1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Magnesium Transport and Magnesium Homeostasis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Krisztina M. Papp-Wallace1, and Michael E. Maguire2
  • Editor: Valley Stewart3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965; 2: Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965; 3: University of California, Davis, Davis, CA
  • Received 14 February 2008 Accepted 17 April 2008 Published 25 September 2008
  • Address correspondence to Krisztina M. Papp-Wallace kmp12@po.cwru.edu
image of Magnesium Transport and Magnesium Homeostasis
    Preview this reference work article:
    Zoom in
    Zoomout

    Magnesium Transport and Magnesium Homeostasis, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/1/5_4_4_2_module-1.gif /docserver/preview/fulltext/ecosalplus/3/1/5_4_4_2_module-2.gif
  • Abstract:

    This review reviews the properties and regulation of the serovar Typhimurium and transporters that mediate Mg influx: CorA and the Mgt P-type ATPases. In addition, potential Mg regulation of transcription and translation, largely via the PhoPQ two component system, is discussed. CorA proteins are a unique class of transporters and are widespread in the and , with rather distant but functional homologs in eukaryotes. The Mgt transporters are highly homologous to other P-type ATPases but are more closely related to the eukaryotic H and Ca ATPases than to most prokaryotic ATPases. Hundreds of homologs of CorA are currently known from genomic sequencing. In contrast, only when extracellular and possibly intracellular Mg levels fall significantly is the expression of and induced. Topology studies using and fusions initially indicated that the serovar Typhimurium CorA contained three transmembrane (TM) segments; however, subsequent data obtained using a variety of approaches showed that the CorA superfamily of proteins have only two TMs at the extreme C terminus. PhoP-PhoQ is a two-component system consisting of PhoQ, the sensor/receptor histidine kinase, and PhoP, the response regulator/transcriptional activator. The expression of both and in either or serovar Typhimurium is markedly induced in a PhoPQ-dependent manner by low concentrations of Mg in the medium. and form an operon with two promoters in both and serovar Typhimurium.

  • Citation: Papp-Wallace K, Maguire M. 2008. Magnesium Transport and Magnesium Homeostasis, EcoSal Plus 2008; doi:10.1128/ecosalplus.5.4.4.2

Key Concept Ranking

Bacteria and Archaea
0.4502769
Bacterial Cytoplasmic Membrane Proteins
0.3796746
Salmonella enterica
0.33720568
0.4502769

