1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 3:

Metabolism

Transition Metal Homeostasis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Dietrich H. Nies1, and Gregor Grass2,4
  • Editor: Valley Stewart3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle/Saale, Germany; 2: Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle/Saale, Germany; 3: University of California, Davis, Davis, CA
  • Received 10 December 2008 Accepted 03 February 2009 Published 01 October 2009
  • Address correspondence to Dietrich H. Nies d.nies@mikrobiologie.uni-halle.de.
image of Transition Metal Homeostasis
    Preview this reference work article:
    Zoom in
    Zoomout

    Transition Metal Homeostasis, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/2/5_4_4_3_module-1.gif /docserver/preview/fulltext/ecosalplus/3/2/5_4_4_3_module-2.gif
  • Abstract:

    This chapter focuses on transition metals. All transition metal cations are toxic—those that are essential for and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the cation can be reduced to the volatile metallic form. Interference of nickel and cobalt with iron is prevented by the low abundance of these metals in the cytoplasm and their sequestration by metal chaperones, in the case of nickel, or by B and its derivatives, in the case of cobalt. The most dangerous metal, copper, catalyzes Fenton-like reactions, binds to thiol groups, and interferes with iron metabolism. solves this problem probably by preventing copper uptake, combined with rapid efflux if the metal happens to enter the cytoplasm.

  • Citation: Nies D, Grass G. 2009. Transition Metal Homeostasis, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4.3

Key Concept Ranking

Alkali Metals
0.7159063
Light Metals
0.7150815
Inorganic Compounds
0.6378504
Major Facilitator Superfamily
0.5104204
Transition Elements
0.50221175
Primary Active Transporters
0.48175052
0.7159063

