1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 5:

Responding to the Environment

The Cold Shock Response

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Sangita Phadtare1, and Masayori Inouye2
  • Editor: James M. Slauch3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854; 2: Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854; 3: The Schoold of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL
  • Received 25 July 2007 Accepted 09 October 2007 Published 16 January 2008
  • Address correspondence to Sangita Phadtare phadtasa@umdnj.edu.
image of The Cold Shock Response
    Preview this reference work article:
    Zoom in
    Zoomout

    The Cold Shock Response, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/1/5_4_2_module-1.gif /docserver/preview/fulltext/ecosalplus/3/1/5_4_2_module-2.gif
  • Abstract:

    This review focuses on the cold shock response of . Change in temperature is one of the most common stresses that an organism encounters in nature. Temperature downshift affects the cell on various levels: (i) decrease in the membrane fluidity; (ii) stabilization of the secondary structures of RNA and DNA; (iii) slow or inefficient protein folding; (iv) reduced ribosome function, affecting translation of non-cold shock proteins; (v) increased negative supercoiling of DNA; and (vi) accumulation of various sugars. Cold shock proteins and certain sugars play a key role in dealing with the initial detrimental effect of cold shock and maintaining the continued growth of the organism at low temperature. CspA is the major cold shock protein of , and its homologues are found to be widespread among bacteria, including psychrophilic, psychrotrophic, mesophilic, and thermophilic bacteria, but are not found in archaea or cyanobacteria. Significant, albeit transient, stabilization of the cspA mRNA immediately following temperature downshift is mainly responsible for its cold shock induction. Various approaches were used in studies to detect cold shock induction of cspA mRNA. Sugars are shown to confer protection to cells undergoing cold shock. The study of the cold shock response has implications in basic and health-related research as well as in commercial applications. The cold shock response is elicited by all types of bacteria and affects these bacteria at various levels, such as cell membrane, transcription, translation, and metabolism.

  • Citation: Phadtare S, Inouye M. 2008. The Cold Shock Response, EcoSal Plus 2008; doi:10.1128/ecosalplus.5.4.2

Key Concept Ranking

Cold Shock Response
0.5124094
DNA Microarray Analysis
0.4395659
Genetic Elements
0.43814018
Lactic Acid Bacteria
0.403062
Protein Folding
0.39521384
0.5124094