References

1. Maguire ME. 1990. Magnesium: a regulated and regulatory cation. Met Ions Biol 26:135–153.
2. Eigen M. 1963. Fast elementary steps in chemical reaction mechanisms. Pure Appl Chem 6:97–115. [CrossRef]
3. Groisman EA, Heffron F, Solomon F. 1992. Molecular genetic analysis of the Escherichia coli phoP locus. J Bacteriol 174:486–491.[PubMed]
4. Lunin VV, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak A, Doyle DA, Bochkarev A, Maguire ME, Edwards AM, Koth CM. 2006. Crystal structure of the CorA Mg2+ transporter. Nature 440:833–837. [PubMed][CrossRef]
5. Detweiler CS, Cunanan DB, Falkow S. 2001. Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc Natl Acad Sci USA 98:5850–5855. [PubMed][CrossRef]
6. Diebler H, Eigen M, Ilgenfritz G, Maass G, Winkler R. 1969. Kinetics and mechanism of reactions of main group metal ions with biological carriers. Pure Appl Chem 20:93–115. [CrossRef]
7. Cowan JA. 2002. Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals 15:225–235. [PubMed][CrossRef]
8. Cho US, Bader MW, Amaya MF, Daley ME, Klevit RE, Miller SI, Xu W. 2006. Metal bridges between the PhoQ sensor domain and the membrane regulate transmembrane signaling. J Mol Biol 356:1193–1206. [PubMed][CrossRef]
9. Maguire ME. 2006. The structure of the CorA magnesium transporter, a divalent cation channel. Curr Opin Struct Biol 4:432–438. [CrossRef]
10. Alatossava T, Jutte H, Kuhn A, Kellenberger E. 1985. Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J Bacteriol 162:413–419.[PubMed]
11. Nelson DL, Kennedy EP. 1972. Transport of magnesium by a repressible and a nonrepressible system in Escherichia coli. Proc Natl Acad Sci USA 69:1091–1093. [PubMed][CrossRef]
12. Shin D, Lee EJ, Huang H, Groisman EA. 2006. A positive feedback loop promotes transcription surge that jump-starts Salmonella virulence circuit. Science 314:1607–1609. [PubMed][CrossRef]
13. Navarre WW, Halsey TA, Walthers D, Frye J, McClelland M, Potter JL, Kenney LJ, Gunn JS, Fang FC, Libby SJ. 2005. Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol 56:492–508. [PubMed][CrossRef]
14. Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R. 2003. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal Chem 75:3784–3791. [PubMed][CrossRef]
15. Heithoff DM, Conner CP, Hentschel U, Govantes F, Hanna PC, Mahan MJ. 1999. Coordinate intracellular expression of Salmonella genes induced during infection. J Bacteriol 181:799–807.[PubMed]
16. Hmiel SP, Snavely MD, Florer JB, Maguire ME, Miller CG. 1989. Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171:4742–4751.[PubMed]
17. Smith RL, Kaczmarek ML, Kucharski LM, Maguire ME. 1998. Magnesium transport in Salmonella typhimurium: induction of MgtA and MgtCB expression during invasion of epithelial and macrophage cells. Microbiology 144:1835–1843. [PubMed][CrossRef]
18. Snavely MD, Florer JB, Miller CG, Maguire ME. 1989. Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol 171:4761–4766.[PubMed]
19. Cowan JA. 1995. The Biological Chemistry of Magnesium. VCH Publishers, New York, NY.
20. Soncini FC, Vescovi EG, Groisman EA. 1995. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol 177:4364–4371.[PubMed]
21. Szegedy MA, Maguire ME. 1999. The CorA Mg2+ transport protein of Salmonella typhimurium. Mutagenesis of conserved residues in the second membrane domain. J Biol Chem 274:36973–36979. [PubMed][CrossRef]
22. Tao T, Grulich PF, Kucharski LM, Smith RL, Maguire ME. 1998. Magnesium transport in Salmonella typhimurium: biphasic time and magnesium dependence of the transcription of the mgtA and mgtCB loci. Microbiology 144:655–664. [PubMed][CrossRef]
23. Gibson MM, Bagga DA, Miller CG, Maguire ME. 1991. Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system. Mol Microbiol 5:2753–2762. [PubMed][CrossRef]
24. Miao EA, Freeman JA, Miller SI. 2002. Transcription of the SsrAB regulon is repressed by alkaline pH and is independent of PhoPQ and magnesium concentration. J Bacteriol 184:1493–1497. [PubMed][CrossRef]
25. Miller SI. 1991. PhoP/PhoQ: macrophage-specific modulators of Salmonella virulence. Mol Microbiol 5:2073–2078. [PubMed][CrossRef]
26. Kato A, Tanabe H, Utsumi R. 1999. Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: identification of extracellular Mg2+-responsive promoters. J Bacteriol 181:5516–5520.[PubMed]
27. Bijlsma JJ, Groisman EA. 2005. The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica. Mol Microbiol 57:85–96. [PubMed][CrossRef]