References

1. Housecroft CE, Constable EC. 2006. Chemistry, 3rd ed. Pearson Education Limited, Essex, England.
2. Weast RC. 1984. CRC Handbook of Chemistry and Physics, 64th ed. CRC Press, Inc., Boca Raton, FL.
3. Fraústo da Silva JJR, Williams RJP. 2001. The Biological Chemistry of the Elements: the Inorganic Chemistry of Life. Clarendon Press, Oxford, United Kingdom.
4. Nies DH. 2007. Bacterial transition metal homeostasis, p 118–142. In Nies DH and Silver S (ed), Molecular Microbiology of Heavy Metals, vol. 6. Springer-Verlag, Berlin, Germany.
5. Nies DH. 2004. Essential and toxic effects of elements on microorganisms, p 257–276. In Anke K, Ihnat M, and Stoeppler M (ed), Metals and Their Compounds in the Environment. Wiley-VCH, Weinheim, Germany.
6. Klebba PE. 2005. The porinologist. J Bacteriol 187:8232–8236. [PubMed][CrossRef]
7. Lomovskaya O, Totrov M. 2005. Vacuuming the periplasm. J Bacteriol 187:1879–1883. [PubMed][CrossRef]
8. Legatzki A, Franke S, Lucke S, Hoffmann T, Anton A, Neumann D, Nies DH. 2003. First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation 14:153–168. [PubMed][CrossRef]
9. Babor M, Gerzon S, Raveh B, Sobolev V, Edelman M. 2008. Prediction of transition metal-binding sites from apo protein structures. Proteins 70:208–217. [PubMed][CrossRef]
10. Ebert JC, Altman RB. 2008. Robust recognition of zinc binding sites in proteins. Protein Sci 17:54–65. [PubMed][CrossRef]
11. Bertini I, Cavallaro G. 2008. Metals in the “omics” world: copper homeostasis and cytochrome c oxidase assembly in a new light. J Biol Inorg Chem 13:3–14. [PubMed][CrossRef]
12. Irving H, Williams RJP. 1948. Order of stability of metal complexes. Nature 162:746–747. [CrossRef]
13. Nies DH. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339. [PubMed][CrossRef]
14. Saier MHJ, Tran CV, Barabote RD. 2006. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186. [PubMed][CrossRef]
15. Busch W, Saier MHJ. 2002. The transporter classification (TC) system. Crit Rev Biochem Mol Biol 37:287–337. [PubMed][CrossRef]
16. Bucheder F, Broda E. 1974. Energy-dependent zinc transport by Escherichia coli. Eur J Biochem 45:555–559. [PubMed][CrossRef]
17. Webb M. 1970. Interrelationship between utiization of magnesium and the uptake of other bivalent cations by bacteria. Biochim Biophys Acta 222:428–439.[PubMed]
18. Townsend DE, Esenwine AJ, George JI, Bross D, Maguire ME, Smith RL. 1995. Cloning of the mgtE Mg2+ transporter from Providencia stuartii and the distribution of mgtE in gram-negative and gram-positive bacteria. J Bacteriol 177:5350–5354.[PubMed]
19. Hmiel SP, Snavely MD, Florer JB, Maguire ME, Miller CG. 1989. Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171:4742–4751.[PubMed]
20. Fagan MJ, Saier MH Jr. 1994. P-type ATPases of eukaryotes and bacteria: sequence comparisons and construction of phylogenetic trees. J Mol Evol 38:57–99. [PubMed][CrossRef]
21. Snavely MD, Florer JB, Miller CG, Maguire ME. 1989. Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by CorA, MgtA, and MgtB systems. J Bacteriol 171:4761–4766.[PubMed]
22. Park MH, Wong BB, Lusk JE. 1976. Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology. J Bacteriol 126:1096–1103.[PubMed]
23. Beard SJ, Hashim R, Wu GH, Binet MRB, Hughes MN, Poole RK. 2000. Evidence for the transport of zinc(II) ions via the Pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol Lett 184:231–235. [PubMed][CrossRef]
24. Eitinger T, Suhr J, Moore L, Smith JAC. 2005. Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18:399–405. [PubMed][CrossRef]
25. Garrick MD, Singleton ST, Vargas F, Kuo HC, Zhao L, Knopfel M, Davidson T, Costa M, Paradkar P, Roth JA, Garrick LM. 2006. DMTI: which metals does it transport? Biol Res 39:79–85. [PubMed][CrossRef]
26. Eide DJ. 2004. The SLC39 family of metal ion transporters. Pflügers Arch 447:796–800. [PubMed][CrossRef]
27. Grass G, Wong MD, Rosen BP, Smith RL, Rensing C. 2002. ZupT Is a Zn(II) uptake system in Escherichia coli. J Bacteriol 184:864–866. [PubMed][CrossRef]
28. Grass G, Franke S, Taudte N, Nies DH, Kucharski LM, Maguire ME, Rensing C. 2005. The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J Bacteriol 187:1604–1611. [PubMed][CrossRef]
29. Patzer SI, Hantke K. 1998. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210. [PubMed][CrossRef]
30. Li H, Jogl G. 2007. Crystal structure of the zinc-binding transport protein ZnuA from Escherichia coli reveals an unexpected variation in metal coordination. J Mol Biol 368:1358–1366. [PubMed][CrossRef]
31. Puskarova A, Ferianc P, Kormanec J, Homerova D, Farewell A, Nystrom T. 2002. Regulation of yodA encoding a novel cadmium-induced protein in Escherichia coli. Microbiology 148:3801–3811.[PubMed]
32. Kershaw CJ, Brown NL, Hobman JL. 2007. Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Biochem Biophys Res Commun 364:66–71. [PubMed][CrossRef]
33. David G, Blondeau K, Schiltz M, Penel S, Lewit-Bentley A. 2003. YodA from Escherichia coli is a metal-binding, lipocalin-like protein. J Biol Chem 278:43728–43735. [PubMed][CrossRef]
34. Flower DR, North AC, Sansom CE. 2000. The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24.[PubMed]
35. Rensing C, Mitra B, Rosen BP. 1997. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94:14326–14331. [PubMed][CrossRef]
36. Grass G, Fan B, Rosen BP, Franke S, Nies DH, Rensing C. 2001. ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J Bacteriol 183:4664–4667. [PubMed][CrossRef]
37. Worlock AJ, Smith RL. 2002. ZntB is a novel Zn2+ transporter in Salmonella enterica serovar Typhimurium. J Bacteriol 184:4369–4373. [PubMed][CrossRef]
38. Wei YN, Fu D. 2005. Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP (FieF). J Biol Chem 280:33716–33724. [PubMed][CrossRef]
39. Egler M, Grosse C, Grass G, Nies DH. 2005. Role of ECF sigma factor RpoE in heavy metal resistance of Escherichia coli. J Bacteriol 187:2297–2307. [PubMed][CrossRef]
40. Rensing C, Ghosh M, Rosen BP. 1999. Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897.[PubMed]
41. Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D. 2005. FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183:9–18. [PubMed][CrossRef]
42. Chao Y, Fu D. 2004. Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J Biol Chem 279:17173–17180. [PubMed][CrossRef]
43. Lu M, Fu D. 2007. Structure of the zinc transporter YiiP. Science 317:1746–1748. [PubMed][CrossRef]
44. Nies DH. 2007. How cells control zinc homeostasis. Science 317:1695–1696. [PubMed][CrossRef]
45. Outten CE, O’Halloran TV. 2001. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492. [PubMed][CrossRef]
46. Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP. 1999. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31:893–902. [PubMed][CrossRef]
47. Outten CE, Outten FW, O’Halloran TV. 1999. DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J Biol Chem 274:37517–37524. [PubMed][CrossRef]
48. Ferretti L, Elviri L, Pellinghelli MA, Predieri G, Tegoni M. 2007. Glutathione and N-acetylcysteinylglycine: protonation and Zn2+ complexation. J Inorg Biochem 101:1442–1456. [PubMed][CrossRef]
49. Hattori M, Tanaka Y, Fukai S, Ishitani R, Nureki O. 2007. Crystal structure of the MgtE Mg2+ transporter. Nature 448:1072–1076. [PubMed][CrossRef]
50. Lunin V, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak A, Doyle DA, Bochkarev A, Maguire ME, Edwards AM, Koth CM. 2006. Crystal structure of the CorA Mg2+ transporter. Nature 440:833–837. [PubMed][CrossRef]
51. Ishihama A. 1988. Promoter selectivity of prokaryotic RNA polymerases. Trends Genet 4:282–286. [PubMed][CrossRef]
52. Shepherd NS, Dennis P, Bremer E. 2001. Cytoplasmic RNA polymerase in Escherichia coli. J Bacteriol 138:2527–2534. [PubMed][CrossRef]
53. Rastogi VK, Swanson R, Hartberg YM, Wales ME, Wild JR. 1998. Role of allosteric : zinc interdomain region of the regulatory subunit in the allosteric regulation of aspartate transcarbamoylase from Escherichia coli. Arch Biochem Biophys 354:215–224. [PubMed][CrossRef]
54. Katayama A, Tsujii A, Wada A, Nishino T, Ishihama A. 2002. Systematic search for zinc-binding proteins in Escherichia coli. Eur J Biochem 269:2403–2413. [PubMed][CrossRef]
55. Caillet J, Graffe M, Eyermann F, Romby P, Springer M. 2007. Mutations in residues involved in zinc binding in the catalytic site of Escherichia coli threonyl-tRNA synthetase confer a dominant lethal phenotype. J Bacteriol 189:6839–6848. [PubMed][CrossRef]
56. Karp PD, Keseler IM, Shearer A, Latendresse M, Krummenacker M, Paley SM, Paulsen I, Collado-Vides J, Gama-Castro S, Peralta-Gil M, Santos-Zavaleta A, Peñaloza-Spínol AI, Bonavides-Martinez C, Ingraham J. 2007. Multidimensional annotation of the Escherichia coli K-12 genome. Nucleic Acids Res 35:7577–7590. [PubMed][CrossRef]
57. Springga CF, Mildvan AS, Abramson R, Engle JL, Loeb LA. 1973. Escherichia coli deoxyribonucleic acid polymerase I, a zinc metalloenzyme—nuclear quadrupolar relaxation studies of role of bound zinc. J Biol Chem 248:5987–5993.[PubMed]
58. Walton KE, Fitzgerald PC, Herrmann MS, Behnke WD. 1982. A fully active DNA polymerase I from Escherichia coli lacking stoichiometric zinc. Biochem Biophys Res Commun 108:1353–1361. [PubMed][CrossRef]
59. Pettigrew DW, Meadow ND, Roseman S, Remington SJ. 1998. Cation-promoted association of Escherichia coli phosphocarrier protein IIA(Glc) with regulatory target protein glycerol kinase: substitutions of a zinc(II) ligand and implications for inducer exclusion. Biochemistry 37:4875–4883. [PubMed][CrossRef]
60. Garcia GA, Tierney DL, Chong SR, Clark K, PennerHahn JE. 1996. X-ray absorption spectroscopy of the zinc site in tRNA-guanine transglycosylase from Escherichia coli. Biochemistry 35:3133–3139. [PubMed][CrossRef]
61. Jacquamet L, Aberdam D, Adrait A, Hazemann JL, Latour JM, Michaud-Soret I. 1998. X-ray absorption spectroscopy of a new zinc site in the Fur protein from Escherichia coli. Biochemistry 37:2564–2571. [PubMed][CrossRef]
62. Berry A, Marshall KE. 1993. Identification of zinc-binding ligands in the class-II fructose-1,6-bisphosphate aldolase of Escherichia coli. FEBS Lett 318:11–16. [PubMed][CrossRef]
63. Sood SM, Wu MX, Hill KAW, Slattery CW. 1999. Characterization of zinc-depleted alanyl-tRNA synthetase from Escherichia coli: role of zinc. Arch Biochem Biophys 368:380–384. [PubMed][CrossRef]
64. Liu JH, Gagnon Y, Gauthier J, Furenlid L, Lheureux P, Auger M, Nureki O, Yokoyama S, Lapointe J. 1995. The zinc-binding site of Escherichia coli glutamyl-transfer-RNA synthetase is located in the acceptor-binding domain: studies by extended x-ray-absorption fine-structure, molecular modeling, and site-directed mutagenesis. J Biol Chem 270:15162–15169. [PubMed][CrossRef]