References

1. Chapot-Chartier MP, Schouler C, Lepeuple AS, Gripon JC, Chopin MC. 1997. Characterization of cspB, a cold-shock-inducible gene from Lactococcus lactis, and evidence for a family of genes homologous to the Escherichia coli cspA major cold shock gene. J Bacteriol 179:5589–5593.[PubMed]
2. Willimsky G, Bang H, Fischer G, Marahiel MA. 1992. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 174:6326–6335.[PubMed]
3. Ermolenko DN, Makhatadze GI. 2002. Bacterial cold-shock proteins. Cell Mol Life Sci 59:1902–1913. [PubMed][CrossRef]
4. Inouye M, Phadtare S. 2007. The cold-shock response, p 180–193. In Gerday C and Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.
5. Phadtare S. 2004. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136.[PubMed]
6. Phadtare S, Alsina J, Inouye M. 1999. Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180. [PubMed][CrossRef]
7. Phadtare S, Inouye M. 2007. Cold-shock proteins, p 191–210. In Margesin R, Schinner F, Marx J-C, and Gerday C (ed), Psychrophiles: from Biodiversity to Biotechnology. Springer Verlag, Berlin, Germany.
8. Phadtare S, Yamanaka K, Inouye M. 2000. The cold shock response, p 33–45. In Storz G and Hengge-Aronis R (ed), Bacterial Stress Responses. ASM Press, Washington, DC.
9. Weber MH, Marahiel MA. 2003. Bacterial cold shock responses. Sci Prog 86:9–75. [PubMed][CrossRef]
10. Yamanaka K, Fang L, Inouye M. 1998. The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27:247–255. [PubMed][CrossRef]
11. Sinensky M. 1974. Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525. [PubMed][CrossRef]
12. Garwin JL, Cronan JE, Jr. 1980. Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis. J Bacteriol 141:1457–1459.[PubMed]
13. Garwin JL, Klages AL, Cronan JE, Jr. 1980. Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem 255:3263–3265.[PubMed]
14. Krispin O, Allmansberger R. 1995. Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol Lett 134:129–135. [PubMed][CrossRef]
15. Mizushima T, Kataoka K, Ogata Y, Inoue R, Sekimizu K. 1997. Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol Microbiol 23:381–386. [PubMed][CrossRef]
16. Wang JY, Syvanen M. 1992. DNA twist as a transcriptional sensor for environmental changes. Mol Microbiol 6:1861–1866. [PubMed][CrossRef]
17. Nishiyama SI, Umemura T, Nara T, Homma M, Kawagishi I. 1999. Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant. Mol Microbiol 32:357–365. [PubMed][CrossRef]
18. Hankins JS, Zappavigna C, Prud'homme-Généreux A, Mackie GA. 2007. Role of RNA structure and susceptibility to RNase E in the regulation of a cold shock mRNA, cspA mRNA. J Bacteriol 189:4353–4358. [PubMed][CrossRef]
19. Phadtare S, Inouye M. 2004. Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 186:7007–7014. [PubMed][CrossRef]
20. Polissi A, De Laurentis W, Zangrossi S, Briani F, Longhi V, Pesole G, Deho G. 2003. Changes in Escherichia coli transcriptome during acclimatization at low temperature. Res Microbiol 154:573–580. [PubMed][CrossRef]
21. Goldstein J, Pollitt NS, Inouye M. 1990. Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 87:283–287. [PubMed][CrossRef]
22. Lee SJ, Xie A, Jiang W, Etchegaray JP, Jones PG, Inouye M. 1994. Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol 11:833–839. [PubMed][CrossRef]
23. Nakashima K, Kanamaru K, Mizuno T, Horikoshi K. 1996. A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol 178:2994–2997.[PubMed]
24. Wang N, Yamanaka K, Inouye M. 1999. CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181:1603–1609.[PubMed]
25. Toone WM, Rudd KE, Friesen JD. 1991. deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase, can suppress a mutation in rpsB, the gene encoding ribosomal protein S2. J Bacteriol 173:3291–3302.[PubMed]
26. Dammel CS, Noller HF. 1995. Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9:626–637. [PubMed][CrossRef]
27. Donovan WP, Kushner SR. 1986. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci USA 83:120–124. [PubMed][CrossRef]
28. Friedman DI, Olson ER, Georgopoulos C, Tilly K, Herskowitz I, Banuett F. 1984. Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol Rev 48:299–325.[PubMed]
29. Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR. 1977. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci USA 74:4767–4771. [PubMed][CrossRef]
30. Gualerzi CO, Pon CL. 1990. Initiation of mRNA translation in prokaryotes. Biochemistry 29:5881–5889. [PubMed][CrossRef]
31. Agafonov DE, Kolb VA, Spirin AS. 2001. Ribosome-associated protein that inhibits translation at the aminoacyl-tRNA binding stage. EMBO Rep 2:399–402.[PubMed]
32. Kandror O, DeLeon A, Goldberg AL. 2002. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732. [PubMed][CrossRef]
33. Lelivelt MJ, Kawula TH. 1995. Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J Bacteriol 177:4900–4907.[PubMed]
34. Porankiewicz J, Clarke AK. 1997. Induction of the heat shock protein ClpB affects cold acclimation in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 179:5111–5117.[PubMed]