28. Nelson DL, Kennedy EP. 1971. Magnesium transport in Escherichia coli. Inhibition by cobaltous ion. J Biol Chem 246:3042–3049.[PubMed]
29. Smith DL, Tao T, Maguire ME. 1993. Membrane topology of a P-type ATPase: the MgtB Mg2+ transport protein of Salmonella typhimurium. J Biol Chem 268:22469–22479.[PubMed]
30. Lee CA, Silva M, Siber AM, Kelly AJ, Galyov E, McCormick BA. 2000. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc Natl Acad Sci USA 97:12283–12288. [PubMed][CrossRef]
31. Rang C, Alix E, Felix C, Heitz A, Tasse L, Blanc-Potard AB. 2007. Dual role of the MgtC virulence factor in host and non-host environments. Mol Microbiol 63:605–622. [PubMed][CrossRef]
32. Warren MA, Kucharski LM, Veenstra A, Shi L, Grulich PF, Maguire ME. 2004. The CorA Mg2+ transporter is a homotetramer. J Bacteriol 186:4605–4612. [PubMed][CrossRef]
33. Waldburger CD, Sauer RT. 1996. Signal detection by the PhoQ sensor-transmitter. Characterization of the sensor domain and a response-impaired mutant that identifies ligand-binding determinants. J Biol Chem 271:26630–26636. [PubMed][CrossRef]
34. Einspahr H, Bugg CE. 1984. Crystal structure studies of calcium complexes and implications for biological systems. Met Ions Biol Syst 17:51–97.
35. Payandeh J, Li C, Ramjeesingh M, Poduch E, Bear CE, Pai EF. 2008. Probing structure-function relationships and gating mechanisms in the CorA Mg2+ transport system. J Biol Chem 283:11721–11733. [PubMed][CrossRef]
36. Maguire ME. 2006. Magnesium transporters: properties, regulation and structure. Front Biosci 11:3149–3163. [PubMed][CrossRef]
37. Spinelli SV, Pontel LB, Garcia VE, Soncini FC. 2008. Regulation of magnesium homeostasis in Salmonella: Mg2+ targets the mgtA transcript for degradation by RNase E. FEMS Microbiol Lett 280:226–234. [PubMed][CrossRef]
38. Park MH, Wong BB, Lusk JE. 1976. Mutants in three genes affecting transport of magnesium in Escherichia coli: physiology and genetics. J Bacteriol 126:1096–1103.[PubMed]
39. Kehres DG, Maguire ME. 2002. Structure, properties and regulation of magnesium transport proteins. Biometals 15:261–270. [PubMed][CrossRef]
40. Garvis SG, Beuzon CR, Holden DW. 2001. A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella-containing vacuoles in macrophages. Cell Microbiol 3:731–744. [PubMed][CrossRef]
41. Garcia VE, Soncini FC, Groisman EA. 1994. The role of the PhoP/PhoQ regulon in Salmonella virulence. Res Microbiol 145:473–480. [PubMed][CrossRef]
42. Smith RL, Banks JL, Snavely MD, Maguire ME. 1993. Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J Biol Chem 268:14071–14080.[PubMed]
43. Silver S. 1969. Active transport of magnesium in Escherichia coli. Proc Natl Acad Sci USA 62:764–771. [PubMed][CrossRef]
44. Miyashiro T, Goulian M. 2007. Stimulus-dependent differential regulation in the Escherichia coli PhoQ PhoP system. Proc Natl Acad Sci USA 104:16305–16310. [PubMed][CrossRef]
45. Gunn JS, Miller SI. 1996. PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178:6857–6864.[PubMed]
46. Prouty AM, Gunn JS. 2003. Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass. Infect Immun 71:7154–7158. [PubMed][CrossRef]
47. Alix E, Blanc-Potard AB. 2008. Peptide-assisted degradation of the Salmonella MgtC virulence factor. EMBO J 27:546–557. [PubMed][CrossRef]
48. Bajaj V, Lucas RL, Hwang C, Lee CA. 1996. Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22:703–714. [PubMed][CrossRef]
49. Galan JE, Curtiss II RI. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86:6383–6387. [PubMed][CrossRef]
50. Bachhawat N, Stock AM. 2007. Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride. J Bacteriol 189:5987–5995. [PubMed][CrossRef]
51. Miller SI, Kukral AM, Mekalanos JJ. 1989. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 86:5054–5058. [PubMed][CrossRef]
52. Snavely MD, Miller CG, Maguire ME. 1991. The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem 266:815–823.[PubMed]
53. Groisman EA, Chiao E, Lipps CJ, Heffron F. 1989. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci USA 86:7077–7081. [PubMed][CrossRef]
54. Hmiel SP, Snavely MD, Miller CG, Maguire ME. 1986. Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol 168:1444–1450.[PubMed]
55. Moncrief MBC, Maguire ME. 1998. Magnesium and the role of mgtC in Salmonella typhimurium. Infect Immun 66:3802–3809.[PubMed]
56. Kasahara M, Nakata A, Shinagawa H. 1992. Molecular analysis of the Escherichia coli phoP-phoQ operon. J Bacteriol 174:492–498.[PubMed]
57. Soncini FC, Garcia VE, Solomon F, Groisman EA. 1996. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol 178:5092–5099.[PubMed]