65. Johnson AR, Chen YW, Dekker EE. 1998. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Arch Biochem Biophys 358:211–221. [PubMed][CrossRef]
66. Jackman JE, Raetz CRH, Fierke CA. 1999. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 38:1902–1911. [PubMed][CrossRef]
67. Peariso K, Goulding CW, Huang S, Matthews RG, Penner-Hahn JE. 1998. Characterization of the zinc binding site in methionine synthase enzymes of Escherichia coli: the role of zinc in the methylation of homocysteine. J Am Chem Soc 120:8410–8416. [CrossRef]
68. Wu FYH, Huang WJ, Sinclair RB, Powers L. 1992. The structure of the zinc sites of Escherichia coli DNA-dependent RNA-polymerase. J Biol Chem 267:25560–25567.[PubMed]
69. Teplyakov A, Obmolova G, Khil PP, Howard AJ, Camerini-Otero RD, Gilliland GL. 2003. Crystal structure of the Escherichia coli YcdX protein reveals a trinuclear zinc active site. Proteins 51:315–318. [PubMed][CrossRef]
70. Sen R, King RA, Mzhavia N, Madsen PL, Weisberg RA. 2002. Sequence-specific interaction of nascent antiterminator RNA with the zinc-finger motif of Escherichia coli RNA polymerase. Mol Microbiol 46:215–222. [PubMed][CrossRef]
71. McMillen L, Beacham IR, Burns DM. 2003. Cobalt activation of Escherichia coli 5′-nucleotidase is due to zinc ion displacement at only one of two metal-ion-binding sites. Biochem J 372:625–630. [PubMed][CrossRef]
72. O’Young J, Sukdeo N, Honek JF. 2007. Escherichia coli glyoxalase II is a binuclear zinc-dependent metalloenzyme. Arch Biochem Biophys 459:20–26. [PubMed][CrossRef]
73. Powers L, Griep MA. 1999. Escherichia coli primase zinc is sensitive to substrate and cofactor binding. Biochemistry 38:7413–7420. [PubMed][CrossRef]
74. Ma L, Kantrowitz ER. 1996. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412→Gln) at one of the zinc binding sites. Biochemistry 35:2394–2402. [PubMed][CrossRef]
75. Buchko GW, Hess NJ, Bandaru V, Wallace SS, Kennedy MA. 2000. Spectroscopic studies of zinc(II)- and cobalt(II)-associated Escherichia coli formamidopyrimidine-DNA glycosylase: extended X-ray absorption fine structure evidence for a metal-binding domain. Biochemistry 39:12441–12449. [PubMed][CrossRef]
76. Zhou L, Rosevear PR. 1995. Mutation of the carboxy-terminal zinc finger of Escherichia coli isoleucyl-transfer-RNA synthetase alters zinc-binding and aminoacylation activity. Biochem Biophys Res Commun 216:648–654. [PubMed][CrossRef]
77. Ruzicka FJ, Wedekind JE, Kim JM, Rayment I, Frey PA. 1995. Galactose-1-phosphate uridylyltransferase from Escherichia coli, a zinc and iron metalloenzyme. Biochemistry 34:5610–5617. [PubMed][CrossRef]
78. Sun LJ, Yim CK, Verdine GL. 2001. Chemical communication across the zinc tetrathiolate cluster in Escherichia coli Ada, a metalloactivated DNA repair protein. Biochemistry 40:11596–11603. [PubMed][CrossRef]
79. Atanassova A, Zamble DB. 2005. Escherichia coli HypA is a zinc metalloprotein with a weak affinity for nickel. J Bacteriol 187:4689–4697. [PubMed][CrossRef]
80. Kropachev KY, Zharkov DO, Grollman AP. 2006. Catalytic mechanism of Escherichia coli endonuclease VIII: roles of the intercalation loop and the zinc finger. Biochemistry 45:12039–12049. [PubMed][CrossRef]
81. Hantke K. 2005. Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:196–202. [PubMed][CrossRef]
82. Outten CE, Tobin DA, Penner-Hahn JE, O’Halloran TV. 2001. Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry 40:10417–10423. [PubMed][CrossRef]
83. Pan SM, Hwang GB, Liu HC. 1999. Over-expression and characterization of copper/zinc-superoxide dismutase from rice in Escherichia coli. Bot Bull Acad Sin 40:275–281.[PubMed]
84. Wang JT, Mueller KL, Grossman L. 1994. A mutational study of the C-terminal zinc finger motif of the Escherichia coli UvrA protein. J Biol Chem 269:10771–10775.[PubMed]
85. Cheng BK, Zhu CX, Ji CL, Ahumada A, Tse-Dinh YC. 2003. Direct interaction between Escherichia coli RNA polymerase and the zinc ribbon domains of DNA topoisomerase I. J Biol Chem 278:30705–30710. [PubMed][CrossRef]
86. Kostelecky B, Pohl E, Vogel A, Schilling O, Meyer-Klaucke W. 2006. The crystal structure of the zinc phosphodiesterase from Escherichia coli provides insight into function and cooperativity of tRNase Z-family proteins. J Bacteriol 188:1607–1614. [PubMed][CrossRef]
87. Liu JL, Rigolet P, Dou SX, Wang PY, Xi XG. 2004. The zinc finger motif of Escherichia coli RecQ is implicated in both DNA binding and protein folding. J Biol Chem 279:42794–42802. [PubMed][CrossRef]
88. Zhou ZHS, Peariso K, Penner-Hahn JE, Matthews RG. 1999. Identification of the zinc ligands in cobalamin-independent methionine synthase (MetE) from Escherichia coli. Biochemistry 38:15915–15926. [PubMed][CrossRef]
89. Ramelot TA, Cort JR, Yee AA, Semesi A, Edwards AM, Arrowsmith CH, Kennedy MA. 2002. NMR structure of the Escherichia coli protein YacG: a novel sequence motif in the zinc-finger family of proteins. Proteins 49:289–293. [PubMed][CrossRef]
90. Noll M, Petrukhin K, Lutsenko S. 1998. Identification of a novel transcription regulator from Proteus mirabilis, PmtR, revealed a possible role of YjaI protein in balancing zinc in Escherichia coli. J Biol Chem 273:21393–21401. [PubMed][CrossRef]
91. Akanuma G, Nanamiya H, Natori Y, Nomura N, Kawamura F. 2006. Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. J Bacteriol 188:2715–2720. [PubMed][CrossRef]
92. Panina EM, Mironov AA, Gelfand MS. 2003. Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci USA 100:9912–9917. [PubMed][CrossRef]
93. Owen GA, Pascoe B, Kallifidas D, Paget MSB. 2007. Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves Zur and sigma(R). J Bacteriol 189:4078–4086. [PubMed][CrossRef]
94. Shin JH, Oh SY, Kim SJ, Roe JH. 2007. The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol 189:4070–4077. [PubMed][CrossRef]
95. Yamamoto K, Ishihama A. 2005. Transcriptional response of Escherichia coli to external copper. Mol Microbiol 56:215–227. [PubMed][CrossRef]
96. Lee LJ, Barrett JA, Poole RK. 2005. Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J Bacteriol 187:1124–1134. [PubMed][CrossRef]
97. Pagani MA, Casamayor A, Serrano R, Atrian S, Arino J. 2007. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. Mol Microbiol 65:521–537. [PubMed][CrossRef]
98. Wu LF, Navarro C, Depina K, Quenard M, Mandrand MA. 1994. Antagonistic effect of nickel on the fermentative growth of Escherichia coli K12 and comparison of nickel and cobalt toxicity on the aerobic and anaerobic growth. Environ Health Perspect 102:297–300. [PubMed][CrossRef]
99. Agranoff D, Collins L, Kehres D, Harrison T, Maguire M, Krishna S. 2005. The Nramp orthologue of Cryptococcus neoformans is a pH-dependent transporter of manganese, iron, cobalt and nickel. Biochem J 385:225–232. [PubMed][CrossRef]
100. Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T. 2006. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327. [PubMed][CrossRef]
101. Wu LF, Navarro C, MandrandBerthelot MA. 1991. The hydC region contains a multi-cistronic operon (nik) involved in nickel transport in Escherichia coli. Gene 107:37–42. [PubMed][CrossRef]
102. Allan CB, Wu LF, Gu ZJ, Choudhury SB, Al-Mjeni F, Sharma ML, Mandrand-Berthelot MA, Maroney MJ. 1998. An X-ray absorption spectroscopic structural investigation of the nickel site in Escherichia coli NikA protein. Inorg Chem 37:5952–5955. [CrossRef]
103. Depina K, Navarro C, McWalter L, Boxer DH, Price NC, Kelly SM, Mandrand-Berthelot MA, Wu LF. 1995. Purification and characterization of the periplasmic nickel-binding protein NikA of Escherichia coli K12. Eur J Biochem 227:857–865. [PubMed][CrossRef]
104. Shepherd M, Heath MD, Poole RK. 2007. NikA binds heme: a new role for an Escherichia coli periplasmic nickel-binding protein. Biochemistry 46:5030–5037. [PubMed][CrossRef]
105. Navarro C, Wu LF, Mandrand-Berthelot MA. 1993. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport-system for nickel. Mol Microbiol 9:1181–1191. [PubMed][CrossRef]
106. Hausinger RP, Zamble DB. 2007. Microbial physiology of nickel and cobalt, p 287–320. In Nies DH and Silver S (ed), Molecular Microbiology of Heavy Metals, vol. 6. Springer-Verlag, Berlin, Germany.
107. Rodrigue A, Effantin G, Mandrand-Berthelot MA. 2005. Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187:2912–2916. [PubMed][CrossRef]
108. Wiame E, Van Schaftingen E. 2004. Fructoselysine 3-epimerase, an enzyme involved in the metabolism of the unusual Amadori compound psicoselysine in Escherichia coli. Biochem J 378:1047–1052. [PubMed][CrossRef]
109. Nakano M, Iida T, Honda T. 2004. Urease activity of enterohaemorrhagic Escherichia coli depends on a specific one-base substitution in ureD. Microbiology 150:3483–3489. [PubMed][CrossRef]
110. Clugston SL, Barnard JFJ, Kinach R, Miedema D, Ruman R, Daub E, Honek JF. 1998. Overproduction and characterization of a dimeric non-zinc glyoxalase I from Escherichia coli: evidence for optimal activation by nickel ions. Biochemistry 37:8754–8763. [PubMed][CrossRef]
111. Davidson G, Clugston SL, Honek JF, Maroney MJ. 2000. XAS investigation of the nickel active site structure in Escherichia coli glyoxalase I. Inorg Chem 39:2962–2963. [PubMed][CrossRef]
112. Clugston SL, Yajima R, Honek JF. 2004. Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies. Biochem J 377:309–316. [PubMed][CrossRef]
113. Ballantine SP, Boxer DH. 1985. Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K12. J Bacteriol 163:454–459.[PubMed]
114. Binder U, Maier T, Böck A. 1996. Nickel incorporation into hydrogenase 3 from Escherichia coli requires the precursor form of the large subunit. Arch Microbiol 165:69–72. [PubMed][CrossRef]
115. Maier T, Lottspeich F, Böck A. 1995. Gtp hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli. Eur J Biochem 230:133–138. [PubMed][CrossRef]
116. Leach MR, Zhang JW, Zamble DB. 2007. The role of complex formation between the Escherichia coli hydrogenase accessory factors HypB and SlyD. J Biol Chem 282:16177–16186. [PubMed][CrossRef]
117. Zhang JW, Butland G, Greenblatt JF, Emili A, Zamble DB. 2005. A role for SlyD in the Escherichia coli hydrogenase biosynthetic pathway. J Biol Chem 280:4360–4366. [PubMed][CrossRef]
118. Magalon A, Böck A. 2000. Dissection of the maturation reactions of the [NiFe] hydrogenase 3 from Escherichia coli taking place after nickel incorporation. FEBS Lett 473:254–258. [PubMed][CrossRef]