35. Dersch P, Kneip S, Bremer E. 1994. The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Mol Gen Genet 245:255–259. [PubMed][CrossRef]
36. Walker GC. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93.[PubMed]
37. Jones PG, Inouye M. 1994. The cold-shock response—a hot topic. Mol Microbiol 11:811–818. [PubMed][CrossRef]
38. Xia B, Ke H, Inouye M. 2001. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol 40:179–188. [PubMed][CrossRef]
39. Mitta M, Fang L, Inouye M. 1997. Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26:321–335. [PubMed][CrossRef]
40. Fang L, Jiang W, Bae W, Inouye M. 1997. Promoter-independent cold-shock induction of cspA and its derepression at 37 degrees C by mRNA stabilization. Mol Microbiol 23:355–364. [PubMed][CrossRef]
41. Qing G, Xia B, Inouye M. 2004. Enhancement of translation initiation by A/T-rich sequences downstream of the initiation codon in Escherichia coli. J Mol Microbiol Biotechnol 6:133–144. [CrossRef]
42. Moll I, Huber M, Grill S, Sairafi P, Mueller F, Brimacombe R, Londei P, Blasi U. 2001. Evidence against an Interaction between the mRNA downstream box and 16S rRNA in translation initiation. J Bacteriol 183:3499–3505. [PubMed][CrossRef]
43. Gualerzi CO, Giuliodori AM, Pon CL. 2003. Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331:527–539. [PubMed][CrossRef]
44. Fang L, Hou Y, Inouye M. 1998. Role of the cold-box region in the 5′ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J Bacteriol 180:90–95.[PubMed]
45. Jiang W, Fang L, Inouye M. 1996. The role of the 5′-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J Bacteriol 178:4919–4925.[PubMed]
46. Goldenberg D, Azar I, Oppenheim AB, Brandi A, Pon CL, Gualerzi CO. 1997. Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response. Mol Gen Genet 256:282–290. [PubMed][CrossRef]
47. Brandi A, Spurio R, Gualerzi CO, Pon CL. 1999. Massive presence of the Escherichia coli ‘major cold-shock protein’ CspA under non-stress conditions. EMBO J 18:1653–1659. [PubMed][CrossRef]
48. Yamanaka K, Inouye M. 2001. Induction of CspA, an E. coli major cold-shock protein, upon nutritional upshift at 37 degrees C. Genes Cells 6:279–290. [PubMed][CrossRef]
49. Phadtare S, Severinov K. 2005. Extended −10 motif is critical for activity of the cspA promoter but does not contribute to low-temperature transcription. J Bacteriol 187:6584–6589. [PubMed][CrossRef]
50. Bae W, Xia B, Inouye M, Severinov K. 2000. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA 97:7784–7789. [PubMed][CrossRef]
51. Jiang W, Hou Y, Inouye M. 1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202. [PubMed][CrossRef]
52. Phadtare S, Inouye M, Severinov K. 2002. The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem 277:7239–7245. [PubMed][CrossRef]
53. Lopez MM, Yutani K, Makhatadze GI. 2001. Interactions of the cold shock protein CspB from Bacillus subtilis with single-stranded DNA. Importance of the T base content and position within the template. J Biol Chem 276:15511–15518. [PubMed][CrossRef]
54. Phadtare S, Inouye M. 1999. Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli. Mol Microbiol 33:1004–1014. [PubMed][CrossRef]
55. Nakaminami K, Karlson DT, Imai R. 2006. Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci USA 103:10122–10127. [PubMed][CrossRef]
56. Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H. 2007. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35:506–516. [PubMed][CrossRef]
57. Hu KH, Liu E, Dean K, Gingras M, DeGraff W, Trun NJ. 1996. Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli. Genetics 143:1521–1532.[PubMed]
58. Sand O, Gingras M, Beck N, Hall C, Trun N. 2003. Phenotypic characterization of overexpression or deletion of the Escherichia coli crcA, cspE and crcB genes. Microbiology 149:2107–2117. [PubMed][CrossRef]
59. Feng Y, Huang H, Liao J, Cohen SN. 2001. Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J Biol Chem 276:31651–31656. [PubMed][CrossRef]
60. Hanna MM, Liu K. 1998. Nascent RNA in transcription complexes interacts with CspE, a small protein in E. coli implicated in chromatin condensation. J Mol Biol 282:227–239. [PubMed][CrossRef]
61. Mangoli S, Sanzgiri VR, Mahajan SK. 2001. A common regulator of cold and radiation response in Escherichia coli. J Environ Pathol Toxicol Oncol 20:23–26.[PubMed]
62. Phadtare S, Inouye M. 2001. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol 183:1205–1214. [PubMed][CrossRef]
63. Yamanaka K, Inouye M. 1997. Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J Bacteriol 179:5126–5130.[PubMed]
64. Yamanaka K, Zheng W, Crooke E, Wang YH, Inouye M. 2001. CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol Microbiol 39:1572–1584. [PubMed][CrossRef]
65. Katzif S, Danavall D, Bowers S, Balthazar JT, Shafer WM. 2003. The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G. Infect Immun 71:4304–4312. [PubMed][CrossRef]
66. Derzelle S, Hallet B, Ferain T, Delcour J, Hols P. 2003. Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins. Appl Environ Microbiol 69:4285–4290. [PubMed][CrossRef]