58. Sermon J, Wevers EM-RP, Jansen L, De Spiegeleer P, Vanoirbeek K, Aertsen A, Michiels CW. 2005. CorA affects tolerance of Escherichia coli and Salmonella enterica serovar Typhimurium to the lactoperoxidase enzyme system but not to other forms of oxidative stress. Appl Environ Microbiol 71:6515–6523. [PubMed][CrossRef]
59. Castelli ME, Cauerhff A, Amongero M, Soncini FC, Vescovi EG. 2003. The H box-harboring domain is key to the function of the Salmonella enterica PhoQ Mg2+-sensor in the recognition of its partner PhoP. J Biol Chem 278:23579–23585. [PubMed][CrossRef]
60. Chamnongpol S, Groisman EA. 2002. Mg2+ homeostasis and avoidance of metal toxicity. Mol Microbiol 44:561–571. [PubMed][CrossRef]
61. Monsieurs P, De Keersmaecker S, Navarre WW, Bader MW, De Smet F, McClelland M, Fang FC, De Moor B, Vanderleyden J, Marchal K. 2005. Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. J Mol Evol 60:462–474. [PubMed][CrossRef]
62. Blanc-Potard AB, Groisman EA. 1997. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16:5376–5385. [PubMed][CrossRef]
63. Worlock AJ, Smith RL. 2002. ZntB is a novel Zn2+ transporter in Salmonella enterica serovar Typhimurium. J Bacteriol 184:4369–4373. [PubMed][CrossRef]
64. Yamamoto K, Ogasawara H, Fujita N, Utsumi R, Ishihama A. 2002. Novel mode of transcription regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability. Mol Microbiol 45:423–438. [PubMed][CrossRef]
65. Zwir I, Shin D, Kato A, Nishino K, Latifi T, Solomon F, Hare JM, Huang H, Groisman EA. 2005. Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci USA 102:2862–2867. [PubMed][CrossRef]
66. Minagawa S, Okura R, Tsuchitani H, Hirao K, Yamamoto K, Utsumi R. 2005. Isolation and molecular characterization of the locked-on mutant of Mg2+ sensor PhoQ in Escherichia coli. Biosci Biotechnol Biochem 69:1281–1287. [PubMed][CrossRef]
67. Montagne M, Martel A, Le Moual H. 2001. Characterization of the catalytic activities of the PhoQ histidine protein kinase of Salmonella enterica serovar Typhimurium. J Bacteriol 183:1787–1791. [PubMed][CrossRef]
68. Vescovi EG, Ayala YM, Di Cera E, Groisman EA. 1997. Characterization of the bacterial sensor protein PhoQ. Evidence for distinct binding sites for Mg2+ and Ca2+. J Biol Chem 272:1440–1443. [PubMed][CrossRef]
69. Van Velkinburgh JC, Gunn JS. 1999. PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. Infect Immun 67:1614–1622.[PubMed]
70. Mahan MJ, Slauch JM, Mekalanos JJ. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686–688. [PubMed][CrossRef]
71. Aune TM, Thomas EL. 1978. Oxidation of protein sulfhydryls by products of peroxidase-catalyzed oxidation of thiocyanate ion. Biochemistry 17:1005–1010. [PubMed][CrossRef]
72. Gunn JS, Ernst RK, McCoy AJ, Miller SI. 2000. Constitutive mutations of the Salmonella enterica serovar Typhimurium transcriptional virulence regulator phoP. Infect Immun 68:3758–3762. [PubMed][CrossRef]
73. Regelmann AG, Lesley JA, Mott C, Stokes L, Waldburger CD. 2002. Mutational analysis of the Escherichia coli PhoQ sensor kinase: differences with the Salmonella enterica serovar Typhimurium PhoQ protein and in the mechanism of Mg2+ and Ca2+ sensing. J Bacteriol 184:5468–5478. [PubMed][CrossRef]
74. Rapp M, Drew D, Daley DO, Nilsson J, Carvalho T, Melen K, De Gier JW, Von Heijne G. 2004. Experimentally based topology models for E. coli inner membrane proteins. Protein Sci 13:937–945. [PubMed][CrossRef]
75. Miller SI, Pulkkinen WS, Selsted ME, Mekalanos JJ. 1990. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect Immun 58:3706–3710.[PubMed]
76. Castelli ME, Garcia VE, Soncini FC. 2000. The phosphatase activity is the target for Mg2+ regulation of the sensor protein PhoQ in Salmonella. J Biol Chem 275:22948–22954. [PubMed][CrossRef]
77. Grubbs RD, Maguire ME. 1987. Magnesium as a regulatory cation: criteria and evaluation. Magnesium 6:113–127.[PubMed]
78. Marina A, Mott C, Auyzenberg A, Hendrickson WA, Waldburger CD. 2001. Structural and mutational analysis of the PhoQ histidine kinase catalytic domain. Insight into the reaction mechanism. J Biol Chem 276:41182–41190. [PubMed][CrossRef]
79. Papp KM, Maguire ME. 2004. The CorA Mg2+ transporter does not transport Fe2+. J Bacteriol 186:7653–7658. [PubMed][CrossRef]
80. Bader MW, Navarre WW, Shiau W, Nikaido H, Frye JG, McClelland M, Fang FC, Miller SI. 2003. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 50:219–230. [PubMed][CrossRef]