119. Rossmann R, Sauter M, Lottspeich F, Böck A. 1994. Maturation of the large subunit (HycE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur J Biochem 220:377–384. [PubMed][CrossRef]
120. Rodrigue A, Boxer DH, Mandrand-Berthelot MA, Wu LF. 1996. Requirement for nickel of the transmembrane translocation of NiFe-hydrogenase 2 in Escherichia coli. FEBS Lett 392:81–86. [PubMed][CrossRef]
121. Lawrence JG, Roth JR. 1995. The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli. J Bacteriol 177:6371–6380.[PubMed]
122. Fazzio TG, Roth JR. 1996. Evidence that the CysG protein catalyzes the first reaction specific to B-12 synthesis in Salmonella typhimurium, insertion of cobalt. J Bacteriol 178:6952–6959.[PubMed]
123. Spencer P, Stolowich NJ, Sumner LW, Scott AI. 1998. Definition of the redox states of cobalt-precorrinoids: investigation of the substrate and redox specificity of CbiL from Salmonella typhimurium. Biochemistry 37:14917–14927. [PubMed][CrossRef]
124. Thorgersen MP, Downs DM. 2007. Cobalt targets multiple metabolic processes in Salmonella enterica. J Bacteriol 189:7774–7781. [PubMed][CrossRef]
125. Ranquet C, Ollagnier-de-Choudens S, Loiseau L, Barras F, Fontecave M. 2007. Cobalt stress in Escherichia coli. J Biol Chem 282:30442–30451. [PubMed][CrossRef]
126. Leonard SS, Gannett PM, Rojanasakul Y, Schwegler-Berry D, Castranova V, Vallyathan V, Shi XL. 1998. Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem 70:233–244. [PubMed][CrossRef]
127. Davidson T, Chen HB, Garrick MD, D’Angelo G, Costa M. 2005. Soluble nickel interferes with cellular iron homeostasis. Mol Cell Biochem 279:157–162. [PubMed][CrossRef]
128. Liu J, Reid RJ, Smith FA. 2000. The mechanism of cobalt toxicity in mung beans. Physiol Plant 110:104–110. [CrossRef]
129. Rowe JL, Starnes GL, Chivers PT. 2005. Complex transcriptional control links NikABCDE-dependent nickel transport with hydrogenase expression in Escherichia coli. J Bacteriol 187:6317–6323. [PubMed][CrossRef]
130. De Pina K, Desjardin V, Mandrand-Berthelot MA, Giordano G, Wu LF. 1999. Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. J Bacteriol 181:670–674.[PubMed]
131. Chivers PT, Sauer RT. 1999. NikR is a ribbon-helix-helix DNA-binding protein. Protein Sci 8:2494–2500. [PubMed][CrossRef]
132. Schreiter ER, Sintchak MD, Guo YY, Chivers PT, Sauer RT, Drennan CL. 2003. Crystal structure of the nickel-responsive transcription factor NikR. Nat Struct Biol 10:794–799. [PubMed][CrossRef]
133. Helmann JD. 2002. Sensing nickel: NikRs with two pockets. Chem Biol 9:1055–1057. [PubMed][CrossRef]
134. Leitch S, Bradley MJ, Rowe JL, Chivers PT, Maroney MJ. 2007. Nickel-specific response in the transcriptional regulator, Escherichia coli NikR. J Am Chem Soc 129:5085–5095. [PubMed][CrossRef]
135. Bloom SL, Zamble DB. 2004. Metal-selective DNA-binding response of Escherichia coli NikR. Biochemistry 43:10029–10038. [PubMed][CrossRef]
136. Carrington PE, Chivers PT, Al-Mjeni F, Sauer RT, Maroney MJ. 2003. Nickel coordination is regulated by the DNA-bound state of NikR. Nat Struct Biol 10:126–130. [PubMed][CrossRef]
137. Chivers PT, Sauer RT. 2002. NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. Chem Biol 9:1141–1148. [PubMed][CrossRef]
138. Wang SC, Dias AV, Bloom SL, Zamble DB. 2004. Selectivity of metal binding and metal-induced stability of Escherichia coli NikR. Biochemistry 43:10018–10028. [PubMed][CrossRef]
139. Koch D, Nies DH, Grass G. 2007. The RcnRA (YohLM) system of Escherichia coli: a connection between nickel, cobalt and iron homeostasis. Biometals 20:759–771. [PubMed][CrossRef]
140. Iwig JS, Rowe JL, Chivers PT. 2006. Nickel homeostasis in Escherichia coli: the rcnR-rcnA efflux pathway and its linkage to NikR function. Mol Microbiol 62:252–262. [PubMed][CrossRef]
141. Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ. 2002. Manganese: elemental defence for a life with oxygen? Trends Microbiol. 10:496–501. [PubMed][CrossRef]
142. Archibald FS, Duong M. 1984. Manganese acquisition by Lactobacillus plantarum. J Bacteriol 158:1–8.[PubMed]
143. Davies BW, Walker GC. 2007. Disruption of sitA compromises Sinorhizobium meliloti for manganese uptake required for protection against oxidative stress. J Bacteriol 189:2101–2109. [PubMed][CrossRef]
144. Tseng H-J, Srikhanta Y, McEwan AG, Jennings MP. 2001. Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity. Mol Microbiol 40:1175–1186. [PubMed][CrossRef]
145. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D. 2004. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028. [PubMed][CrossRef]
146. Al-Maghrebi M, Fridovich I, Benov L. 2002. Manganese supplementation relieves the phenotypic deficits seen in superoxide-dismutase-null Escherichia coli. Arch Biochem Biophys 402:104–109. [PubMed][CrossRef]
147. Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao YS, Jiang LW, Ryan PR, Richardson AE. 2007. A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51:198–210. [PubMed][CrossRef]
148. Kehres DG, Zaharik ML, Finlay BB, Maguire ME. 2000. The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36:1085–1100. [PubMed][CrossRef]
149. Silver S, Johnsein P, King K. 1970. Manganese active transport in Escherichia coli. J Bacteriol 104:1299–1306.[PubMed]
150. Silver S, Kralovic ML. 1969. Manganese acculation by Escherichia coli: evidence for a specific transport system. Biochem Biophys Res Commun 34:640–645. [PubMed][CrossRef]
151. Silver S, Clark D. 1971. Magnesium transport in Escherichia coli—interference by manganese with magnesium metabolism. J Biol Chem 246:569–576.[PubMed]
152. Silver S, Whitney E, Johnsein P, Clark. 1972. Manganese-resistantmutants of Escherichia coli: physiological and genetic studies. J Bacteriol 110:186–195.[PubMed]
153. Dashper SG, Butler CA, Lissel JP, Paolini RA, Hoffmann B, Veith PD, O’Brien-Simpson NM, Snelgrove SL, Tsiros JT, Reynolds EC. 2005. A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. J Biol Chem 280:28095–28102. [PubMed][CrossRef]
154. Sabri M, Caza M, Proulx J, Lymberopoulos MH, Bree A, Moulin-Schouleur M, Curtiss R III, Dozois CM. 2008. Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic Escherichia coli O78 strain chi7122. Infect Immun 76:601–611. [PubMed][CrossRef]
155. Groot MNN, Klaassens E, de Vos WM, Delcour J, Hols P, Kleerebezem M. 2005. Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis. Microbiology 151:1229–1238. [PubMed][CrossRef]
156. Kehres DG, Janakiraman A, Slauch JM, Maguire ME. 2002. SitABCD is the alkaline Mn2+ transporter of Salmonella enterica serovar Typhimurium. J Bacteriol 184:3159–3166. [PubMed][CrossRef]
157. Sabri M, Leveille S, Dozois CM. 2006. A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology 152:745–758. [PubMed][CrossRef]
158. Papp-Wallace KM, Moomaw AS, Maguire ME. 2005. Manganese: uptake, biological function, and role in virulence, p 235–257. In Nies DH and Silver S (ed), Molecular Microbiology of Heavy Metals, vol. 6. Springer-Verlag, Berlin, Germany.
159. Patzer SI, Hantke K. 2001. Dual repression by Fe2+-Fur and Mn2+-MntR of the mntH gene, encoding an NRAMP-like Mn2+ transporter in Escherichia coli. J Bacteriol 183:4806–4813. [PubMed][CrossRef]
160. Kehres DG, Janakiraman A, Slauch JM, Maguire ME. 2002. Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H2O2, Fe2+, and Mn2+. J Bacteriol 184:3151–3158. [PubMed][CrossRef]
161. Storz G, Tartaglia LA, Ames BN. 1990. The OxyR regulon. Antonie van Leeuwenhoek 58:157–161. [PubMed][CrossRef]
162. Ikeda JS, Janakiraman A, Kehres DG, Maguire ME, Slauch JM. 2005. Transcriptional regulation of sitABCD of Salmonella enterica serovar Typhimurium by MntR and Fur. J Bacteriol 187:912–922. [PubMed][CrossRef]
163. Wilce MCJ, Bond CS, Dixon NE, Freeman HC, Guss JM, Lilley PE, Wilce JA. 1998. Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli. Proc Natl Acad Sci USA 95:3472–3477. [PubMed][CrossRef]
164. Keele BB, McCord JM, Fridovic I. 1970. Superoxide dismutase from Escherichia coli B: a new manganese-containing enzyme. J Biol Chem 245:6176–6181.[PubMed]
165. Carvajal N, Lopez V, Salas M, Uribe E, Herrera P, Cerpa J. 1999. Manganese is essential for catalytic activity of Escherichia coli agmatinase. Biochem Biophys Res Commun 258:808–811. [PubMed][CrossRef]
166. Fraser HI, Kvaratskhelia M, White MF. 1999. The two analogous phosphoglycerate mutases of Escherichia coli. FEBS Lett 455:344–348. [PubMed][CrossRef]
167. Makarchikov AF, Brans A, Bettendorff L. 2007. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate BMC Biochem 8:17. [PubMed][CrossRef]
168. Wallon G, Yamamoto K, Kirino H, Yamagishi A, Lovett ST, Petsko GA, Oshima T. 1997. Purification, catalytic properties and thermostability of 3-isopropylmalate dehydrogenase from Escherichia coli. Biochim Biophys Acta 1337:105–112.[PubMed]
169. Frick DN, Weber DJ, Gillespie JR, Bessman MJ, Mildvan AS. 1994. Dual divalent cation requirement of the MutT dGTPase. Kinetic and magnetic resonance studies of the metal and substrate complexes. J Biol Chem 269:1794–1803.[PubMed]
170. Adler SP, Purich D, Stadtman ER. 1975. Cascade control of Escherichia coli glutamine synthetase. Properties of the PII regulatory protein and the uridylyltransferase-uridylyl-removing enzyme. J Biol Chem 250:6264–6272.[PubMed]
171. Macchia V, Varrone S, Weissbach H, Miller DL. 1975. Guanylate cyclase in Escherichia coli. Purification and properties. J Biol Chem 250:6214–6217.[PubMed]
172. Shapiro BM. 1969. The glutamine synthetase deadenylylating enzyme system from Escherichia coli. Resolution into two components, specific nucleotide stimulation, and cofactor requirements. Biochemistry 8:659–670. [PubMed][CrossRef]
173. Dahlquist FW, PDL. 1975. Regulation of Escherichia coli glutamine synthetase. Evidence for the action of some feedback modifiers at the active site of the unadenylylated enzyme. Biochemistry 6:1980–1989. [PubMed][CrossRef]
174. Milne JA, Cook RA. 1979. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide specific malic enzyme depending on whether Mg2+ or Mn2+ serves as divalent cation. Biochemistry 18:3604–3610. [PubMed][CrossRef]
175. Brown DA, Cook RA. 1981. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation. Biochemistry 20:2503–2512. [PubMed][CrossRef]
176. Spahr PF. 1964. Purification and properties of ribonuclease II from Escherichia coli. J Biol Chem 239:3716–3726.[PubMed]
177. Goedken ER, Marqusee S. 2001. Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site. J Biol Chem 276:7266–7271. [PubMed][CrossRef]
178. Ohtani N, Haruki M, Muroya A, Morikawa M, Kanaya S. 2000. Characterization of ribonuclease HII from Escherichia coli overproduced in a soluble form. J Biochem (Tokyo) 127:895–899.[PubMed]