67. Feng W, Tejero R, Zimmerman DE, Inouye M, Montelione GT. 1998. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry 37:10881–10896. [PubMed][CrossRef]
68. Newkirk K, Feng W, Jiang W, Tejero R, Emerson SD, Inouye M, Montelione GT. 1994. Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci USA 91:5114–5118. [PubMed][CrossRef]
69. Schindelin H, Jiang W, Inouye M, Heinemann U. 1994. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 91:5119–5123. [PubMed][CrossRef]
70. Schindelin H, Marahiel MA, Heinemann U. 1993. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364:164–168. [PubMed][CrossRef]
71. Schnuchel A, Wiltscheck R, Czisch M, Herrler M, Willimsky G, Graumann P, Marahiel MA, Holak TA. 1993. Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature 364:169–171. [PubMed][CrossRef]
72. Hillier BJ, Rodriguez HM, Gregoret LM. 1998. Coupling protein stability and protein function in Escherichia coli CspA. Fold Des 3:87–93. [PubMed][CrossRef]
73. Phadtare S, Tyagi S, Inouye M, Severinov K. 2002. Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells. J Biol Chem 277:46706–46711. [PubMed][CrossRef]
74. Graumann PL, Marahiel MA. 1998. A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290. [PubMed][CrossRef]
75. Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski PP. 1989. Birth of the D-E-A-D box. Nature 337:121–122. [PubMed][CrossRef]
76. Iost I, Dreyfus M. 2006. DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Res 34:4189–4197. [PubMed][CrossRef]
77. Charollais J, Dreyfus M, Iost I. 2004. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res 32:2751–2759. [PubMed][CrossRef]
78. Jones PG, Mitta M, Kim Y, Jiang W, Inouye M. 1996. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci USA 93:76–80. [PubMed][CrossRef]
79. Moll I, Grill S, Grundling A, Blasi U. 2002. Effects of ribosomal proteins S1, S2 and the DeaD/CsdA DEAD-box helicase on translation of leaderless and canonical mRNAs in Escherichia coli. Mol Microbiol 44:1387–1396. [PubMed][CrossRef]
80. Lu J, Aoki H, Ganoza MC. 1999. Molecular characterization of a prokaryotic translation factor homologous to the eukaryotic initiation factor eIF4A. Int J Biochem Cell Biol 31:215–229. [PubMed][CrossRef]
81. Khemici V, Toesca I, Poljak L, Vanzo NF, Carpousis AJ. 2004. The RNase E of Escherichia coli has at least two binding sites for DEAD-box RNA helicases: functional replacement of RhlB by RhlE. Mol Microbiol 54:1422–1430. [PubMed][CrossRef]
82. Prud'homme-Genereux A, Beran RK, Iost I, Ramey CS, Mackie GA, Simons RW. 2004. Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a ‘cold shock degradosome.’ Mol. Microbiol 54:1409–1421. [PubMed][CrossRef]
83. Yamanaka K, Inouye M. 2001. Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in Escherichia coli. J Bacteriol 183:2808–2816. [PubMed][CrossRef]
84. Nishi K, Morel-Deville F, Hershey JW, Leighton T, Schnier J. 1988. An eIF-4A-like protein is a suppressor of an Escherichia coli mutant defective in 50S ribosomal subunit assembly. Nature 336:496–498. [PubMed][CrossRef]
85. Charollais J, Pflieger D, Vinh J, Dreyfus M, Iost I. 2003. The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol Microbiol 48:1253–1265. [PubMed][CrossRef]
86. Iost I, Dreyfus M. 1994. mRNAs can be stabilized by DEAD-box proteins. Nature 372:193–196. [PubMed][CrossRef]
87. Herschlag D. 1995. RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874.[PubMed]
88. Awano N, Xu C, Ke H, Inoue K, Inouye M, Phadtare S. 2007. Complementation analysis of the cold-sensitive phenotype of the Escherichia coli csdA deletion strain. J Bacteriol 189:5808–5815. [PubMed][CrossRef]
89. Hunger K, Beckering CL, Wiegeshoff F, Graumann PL, Marahiel MA. 2006. Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis. J Bacteriol 188:240–248. [PubMed][CrossRef]
90. Bylund GO, Wipemo LC, Lundberg LA, Wikstrom PM. 1998. RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J Bacteriol 180:73–82.[PubMed]
91. Jones PG, Inouye M. 1996. RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol 21:1207–1218. [PubMed][CrossRef]
92. Xia B, Ke H, Shinde U, Inouye M. 2003. The role of RbfA in 16S rRNA processing and cell growth at low temperature in Escherichia coli. J Mol Biol 332:575–584. [PubMed][CrossRef]
93. Huang YJ, Swapna GV, Rajan PK, Ke H, Xia B, Shukla K, Inouye M, Montelione GT. 2003. Solution NMR structure of ribosome-binding factor A (RbfA), a cold-shock adaptation protein from Escherichia coli. J Mol Biol 327:521–536. [PubMed][CrossRef]
94. Grimm SK, Wohnert J. 2005. NMR assignments of the cold-shock protein ribosome-binding factor A (RbfA) from Thermotoga maritima. J Biomol NMR 31:73–74. [PubMed][CrossRef]
95. Reiner AM. 1969. Characterization of polynucleotide phosphorylase mutants of Escherichia coli. J Bacteriol 97:1437–1443.[PubMed]
96. Reiner AM. 1969. Isolation and mapping of polynucleotide phosphorylase mutants of Escherichia coli. J Bacteriol 97:1431–1436.[PubMed]
