Engel A, Welte W. 2004. Structure and assembly of the pseudopilin PulG. Mol Microbiol 54:647–664. [PubMed][CrossRef]
120. Vignon G, Kohler R, Larquet E, Giroux S, Prevost MC, Roux P, Pugsley AP. 2003. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J Bacteriol 185:3416–3428. [PubMed][CrossRef]
121. Sauvonnet N, Vignon G, Pugsley AP, Gounon P. 2000. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J 19:2221–2228. [PubMed][CrossRef]
122. Durand E, Michel G, Voulhoux R, Kurner J, Bernadac A, Filloux A. 2005. XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J Biol Chem 280:31378–31389. [PubMed][CrossRef]
123. Korotkov KV, Hol WGJ. 2008. Structure of the GspK-GspI-GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nat Struct Mol Biol 15:462–468. [PubMed][CrossRef]
124. Yanez ME, Korotkov KV, Abendroth J, Hol WGJ. 2008. Structure of the minor pseudopilin EpsH from the type 2 secretion system of Vibrio cholerae. J Mol Biol 377:91–103. [PubMed][CrossRef]
125. Yanez ME, Korotkov KV, Abendroth J, Hol WGJ. 2008. The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus. J Mol Biol 375:471–486. [PubMed][CrossRef]
126. Alphonse S, Durand E, Douzi B, Waegele B, Darbon H, Filloux A, Voulhoux R, Bernard C. 2010. Structure of the Pseudomonas aeruginosa XcpT pseudopilin, a major component of the type II secretion system. J Struct Biol 169:75–80. [PubMed][CrossRef]
127. Douzi B, Durand E, Bernard C, Alphonse S, Cambillau C, Filloux A, Tegoni M, Voulhoux R. 2009. The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus. J Biol Chem 284:34580–34589. [PubMed][CrossRef]
128. Kuo WW, Kuo HW, Cheng CC, Lai HL, Chen LY. 2005. Roles of the minor pseudopilins, XpsH, XpsI and XpsJ, in the formation of XpsG-containing pseudopilus in Xanthomonas campestris pv. campestris. J Biomed Sci 12:587–599. [PubMed][CrossRef]
129. Buddelmeijer N, Krehenbrink M, Pecorari F, Pugsley AP. 2009. Type II secretion system secretin PulD localizes in clusters in the Escherichia coli outer membrane. J Bacteriol 191:161–168. [PubMed][CrossRef]
130. Hirst TR, Sanchez J, Kaper JB, Hardy SJ, Holmgren J. 1984. Mechanism of toxin secretion by Vibrio cholerae investigated in strains harboring plasmids that encode heat-labile enterotoxins of Escherichia coli. Proc Natl Acad Sci USA 81:7752–7756. [PubMed][CrossRef]
131. Connell TD, Metzger DJ, Wang ML, Jobling MG, Holmes RK. 1995. Initial Studies of the Structural Signal for Extracellular Transport of Cholera Toxin and Other Proteins Recognized by Vibrio cholerae. Infect Immun 63:4091–4098.[PubMed]
132. Ferrandez Y, Condemine G. 2008. Novel mechanism of outer membrane targeting of proteins in Gram-negative bacteria. Mol Microbiol 69:1349–1357. [PubMed][CrossRef]
ecosalplus.4.3.4.citations
ecosalplus/4/1
content/journal/ecosalplus/10.1128/ecosalplus.4.3.4
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.4.3.4
2010-10-19
2017-06-27

Abstract:

The type II secretion system (T2SS) is used by and other gram-negative bacteria to translocate many proteins, including toxins and proteases, across the outer membrane of the cell and into the extracellular space. Depending on the bacterial species, between 12 and 15 genes have been identified that make up a T2SS operon. T2SSs are widespread among gram-negative bacteria, and most appear to possess one or two complete T2SS operons. Once expressed, the multiple protein components that form the T2S system are localized in both the inner and outer membranes, where they assemble into an apparatus that spans the cell envelope. This apparatus supports the secretion of numerous virulence factors; and therefore secretion via this pathway is regarded in many organisms as a major virulence mechanism. Here, we review several of the known T2S substrates that have proven to be critical for the survival and pathogenicity of these bacteria. Recent structural and biochemical information is also reviewed that has improved our current understanding of how the T2S apparatus functions; also reviewed is the role that individual proteins play in this complex system.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The genes comprising the T2SSs from individual species are shown schematically. Homologous components are colored similarly; arrowheads show orientation. Dashed lines indicate a deleted region in the operon and do not represent linkage relationships.

Citation: Patrick M, Gray M, Sandkvist M, Johnson T. 2010. Type II Secretion in , EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The structures of LT-IIb (left, PDB ID code 1TII) and cholera toxin (right, PDB ID code 1XTC), portrayed such that their A subunits (brown) are in a similar orientation. The individual B subunits are in red, magenta, green, blue, and cyan.

Citation: Patrick M, Gray M, Sandkvist M, Johnson T. 2010. Type II Secretion in , EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

LT toxin subunits are translocated across the inner membrane via the Sec translocon and fold into an AB structure (shown in ribbon structure) in the periplasm of the ETEC cell. (1) After holotoxin formation, the assembled LT is targeted to the T2SS by an unknown mechanism. (2) Once engaged with the T2SS, LT is transported across the outer membrane. (3) Upon exposure to the extracellular space, LT binds to LPS on the bacterial cell surface (4), and as outer membrane vesicles are budding off the cell surface, LT is released. (5) B subunits bind to gangliosides on the host cell and facilitate the entry of the toxin by an unknown mechanism, initiating a series of cellular events leading to diarrhea.

Citation: Patrick M, Gray M, Sandkvist M, Johnson T. 2010. Type II Secretion in , EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The T2SS comprises an ATPase (T2S:E), an inner membrane complex (T2S:C, F, L, and M), pseudopilins (T2S:G, H, I, J, and K), and an outer membrane secretin (T2S:D), which assemble into a complex spanning the entire cell envelope. Fully assembled LT (shown in ribbon structure) engages the T2S apparatus in the periplasm to allow for its extracellular translocation.

Citation: Patrick M, Gray M, Sandkvist M, Johnson T. 2010. Type II Secretion in , EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.4
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Examples of T2S-dependent substrates and their known activities

Citation: Patrick M, Gray M, Sandkvist M, Johnson T. 2010. Type II Secretion in , EcoSal Plus 2010; doi:10.1128/ecosalplus.4.3.4

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error