179. Donahue JL, Bownas JL, Niehaus WG, Larson TJ. 2000. Purification and characterization of glpX-encoded fructose 1,6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli. J Bacteriol 182:5624–5627. [PubMed][CrossRef]
180. Genschik P, Drabikowski K, Filipowicz W. 1998. Characterization of the Escherichia coli RNA 3′-terminal phosphate cyclase and its σ54-regulated operon. J Biol Chem 273:25516–25526. [PubMed][CrossRef]
181. Mullen GP, Serpersu EH, Ferrin LJ, Loeb LA, Mildvan AS. 1990. Metal binding to DNA polymerase I, its large fragment, and two 3′,5′-exonuclease mutants of the large fragment. J Biol Chem 265:14327–14634.[PubMed]
182. Niyogi SK, Datta AK. 1975. A novel oligoribonuclease of Escherichia coli. I. Isolation and properties. J Biol Chem 250:7307–7312.[PubMed]
183. Boulter JR, Gielow WO. 1973. Properties of D-arabinose isomerase purified from two strains of Escherichia coli. J Bacteriol 113:687–696.[PubMed]
184. Heinemeyer EA, Geis M, Richter D. 1978. Degradation of guanosine 3′-diphosphate 5′-diphosphate in vitro by the spoT gene product of Escherichia coli. Eur J Biochem 89:125–131. [PubMed][CrossRef]
185. Andorn N, Aronovitch J. 1982. Purification and properties of histidinol dehydrogenase from Escherichia coli B. J Gen Microbiol 128:579–584.[PubMed]
186. Burstein C, Kepes A. 1971. The alpha-galactosidase from Escherichia coli K12. Biochim Biophys Acta 230:52–63.[PubMed]
187. Epting KL, Vieille C, Zeikus JG, Kelly RM. 2005. Influence of divalent cations on the structural thermostability and thermal inactivation kinetics of class II xylose isomerases. FEBS J 272:1454–1464. [PubMed][CrossRef]
188. Takahashi S, Kuzuyama T, Watanabe H, Seto H. 1998. A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884. [PubMed][CrossRef]
189. Kuznetsova E, Proudfoot M, Gonzalez CF, Brown G, Omelchenko MV, Borozan I, Carmel L, Wolf YI, Mori H, Savchenko AV, Arrowsmith CH, Koonin EV, Edwards AM, Yakunin AF. 2006. Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. J Biol Chem 281:36149–36161. [PubMed][CrossRef]
190. Deutscher MP, Marlor CW. 1985. Purification and characterization of Escherichia coli RNase T. J Biol Chem 260:7067–7071.[PubMed]
191. Cynkin MA, Ashwell G. 1960. Uronic acid metabolism in bacteria. IV. Purification and properties of 2-keto-3-deoxy-D-gluconokinase in Escherichia coli. J Biol Chem 235:1576–1579.[PubMed]
192. Schmidt AJ, Ryjenkov DA, Gomelsky M. 2005. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187:4774–4781. [PubMed][CrossRef]
193. Hammer-Jespersen K, Munch-Petersen A. 1970. Phosphodeoxyribomutase from Escherichia coli. Purification and some properties. Eur J Biochem 17:397–407. [PubMed][CrossRef]
194. Zheng Y, Roberts RJ, Kasif S, Guan C. 2005. Characterization of two new aminopeptidases in Escherichia coli. J Bacteriol 187:3671–3677. [PubMed][CrossRef]
195. Linster CL, Van Schaftingen E. 2004. A spectrophotometric assay of D-glucuronate based on Escherichia coli uronate isomerase and mannonate dehydrogenase. Protein Expr Purif 37:352–360. [PubMed][CrossRef]
196. Jackson BJ, Kennedy EP. 1983. The biosynthesis of membrane-derived oligosaccharides. A membrane-bound phosphoglycerol transferase. J Biol Chem 258:2394–2398.[PubMed]
197. Goldberg DE, Rumley MK, Kennedy EP. 1981. Biosynthesis of membrane-derived oligosaccharides: a periplasmic phosphoglyceroltransferase. Proc Natl Acad Sci USA 78:5513–5517. [PubMed][CrossRef]
198. Richard SB, Ferrer J-L, Bowman ME, Lillo AM, Tetzlaff CN, Cane DE, Noel JP. 2002. Structure and mechanism of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase: an enzyme in the mevalonate-independent isoprenoid biosynthetic pathway. J Biol Chem 277:8667–8672. [PubMed][CrossRef]
199. D’Souza VM, Holz RC. 1999. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme. Biochemistry 38:11079–11085. [PubMed][CrossRef]
200. Matsui H, Shimaoka M, Kawasaki H, Takenaka Y, Kurahashi O. 2001. Adenine deaminase activity of the yicP gene product of Escherichia coli. Biosci Biotechnol Biochem 65:1112–1118. [PubMed][CrossRef]
201. Vagelos PR, Larrabee AR. 1967. Acyl carrier protein. IX. Acyl carrier protein hydrolase. J Biol Chem 242:1776–1781.[PubMed]
202. Frick DN, Bessman MJ. 1995. Cloning, purification, and properties of a novel NADH pyrophosphatase. Evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes. J Biol Chem 270:1529–1534. [PubMed][CrossRef]
203. Zepeck F, Gräwert T, Kaiser J, Schramek N, Eisenreich W, Bacher A, Rohdich F. 2005. Biosynthesis of isoprenoids. Purification and properties of IspG protein from Escherichia coli. J Org Chem 70:9168–9174. [PubMed][CrossRef]
204. Sprenger GA, Schörken U, Sprenger G, Sahm H. 1995. Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains. Eur J Biochem 230:525–532. [PubMed][CrossRef]
205. Leppik RA, Young IG, Gibson F. 1976. Membrane-associated reactions in ubiquinone biosynthesis in Escherichia coli. 3-Octaprenyl-4-hydroxybenzoate carboxy-lyase. Biochim Biophys Acta 436:800–810. [PubMed][CrossRef]
206. Kim GJ, Lee DE, Kim HS. 2000. Functional expression and characterization of the two cyclic amidohydrolase enzymes, allantoinase and a novel phenylhydantoinase, from Escherichia coli. J Bacteriol 182:7021–7028. [PubMed][CrossRef]
207. Bhasin M, Billinsky JL, Palmer DR. 2003. Steady-state kinetics and molecular evolution of Escherichia coli MenD [(1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase], an anomalous thiamin diphosphate-dependent decarboxylase-carboligase. Biochemistry 42:13496–13504. [PubMed][CrossRef]
208. Takagi Y, Sawada H. 1964. The metabolism of L-rhamnose in Escherichia coli. I. L-Rhamnose isomerase. Biochim Biophys Acta 92:10–17.[PubMed]
209. Beyer WF, Fridovich I. 1991. Invivo competition between iron and manganese for occupancy of the active-site region of the manganese-superoxide dismutase of Escherichia coli. J Biol Chem 266:303–308.[PubMed]
210. Hopkin KA, Papazian MA, Steinman HM. 1992. Functional differences between manganese and iron superoxide dismutases in Escherichia coli K12. J Biol Chem 267:24253–24258.[PubMed]
211. Touati D. 1988. Transcriptional and posttranscriptional regulation of manganese superoxide-dismutase biosynthesis in Escherichia coli, studied with operon and protein fusions. J Bacteriol 170:2511–2520.[PubMed]
212. Neilands JB, Peterson T, Leong SA. 1980. High affinity iron transport in microorganisms. ACS Symp Ser 140:264–278.[PubMed]
213. Andrews SC, Robinson AK, Rodriguez-Quinones F. 2003. Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237. [PubMed][CrossRef]
214. Moreland JL, Gramada A, Buzko OV, Zhang Q, Bourne PE. 2005. The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics 6:21. [PubMed][CrossRef]
215. O’Brien IG, Cox GB, Gibson F. 1971. Enterochelin hydrolysis and iron metabolism in Escherichia coli. Biochim Biophys Acta 237:537–549.[PubMed]
216. Pollack JR, Neilands JB. 1970. Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem Biophys Res Commun 38:989–992. [PubMed][CrossRef]
217. Carrano CJ, Raymond KN. 1979. Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. J Am Chem Soc 101:5401–5404. [CrossRef]
218. Braun V. 1995. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 16:295–307. [PubMed][CrossRef]
219. Higgs PI, Myers PS, Postle K. 1998. Interactions in the TonB-dependent energy transduction complex: ExbB and ExbD form homomultimers. J Bacteriol 180:6031–6038.[PubMed]
220. Braun V, Hantke K. 2001. Mechanisms of bacterial iron transport., p 289–311. In Winkelmann G (ed), Microbial Transport Systems. Wiley-VCH, Weinheim, Germany.
221. Klebba PE. 2003. Three paradoxes of ferric enterobactin uptake. Front Biosci 8:1422–1436. [PubMed][CrossRef]
222. Torres AG, Payne SM. 1997. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 23:825–833. [PubMed][CrossRef]
223. Klebba PE, McIntosh MA, Neilands JB. 1982. Kinetics of biosynthesis of iron-regulated membrane proteins in Escherichia coli. J Bacteriol 149:880–888.[PubMed]
224. Wagegg W, Braun V. 1981. Ferric citrate transport in Escherichia coli requires outer membrane receptor protein FecA. J Bacteriol 145:156–163.[PubMed]
225. Wookey P, Rosenberg H. 1978. Involvement of inner and outer membrane components in the transport of iron and in colicin B action in Escherichia coli. J Bacteriol 133:661–666.[PubMed]
226. Coulton JW, Mason P, Cameron DR, Carmel G, Jean R, Rode HN. 1986. Protein fusions of beta-galactosidase to the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol 165:181–192.[PubMed]
227. Hantke K. 1983. Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12. Mol Gen Genet 191:301–306. [PubMed][CrossRef]
228. Ouyang Z, Isaacson R. 2006. Identification and characterization of a novel ABC iron transport system, fit, in Escherichia coli. Infect Immun 74:6949–6956. [PubMed][CrossRef]
229. Kingsley RA, Reissbrodt R, Rabsch W, Ketley JM, Tsolis RM, Everest P, Dougan G, Baumler AJ, Roberts M, Williams PH. 1999. Ferrioxamine-mediated iron(III) utilization by Salmonella enterica. Appl Environ Microbiol 65:1610–1618.[PubMed]
230. Schubert S, Rakin A, Karch H, Carniel E, Heesemann J. 1998. Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 66:480–485.[PubMed]
231. Leveille S, Caza M, Johnson JR, Clabots C, Sabri M, Dozois CM. 2006. Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor. Infect Immun 74:3427–3436. [PubMed][CrossRef]
232. Russo TA, Carlino UB, Johnson JR. 2001. Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 69:6209–6216. [PubMed][CrossRef]
233. Sorsa LJ, Dufke S, Heesemann J, Schubert S. 2003. Characterization of an iroBCDEN gene cluster on a transmissible plasmid of uropathogenic Escherichia coli: evidence for horizontal transfer of a chromosomal virulence factor. Infect Immun 71:3285–3293. [PubMed][CrossRef]
234. de Lorenzo V, Bindereif A, Paw BH, Neilands JB. 1986. Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J Bacteriol 165:570–578.[PubMed]
235. Hagan EC, Mobley HL. 2007. Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect Immun 75:3941–3949. [PubMed][CrossRef]
236. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR, Raymond KN, Wanner BL, Strong RK, Walsh CT, Aderem A, Smith KD. 2006. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 103:16502–16507. [PubMed][CrossRef]
237. Hantke K, Nicholson G, Rabsch W, Winkelmann G. 2003. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci USA 100:3677–3682. [PubMed][CrossRef]
238. Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K. 2006. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Int J Med Microbiol 296:513–520. [PubMed][CrossRef]