97. Luttinger A, Hahn J, Dubnau D. 1996. Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19:343–356. [PubMed][CrossRef]
98. Piazza F, Zappone M, Sana M, Briani F, Deho G. 1996. Polynucleotide phosphorylase of Escherichia coli is required for the establishment of bacteriophage P4 immunity. J Bacteriol 178:5513–5521.[PubMed]
99. Mohanty BK, Kushner SR. 2003. Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay. Mol Microbiol 50:645–658. [PubMed][CrossRef]
100. Mohanty BK, Kushner SR. 2000. Polynucleotide phosphorylase functions both as a 3′ right-arrow 5′ exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci USA 97:11966–11971. [PubMed][CrossRef]
101. Mohanty BK, Kushner SR. 2000. Polynucleotide phosphorylase, RNase II and RNase E play different roles in the in vivo modulation of polyadenylation in Escherichia coli. Mol Microbiol 36:982–994. [PubMed][CrossRef]
102. Littauer UZ. 2005. From polynucleotide phosphorylase to neurobiology. J Biol Chem 280:38889–38897. [PubMed][CrossRef]
103. Jarrige AC, Mathy N, Portier C. 2001. PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader. EMBO J 20:6845–6855. [PubMed][CrossRef]
104. Briani F, Del Favero M, Capizzuto R, Consonni C, Zangrossi S, Greco C, De Gioia L, Tortora P, Deho G. 2007. Genetic analysis of polynucleotide phosphorylase structure and functions. Biochimie 89:145–157. [PubMed][CrossRef]
105. Garcia-Mena J, Das A, Sanchez-Trujillo A, Portier C, Montanez C. 1999. A novel mutation in the KH domain of polynucleotide phosphorylase affects autoregulation and mRNA decay in Escherichia coli. Mol Microbiol 33:235–248. [PubMed][CrossRef]
106. Portier C, Dondon L, Grunberg-Manago M, Regnier P. 1987. The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5′ end. EMBO J 6:2165–2170.[PubMed]
107. Zangrossi S, Briani F, Ghisotti D, Regonesi ME, Tortora P, Deho G. 2000. Transcriptional and post-transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Mol Microbiol 36:1470–1480. [PubMed][CrossRef]
108. Marchi P, Longhi V, Zangrossi S, Gaetani E, Briani F, Dehò G. 2007. Autogenous regulation of Escherichia coli polynucleotide phosphorylase during cold acclimation by transcription termination and antitermination. Mol Genet Genomics 278:75–84. [PubMed][CrossRef]
109. Gibson TJ, Thompson JD, Heringa J. 1993. The KH domain occurs in a diverse set of RNA-binding proteins that include the antiterminator NusA and is probably involved in binding to nucleic acid. FEBS Lett 324:361–366. [PubMed][CrossRef]
110. Regnier P, Grunberg-Manago M, Portier C. 1987. Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase. Homology of the primary structure of the protein with the RNA-binding domain of ribosomal protein S1. J Biol Chem 262:63–68.[PubMed]
111. Symmons MF, Jones GH, Luisi BF. 2000. A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8:1215–1226. [PubMed][CrossRef]
112. Matus-Ortega ME, Regonesi ME, Pina-Escobedo A, Tortora P, Deho G, Garcia-Mena J. 2007. The KH and S1 domains of Escherichia coli polynucleotide phosphorylase are necessary for autoregulation and growth at low temperature. Biochim Biophys Acta 1769:194–203.[PubMed]
113. Kandror O, Goldberg AL. 1997. Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 94:4978–4981. [PubMed][CrossRef]
114. Maier R, Eckert B, Scholz C, Lilie H, Schmid FX. 2003. Interaction of trigger factor with the ribosome. J Mol Biol 326:585–592. [PubMed][CrossRef]
115. Blaha G, Wilson DN, Stoller G, Fischer G, Willumeit R, Nierhaus KH. 2003. Localization of the trigger factor binding site on the ribosomal 50S subunit. J Mol Biol 326:887–897. [PubMed][CrossRef]
116. Kim WS, Dunn NW. 1997. Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance. Curr Microbiol 35:59–63. [PubMed][CrossRef]
117. Cloutier J, Prevost D, Nadeau P, Antoun H. 1992. Heat and cold shock protein synthesis in arctic and temperate strains of rhizobia. Appl Environ Microbiol 58:2846–2853.[PubMed]
118. Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T, Toguri T. 1996. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat Biotechnol 14:1003–1006. [PubMed][CrossRef]
119. Orlova IV, Serebriiskaya TS, Popov V, Merkulova N, Nosov AM, Trunova TI, Tsydendambaev VD, Los DA. 2003. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol 44:447–450. [PubMed][CrossRef]
120. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK. 2003. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524. [PubMed][CrossRef]
121. Vasina JA, Baneyx F. 1996. Recombinant protein expression at low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter cspA. Appl Environ Microbiol 62:1444–1447.[PubMed]
122. Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M. 2004. Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22:877–882. [PubMed][CrossRef]
123. Graumann P, Marahiel MA. 1996. A case of convergent evolution of nucleic acid binding modules. Bioessays 18:309–315. [PubMed][CrossRef]
ecosalplus.5.4.2.citations
ecosalplus/3/1
content/journal/ecosalplus/10.1128/ecosalplus.5.4.2
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.5.4.2
2008-01-16
2017-12-17