81. Payandeh J, Pai EF. 2006. A structural basis for Mg2+ homeostasis and the CorA translocation cycle. EMBO J 25:3762–3773. [PubMed][CrossRef]
82. Fields PI, Swanson RV, Haidaris CG, Heffron F. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 83:5189–5193. [PubMed][CrossRef]
83. Eshaghi S, Niegowski D, Kohl A, Martinez MD, Lesley SA, Nordlund P. 2006. Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science 313:354–357. [PubMed][CrossRef]
84. Froschauer EM, Kolisek M, Dieterich F, Schweigel M, Schweyen RJ. 2004. Fluorescence measurements of free [Mg2+] by use of mag-fura 2 in Salmonella enterica. FEMS Microbiol Lett 237:49–55. [PubMed][CrossRef]
85. Deiwick J, Nikolaus T, Erdogan S, Hensel M. 1999. Environmental regulation of Salmonella pathogenicity island 2 gene expression. Mol Microbiol 31:1759–1773. [PubMed][CrossRef]
86. Garcia-del Portillo F, Foster JW, Maguire ME, Finlay BB. 1992. Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. Mol Microbiol 6:3289–3297. [PubMed][CrossRef]
87. Miller SI, Mekalanos JJ. 1990. Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. J Bacteriol 172:2485–2490.[PubMed]
88. Prost LR, Daley ME, Le Sage V, Bader MW, Le Moual H, Klevit RE, Miller SI. 2007. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell 26:165–174. [PubMed][CrossRef]
89. Tao T, Snavely MD, Farr SG, Maguire ME. 1995. Magnesium transport in Salmonella typhimurium: mgtA encodes a P-type ATPase and is regulated by Mg2+ in a manner similar to that of the mgtB P-type ATPase. J Bacteriol 177:2654–2662.[PubMed]
90. Tu X, Latifi T, Bougdour A, Gottesman S, Groisman EA. 2006. The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc Natl Acad Sci USA 103:13503–13508. [PubMed][CrossRef]
91. Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le MH, Miller SI. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461–472. [PubMed][CrossRef]
92. Bearson BL, Wilson L, Foster JW. 1998. A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol 180:2409–2417.[PubMed]
93. Aguirre A, Cabeza ML, Spinelli SV, McClelland M, Garcia Vescovi E, Soncini FC. 2006. PhoP-induced genes within Salmonella pathogenicity island 1. J Bacteriol 188:6889–6898. [PubMed][CrossRef]
94. Beuzon CR, Unsworth KE, Holden DW. 2001. In vivo genetic analysis indicates that PhoP-PhoQ and the Salmonella pathogenicity island 2 type III secretion system contribute independently to Salmonella enterica serovar Typhimurium virulence. Infect Immun 69:7254–7261. [PubMed][CrossRef]
95. Cromie MJ, Shi Y, Latifi T, Groisman EA. 2006. An RNA sensor for intracellular Mg2+. Cell 125:71–84. [PubMed][CrossRef]
96. Deiwick J, Hensel M. 1999. Regulation of virulence genes by environmental signals in Salmonella typhimurium. Electrophoresis 20:813–817. [PubMed][CrossRef]
97. Martin-Orozco N, Touret N, Zaharik ML, Park E, Kopelman R, Miller S, Finlay BB, Gros P, Grinstein S. 2006. Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages. Mol Biol Cell 17:498–510. [PubMed][CrossRef]
98. Kucharski LM, Lubbe WJ, Maguire ME. 2000. Cation hexaammines are selective and potent inhibitors of the CorA magnesium transport system. J Biol Chem 275:16767–16773. [PubMed][CrossRef]
99. Behlau I, Miller SI. 1993. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol 175:4475–4484.[PubMed]
100. Gunzel D, Kucharski LM, Kehres DG, Romero MF, Maguire ME. 2006. The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na+,K+-ATPase. J Bacteriol 188:5586–5594. [PubMed][CrossRef]
101. Garcia VE, Soncini FC, Groisman EA. 1996. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84:165–174. [PubMed][CrossRef]
102. Maguire ME, Cowan JA. 2002. Mg2+ chemistry and biochemistry. Biometals 15:203–210. [PubMed][CrossRef]
103. Chamnongpol S, Groisman EA. 2000. Acetyl phosphate-dependent activation of a mutant PhoP response regulator that functions independently of its cognate sensor kinase. J Mol Biol 300:291–305. [PubMed][CrossRef]
104. Sanowar S, Martel A, Moual HL. 2003. Mutational analysis of the residue at position 48 in the Salmonella enterica serovar Typhimurium PhoQ sensor kinase. J Bacteriol 185:1935–1941. [PubMed][CrossRef]
105. Sermon J, De Spiegeleer P, Vanoirbeek K, Aertsen A, Michiels CW. 2004. Characterization of lactoperoxidase stress response in Escherichia coli and involvement of corA in lactoperoxidase tolerance. Commun Agric Appl Biol Sci 69:39–42.[PubMed]
ecosalplus.5.4.4.2.citations
ecosalplus/3/1
content/journal/ecosalplus/10.1128/ecosalplus.5.4.4.2
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.5.4.4.2
2008-09-25
2017-03-26