239. Heesemann J, Hantke K, Vocke T, Saken E, Rakin A, Stojiljkovic I, Berner R. 1993. Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer membrane polypeptide of 65,000 Da and pesticin sensitivity. Mol Microbiol 8:397–408. [PubMed][CrossRef]
240. Gehring AM, Mori I, Perry RD, Walsh CT. 1998. The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis. Biochemistry 37:11637–11650. [PubMed][CrossRef]
241. Brickman TJ, McIntosh MA. 1992. Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J Biol Chem 267:12350–12355.[PubMed]
242. Fecker L, Braun V. 1983. Cloning and expression of the fhu genes involved in iron(III)-hydroxamate uptake by Escherichia coli. J Bacteriol 156:1301–1314.[PubMed]
243. Staudenmaier H, Van Hove B, Yaraghi Z, Braun V. 1989. Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in Escherichia coli. J Bacteriol 171:2626–2633.[PubMed]
244. Letoffe S, Delepelaire P, Wandersman C. 2008. Functional differences between heme permeases: Serratia marcescens HemTUV permease exhibits a narrower substrate specificity (restricted to heme) than the Escherichia coli DppABCDF peptide-heme permease. J Bacteriol 190:1866–1870. [PubMed][CrossRef]
245. Fetherston JD, Bertolino VJ, Perry RD. 1999. YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol 32:289–299. [PubMed][CrossRef]
246. Kammler M, Schön C, Hantke K. 1993. Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212–6219.[PubMed]
247. Makui H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MF. 2000. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 35:1065–1078. [PubMed][CrossRef]
248. Bleuel C, Grosse C, Taudte N, Scherer J, Wesenberg D, Krauss GJ, Nies DH, Grass G. 2005. TolC is involved in enterobactin export across the outer membrane of Escherichia coli. J Bacteriol 187:6701–6707. [PubMed][CrossRef]
249. Grosse C, Scherer J, Koch D, Otto M, Taudte N, Grass G. 2006. A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. Mol Microbiol 62:120–131. [PubMed][CrossRef]
250. Skyberg JA, Johnson TJ, Johnson JR, Clabots C, Logue CM, Nolan LK. 2006. Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney Infect Immun 74:6287–6292. [PubMed][CrossRef]
251. Furrer JL, Sanders DN, Hook-Barnard IG, McIntosh MA. 2002. Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 44:1225–1234. [PubMed][CrossRef]
252. Crouch ML, Castor M, Karlinsey JE, Kalhorn T, Fang FC. 2008. Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol Microbiol 67:971–983. [PubMed][CrossRef]
253. Zhu M, Valdebenito M, Winkelmann G, Hantke K. 2005. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151:2363–2372. [PubMed][CrossRef]
254. Marlovits TC, Haase W, Herrmann C, Aller SG, Unger VM. 2002. The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria. Proc Natl Acad Sci USA 99:16243–16248. [PubMed][CrossRef]
255. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC. 2006. Feo–transport of ferrous iron into bacteria. Biometals 19:143–157. [PubMed][CrossRef]
256. Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC. 2007. EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7 Mol Microbiol 65:857–875. [PubMed][CrossRef]
257. Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A. 1996. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271:1552–1557. [PubMed][CrossRef]
258. Bagg A, Neilands JB. 1987. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471–5477. [PubMed][CrossRef]
259. Masse E, Gottesman S. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625. [PubMed][CrossRef]
260. Layer G, Ollagnier-de Choudens S, Sanakis Y, Fontecave M. 2006. Iron-sulfur cluster biosynthesis: characterization of Escherichia coli CyaY as an iron donor for the assembly of [2Fe-2S] clusters in the scaffold IscU. J Biol Chem 281:16256–16263. [PubMed][CrossRef]
261. Gralnick JA, Downs DM. 2003. The YggX protein of Salmonella enterica is involved in Fe(II) trafficking and minimizes the DNA damage caused by hydroxyl radicals: residue CYS-7 is essential for YggX function. J Biol Chem 278:20708–20715. [PubMed][CrossRef]
262. Ayala-Castro C, Saini A, Outten FW. 2008. Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 72:110–125. [PubMed][CrossRef]
263. Grünberg K, Wawer C, Tebo BM, Schüler D. 2001. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582. [PubMed][CrossRef]
264. Briggs HL, Pul N, Seshadri R, Wilson MJ, Tersteeg C, Russell-Lodrigue KE, Andoh M, Baumler AJ, Samuel JE. 2008. A limited role for iron regulation in Coxiella burnetii pathogenesis. Infect Immun 5:2189–2201. [PubMed][CrossRef]
265. Xu Y, Feng L, Jeffrey PD, Shi YG, Morel FMM. 2008. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61. [PubMed][CrossRef]
266. Park H, Song B, Morel FMM. 2007. Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environ Microbiol 9:403–413. [PubMed][CrossRef]
267. Laddage RA, Silver S. 1985. Cadmium uptake in Escherichia coli K-12. J Bacteriol 162:1100–1105.[PubMed]
268. Debut AJ, Dumay QC, Barabote RD, Saier MHJ. 2006. The iron/lead transporter superfamily of Fe3+/Pb2+ uptake systems. J Mol Microbiol Biotechnol 11:1–9. [PubMed][CrossRef]
269. Borremans B, Hobman JL, Provoost A, Brown NL, Van der Lelie D. 2001. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658. [PubMed][CrossRef]
270. Inbar O, Ron EZ. 1993. Induction of cadmium tolerance in Escherichia coli K-12. FEMS Microbiol Lett 113:197–200. [PubMed][CrossRef]
271. Mitra RS, Gray RH, Chin B, Bernstein IA. 1975. Molecular mechanisms of accommodation in Escherichia coli to toxic levels of Cd2+. J Bacteriol 121:1180–1188.[PubMed]
272. Sharma R, Rensing C, Rosen BP, Mitra B. 2000. The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J Biol Chem 275:3873–3878. [PubMed][CrossRef]
273. Noll M, Lutsenko S. 2000. Expression of ZntA, a zinc-transporting P-1-type ATPase, is specifically regulated by zinc and cadmium. IUBMB Life 49:297–302. [PubMed][CrossRef]
274. Stojnev T, Harichova J, Ferianc P, Nystrom T. 2007. Function of a novel cadmium-induced YodA protein in Escherichia coli. Curr Microbiol 55:99–104. [PubMed][CrossRef]
275. Khazaeli MB, Mitra RS. 1981. Cadmium-binding component in Escherichia coli during accommodation to low levels of this ion. Appl Environ Microbiol 41:46–50.[PubMed]
276. Kumar M, Upreti RK. 2000. Impact of lead stress and adaptation in Escherichia coli. Ecotoxicol Environ Saf 47:246–252. [PubMed][CrossRef]
277. Peng L, Ruan LF, Xiao HY, Xi L, Zhang CC. 2007. Study on the toxic effect of lead(II) ion on Escherichia coli. Biol Trace Elem Res 115:195–202. [PubMed][CrossRef]
278. Goyer RA. 1995. Nutrition and metal toxicity. Am J Clin Nutr 61:646–650.[PubMed]
279. Leonhartsberger S, Huber A, Lottspeich F, Bock A. 2001. The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J Mol Biol 307:93–105. [PubMed][CrossRef]
280. Mitra RS, Bernstein IA. 1978. Single-strand breakage in DNA of Escherichia coli exposed to Cd2+. J Bacteriol 133:75–80.[PubMed]
281. Porter DW, Yakushiji H, Nakabeppu Y, Sekiguchi M, Fivash MJ, Kasprzak KS. 1997. Sensitivity of Escherichia coli (MutT) and human (MTH1) 8-oxo-dGTPases to in vitro inhibition by the carcinogenic metals, nickel(II), copper(II), cobalt(II) and cadmium(II). Carcinogenesis 18:1785–1791. [PubMed][CrossRef]
282. Takahashi K, Imaeda T, Kawazoe Y. 1991. Inhibitory effect of cadmium and mercury ions on induction of the adaptive response in Escherichia coli. Mutat Res 254:45–53. [PubMed][CrossRef]
283. Larossa RA, Smulski DR, Vandyk TK. 1995. Interaction of lead nitrate and cadmium chloride with Escherichia coli K-12 and Salmonella typhimurium global regulatory mutants. J Ind Microbiol 14:252–258. [PubMed][CrossRef]
284. Rollin-Genetet F, Berthomieu C, Davin AH, Quemeneur E. 2004. Escherichia coli thioredoxin inhibition by cadmium: two mutually exclusive binding sites involving Cys32 and Asp26. Eur J Biochem 271:1299–1309. [PubMed][CrossRef]
285. Helbig K, Bleuel C, Krauss GJ, Nies DH. 2008. Glutathione and transition metal homeostasis in Escherichia coli. J Bacteriol 190:5431–5438. [PubMed][CrossRef]
286. Helbig K, Grosse C, Nies DH. 2008. Cadmium toxicity in glutathione mutants of Escherichia coli. J Bacteriol 190:5439–5454. [PubMed][CrossRef]
287. Pacheco CC, Passos JF, Castro AR, Moradas-Ferreira P, De Marco P. 2008. Role of respiration and glutathione in cadmium-induced oxidative stress in Escherichia coli K-12. Arch Microbiol 189:271–278. [PubMed][CrossRef]
288. Rensing C, Mitra B, Rosen BP. 1997. Insertional inactivation of dsbA produces sensitivity to cadmium and zinc in Escherichia coli. J Bacteriol 179:2769–2771.[PubMed]
289. Stafford SJ, Humphreys DP, Lund PA. 1999. Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg2+ and Cd2+. FEMS Microbiol Lett 174:179–184. [PubMed][CrossRef]
290. Zhang X-S, García-Contreras R, Wood TK. 2007. YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol 189:3051–3062. [PubMed][CrossRef]
291. Perez JM, Arenas FA, Pradenas GA, Sandoval JM, Vasquez CC. 2008. Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem 283:7346–7353. [PubMed][CrossRef]
292. Wang AY, Crowley DE. 2005. Global gene expression responses to cadmium toxicity in Escherichia coli. J Bacteriol 187:3259–3266. [PubMed][CrossRef]
293. Franke S. 2007. Microbiology of the toxic noble metal silver, p 343–355. In Nies DH and Silver S (ed), Molecular Microbiology of Heavy Metals, vol. 6. Springer-Verlag, Berlin, Germany.
294. Yudkins J. 1937. The effect of silver ions on some enzymes of Bacterium coli. Enzymologia 2:161–170.
295. Holt KB, Bard AJ. 2005. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag. Biochemistry 44:13214–13223. [PubMed][CrossRef]
296. Bragg PD, Rainnie DJ. 1974. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20:883–889.[PubMed]
297. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668. [PubMed][CrossRef]
298. Yamanaka M, Hara K, Kudo J. 2005. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593. [PubMed][CrossRef]
299. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. 2008. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178. [PubMed][CrossRef]
300. Gupta A, Maynes M, Silver S. 1998. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045.[PubMed]
301. Li XZ, Nikaido H, Williams KE. 1997. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132.[PubMed]
302. Stoyanov JV, Magnani D, Solioz M. 2003. Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett 546:391–394. [PubMed][CrossRef]
303. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP. 2000. CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97:652–656. [PubMed][CrossRef]