Abstract:

This review focuses on the cold shock response of . Change in temperature is one of the most common stresses that an organism encounters in nature. Temperature downshift affects the cell on various levels: (i) decrease in the membrane fluidity; (ii) stabilization of the secondary structures of RNA and DNA; (iii) slow or inefficient protein folding; (iv) reduced ribosome function, affecting translation of non-cold shock proteins; (v) increased negative supercoiling of DNA; and (vi) accumulation of various sugars. Cold shock proteins and certain sugars play a key role in dealing with the initial detrimental effect of cold shock and maintaining the continued growth of the organism at low temperature. CspA is the major cold shock protein of , and its homologues are found to be widespread among bacteria, including psychrophilic, psychrotrophic, mesophilic, and thermophilic bacteria, but are not found in archaea or cyanobacteria. Significant, albeit transient, stabilization of the cspA mRNA immediately following temperature downshift is mainly responsible for its cold shock induction. Various approaches were used in studies to detect cold shock induction of cspA mRNA. Sugars are shown to confer protection to cells undergoing cold shock. The study of the cold shock response has implications in basic and health-related research as well as in commercial applications. The cold shock response is elicited by all types of bacteria and affects these bacteria at various levels, such as cell membrane, transcription, translation, and metabolism.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Tables

Generic image for table
Table 1

Cold shock-induced proteins

Citation: Phadtare S, Inouye M. 2008. The Cold Shock Response, EcoSal Plus 2008; doi:10.1128/ecosalplus.5.4.2

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error