Abstract:

This review reviews the properties and regulation of the serovar Typhimurium and transporters that mediate Mg influx: CorA and the Mgt P-type ATPases. In addition, potential Mg regulation of transcription and translation, largely via the PhoPQ two component system, is discussed. CorA proteins are a unique class of transporters and are widespread in the and , with rather distant but functional homologs in eukaryotes. The Mgt transporters are highly homologous to other P-type ATPases but are more closely related to the eukaryotic H and Ca ATPases than to most prokaryotic ATPases. Hundreds of homologs of CorA are currently known from genomic sequencing. In contrast, only when extracellular and possibly intracellular Mg levels fall significantly is the expression of and induced. Topology studies using and fusions initially indicated that the serovar Typhimurium CorA contained three transmembrane (TM) segments; however, subsequent data obtained using a variety of approaches showed that the CorA superfamily of proteins have only two TMs at the extreme C terminus. PhoP-PhoQ is a two-component system consisting of PhoQ, the sensor/receptor histidine kinase, and PhoP, the response regulator/transcriptional activator. The expression of both and in either or serovar Typhimurium is markedly induced in a PhoPQ-dependent manner by low concentrations of Mg in the medium. and form an operon with two promoters in both and serovar Typhimurium.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1A
Figure 1A

The protein is oriented with the periplasm at the top. The blue arrows denoting the β-sheets show the orientation of each strand with the arrow pointing from N terminus to C terminus.

Citation: Papp-Wallace K, Maguire M. 2008. Magnesium Transport and Magnesium Homeostasis, EcoSal Plus 2008; doi:10.1128/ecosalplus.5.4.4.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1B
Figure 1B

Citation: Papp-Wallace K, Maguire M. 2008. Magnesium Transport and Magnesium Homeostasis, EcoSal Plus 2008; doi:10.1128/ecosalplus.5.4.4.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1C
Figure 1C

Note that TM1 (light green) and TM2 (magenta) are not connected. The 9-aa sequence that connects the two TM segments is not resolved in any of the current crystal structures available (see the text).

Citation: Papp-Wallace K, Maguire M. 2008. Magnesium Transport and Magnesium Homeostasis, EcoSal Plus 2008; doi:10.1128/ecosalplus.5.4.4.2
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Properties of ions of common biological cations

Citation: Papp-Wallace K, Maguire M. 2008. Magnesium Transport and Magnesium Homeostasis, EcoSal Plus 2008; doi:10.1128/ecosalplus.5.4.4.2

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error