304. Franke S, Grass G, Nies DH. 2001. The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972.[PubMed]
305. Franke S, Grass G, Rensing C, Nies DH. 2003. Molecular analysis of the copper-transporting CusCFBA efflux system from Escherichia coli. J Bacteriol 185:3804–3812. [PubMed][CrossRef]
306. Gupta A, Phung LT, Taylor DE, Silver S. 2001. Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147:3393–3402.[PubMed]
307. Gupta A, Matsui K, Lo JF, Silver S. 1999. Molecular basis for resistance to silver in Salmonella. Nat Med 5:183–188. [PubMed][CrossRef]
308. Bagai I, Rensing C, Blackburn NJ, McEvoy MM. 2008. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry 47:11408–11414. [PubMed][CrossRef]
309. Checa SK, Espariz M, Audero ME, Botta PE, Spinelli SV, Soncini FC. 2007. Bacterial sensing of and resistance to gold salts. Mol Microbiol 63:1307–1318. [PubMed][CrossRef]
310. Pontel LB, Audero ME, Espariz M, Checa SK, Soncini FC. 2007. GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol Microbiol 66:814–825. [PubMed][CrossRef]
311. Stoyanov JV, Brown NL. 2003. The Escherichia coli copper-responsive copA promoter is activated by gold. J Biol Chem 278:1407–1410. [PubMed][CrossRef]
312. Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT. 1999. The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30. [PubMed][CrossRef]
313. Tseng T-T, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MHJ. 1999. The RND superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125.[PubMed]
314. Stoyanov JV, Hobman JL, Brown NL. 2001. CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–511. [PubMed][CrossRef]
315. Kim JS, Kim MH, Joe MH, Song SS, Lee IS, Choi SY. 2002. The sctR of Salmonella enterica serovar Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD. FEMS Microbiol Lett 210:99–103. [PubMed][CrossRef]
316. Espariz M, Checa SK, Audero ME, Pontel LB, Soncini FC. 2007. Dissecting the Salmonella response to copper. Microbiology 153:2989–2997. [PubMed][CrossRef]
317. Nishino K, Latifi T, Groisman EA. 2006. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 59:126–141. [PubMed][CrossRef]
318. Silver S, Hobman JL. 2007. Mercury microbiology: resistance systems, environmental aspects, methylation, and human health, p 357–370. In Nies DH and Silver S (ed), Molecular Microbiology of Heavy Metals, vol. 6. Springer-Verlag, Berlin, Germany.
319. Schue M, Glendinning KJ, Hobman JL, Brown NL. 2008. Evidence for direct interactions between the mercuric ion transporter (MerT) and mercuric reductase (MerA) from the Tn501mer operon. Biometals 21:107–116. [PubMed][CrossRef]
320. Nies DH, Silver S. 1989. Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain. J Bacteriol 171:4073–4075.[PubMed]
321. Ohtake H, Cervantes C, Silver S. 1987. Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856.[PubMed]
322. Nies DH, Koch S, Wachi S, Peitzsch N, Saier MHJ. 1998. CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate transporters. J Bacteriol 180:5799–5802.[PubMed]
323. Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A. 2006. Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381. [PubMed][CrossRef]
324. Juhnke S, Peitzsch N, Hübener N, Grosse C, Nies DH. 2002. New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25. [PubMed][CrossRef]
325. Davis CM, Vincent JB. 1997. Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 36:4382–4385. [PubMed][CrossRef]
326. Davis CM, Vincent JB. 1997. Isolation and characterization of a biologically active chromium oligopeptide from bovine liver. Arch Biochem Biophys 339:335–343. [PubMed][CrossRef]
327. Schwarz G, Hagedoorn P-L, Fischer K. 2007. Molybdate and tungstate: uptake, homeostasis, cofactors, and enzymes, p 421–451. In Nies DH and Silver S (ed), Molecular Microbiology of Heavy Metals, vol. 6. Springer-Verlag, Berlin, Germany.
328. Stankiewicz PJ, Gresser MJ. 1988. Inhibition of phosphatase and sulfatase by transition-state analogues. Biochemistry 27:206–212. [PubMed][CrossRef]
329. Bhattacharjee H, Rosen BP. 2007. Arsenic metabolism in prokaryotic and eukaryotic microbes, p 371–406. In Nies DH and Silver S (ed), Molecular Microbiology of Heavy Metals, vol. 6. Springer-Verlag, Berlin, Germany.
330. Silver S, Phung LT. 2005. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608. [PubMed][CrossRef]
331. Mukhopadhyay R, Rosen BP, Pung LT, Silver S. 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325. [PubMed][CrossRef]
332. Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C. 2006. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103:2075–2080. [PubMed][CrossRef]
333. Willsky GR, Malamy MH. 1980. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144:356–365.[PubMed]
334. Willsky GR, Malamy MH. 1980. Effect of arsenate on inorganic phosphate transport in Escherichia coli. J Bacteriol 144:366–374.[PubMed]
335. Meng YL, Liu ZJ, Rosen BP. 2004. As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279:18334–18341. [PubMed][CrossRef]
336. Hedges RW, Baumberg S. 1973. Resistance to arsenic compounds conferred by a plasmid transmissible between strains of Escherichia coli. J Bacteriol 115:459–460.[PubMed]
337. Mobley HLT, Rosen BP. 1982. Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proc Natl Acad Sci USA 79:6119–6122. [PubMed][CrossRef]
338. Chen CM, Misra TK, Silver S, Rosen BP. 1986. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem 261:15030–15038.[PubMed]
339. Rosen BP, Bhattacharjee H, Shi W. 1995. Mechanisms of metalloregulation of an anion-translocating ATPase. J Bioenerg Biomembr 27:85–91. [PubMed][CrossRef]
340. Dey S, Rosen BP. 1995. Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J Bacteriol 177:385–389. [PubMed][CrossRef]
341. Carlin A, Shi WP, Dey S, Rosen BP. 1995. The ars operon of Escherichia coli confers arsenical and antimonal resistance. J Bacteriol 177:981–986.[PubMed]
342. Diorio C, Cai J, Marmor J, Shinder R, DuBow MS. 1995. Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 177:2050–2056.[PubMed]
343. Saltikov CW, Olson BH. 2002. Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl Environ Microbiol 68:280–288. [PubMed][CrossRef]
344. Tisa LS, Rosen BP. 1990. Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J Biol Chem 265:190–194.[PubMed]
345. Jia HW, Kaur P. 2001. Role of the linker region of the anion-stimulated ATPase ArsA: effect of deletion and point mutations in the linker region. J Biol Chem 276:29582–29587. [PubMed][CrossRef]
346. Zhou TQ, Radaev S, Rosen BP, Gatti DL. 2000. Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J 19:4838–4845. [PubMed][CrossRef]
347. Jiang Y, Bhattacharjee H, Zhou T, Rosen BP, Ambudkar SV, Sauna ZE. 2005. Nonequivalence of the nucleotide binding domains of the ArsA ATPase. J Biol Chem 280:9921–9926. [PubMed][CrossRef]
348. Ruan X, Bhattacharjee H, Rosen BP. 2008 Characterization of the metalloactivation domain of an arsenite/antimonite resistance pump. Mol Microbiol 67:392–402.[PubMed]
349. Ruan X, Bhattacharjee H, Rosen BP. 2006. Cys-113 and Cys-422 form a high affinity metalloid binding site in the ArsA ATPase. J Biol Chem 281:9925–9934. [PubMed][CrossRef]
350. Kuroda M, Dey S, Sansders OI, Rosen BP. 1997. Alternative energy coupling of ArsB, the membrane subunit of the ArsA anion-translocating ATPase. J Biol Chem 272:326–331. [PubMed][CrossRef]
351. Oden KL, Gladysheva TB, Rosen BP. 1994. Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Mol Microbiol 12:301–306. [PubMed][CrossRef]
352. Gladysheva TB, Oden KL, Rosen BP. 1994. Properties of the arsenate reductase of plasmid R773. Biochemistry 33:7288–7293. [PubMed][CrossRef]
353. Shi J, Vlamis-Gardikas V, Aslund F, Holmgren A, Rosen BP. 1999. Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J Biol Chem 274:36039–36042. [PubMed][CrossRef]
354. Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, Rosen BP, Edwards BFP. 2001. Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure 9:1071–1081. [PubMed][CrossRef]
355. DeMel S, Shi J, Martin P, Rosen BP, Edwards BFP. 2004. Arginine 60 in the ArsC arsenate reductase of E. coli plasmid R773 determines the chemical nature of the bound As(III) product Protein Sci 13:2330–2340. [PubMed][CrossRef]
356. Owolabi JB, Rosen BP. 1990. Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J Bacteriol 172:2367–2371.[PubMed]
357. Wu J, Rosen BP. 1993. Metalloregulated expression of the ars operon. J Biol Chem 268:52–58.[PubMed]
358. Wu J, Rosen BP. 1991. The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 5:1331–1336. [PubMed][CrossRef]
359. Helmann JD, Soonsange S, Gabriel S. 2007. Metallalloregulators: arbiters of metal sufficiency, p 37–71. In Nies DH and Silver S (ed), Molecular Microbiology of Heavy Metals, vol. 6. Springer-Verlag, Berlin, Germany.
360. Xu C, Rosen BP. 1997. Dimerization is essential for DNA binding and repression by the ArsR metalloregulatory protein of Escherichia coli. J Biol Chem 272:15734–15738. [PubMed][CrossRef]
361. Shi W, Wu J, Rosen BP. 1994. Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269:19826–19829.[PubMed]
362. Shi W, Dong J, Scott RA, Ksenzenko MY, Rosen BP. 1996. The role of arsenic-thiol interactions in metalloregulation of the ars operon. J Biol Chem 271:9291–9297. [PubMed][CrossRef]
363. Wu J, Rosen BP. 1993. The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol Microbiol 8:615–623. [PubMed][CrossRef]
364. Chen YX, Rosen BP. 1997. Metalloregulatory properties of the ArsD repressor. J Biol Chem 272:14257–14262. [PubMed][CrossRef]
365. Li S, Chen YX, Rosen BP. 2001. Role of vicinal cysteine pairs in metalloid sensing by the ArsD As(III)-responsive repressor. Mol Microbiol 41:687–696. [PubMed][CrossRef]
366. Li S, Rosen BP, Borges-Walmsley MI, Walmsley AR. 2002. Evidence for cooperativity between the four binding sites of dimeric ArsD, an As(III)-responsive transcriptional regulator. J Biol Chem 277:25992–26002. [PubMed][CrossRef]
367. Lin Y-F, Walmsley AR, Rosen BP. 2006. An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci USA 103:15617–15622. [PubMed][CrossRef]
368. Lin YF, Yang JB, Rosen BP. 2007. ArsD residues Cys(12), Cys(13), and Cys(18) form an As(III)-binding site required for arsenic metallochaperone activity. J Biol Chem 282:16783–16791. [PubMed][CrossRef]
369. Lin YF, Yang JB, Rosen BP. 2007. ArsD: an As(III) metallochaperone for the ArsAB As(III)-translocating ATPase. J Bioenerg Biomembr 39:453–458. [PubMed][CrossRef]
ecosalplus.5.4.4.3.citations
ecosalplus/3/2
content/journal/ecosalplus/10.1128/ecosalplus.5.4.4.3
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.5.4.4.3
2009-10-01
2017-05-27

Abstract:

This chapter focuses on transition metals. All transition metal cations are toxic—those that are essential for and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the cation can be reduced to the volatile metallic form. Interference of nickel and cobalt with iron is prevented by the low abundance of these metals in the cytoplasm and their sequestration by metal chaperones, in the case of nickel, or by B and its derivatives, in the case of cobalt. The most dangerous metal, copper, catalyzes Fenton-like reactions, binds to thiol groups, and interferes with iron metabolism. solves this problem probably by preventing copper uptake, combined with rapid efflux if the metal happens to enter the cytoplasm.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The uptake of organic ferric iron chelates or ferric siderophores is accomplished by a two-step mechanism involving specific receptors of the outer membrane (OM) and cognate cytoplasmic membrane (CM) ABC transporters. Iron chelates are shuttled within the periplasm by specific binding proteins. Siderophores such as enterobactin, salmochelin, yersiniabactin, and aerobactin are biosynthesized by various and strains. These aposiderophores are secreted by cytoplasmic membrane permeases alone or in concert with outer membrane efflux duct proteins such as TolC. Elemental, nonchelate iron cations are taken up by cytoplasmic membrane permeases. Ferric iron uses ABC transporters similar to ferric siderophores, whereas ferrous iron is transported by members of different transport families, which may use GTP hydrolysis or the proton motive force to drive iron uptake. Under conditions of iron overload, cells may use efflux permeases for the rapid detoxification of potentially toxic ferrous iron. Protein structures were generated using the Protein Workshop software ( 214 ). PP, periplasm; CP, cytoplasm.

Citation: Nies D, Grass G. 2009. Transition Metal Homeostasis, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4.3
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Transport systems for transition metals except iron in

Citation: Nies D, Grass G. 2009. Transition Metal Homeostasis, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4.3
Generic image for table
Table 2

Currently known zinc enzymes or zinc-binding proteins in

Citation: Nies D, Grass G. 2009. Transition Metal Homeostasis, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4.3
Generic image for table
Table 3

Response of to 10 min of treatment with 100 μM Zn

Citation: Nies D, Grass G. 2009. Transition Metal Homeostasis, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4.3
Generic image for table
Table 4

Currently known manganese enzymes in

Citation: Nies D, Grass G. 2009. Transition Metal Homeostasis, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4.3
Generic image for table
Table 5

Outer membrane receptors for Fe(III) complexes and siderophores in and

Citation: Nies D, Grass G. 2009. Transition Metal Homeostasis, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4.3
Generic image for table
Table 6

Cytoplasmic membrane permeases of and involved in iron transport

Citation: Nies D, Grass G. 2009. Transition Metal Homeostasis, EcoSal Plus 2009; doi:10.1128/ecosalplus.5.4.4.3

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error