1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 6:

Evolution and Genomics

Evolution and Ecology of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Mollie D. Winfield1, and Eduardo A. Groisman2
  • Editor: David A. Rasko3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110; 2: Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110; 3: University of Maryland, School of Medicine, Baltimore, MD
  • Received 23 July 2003 Accepted 10 October 2003 Published 27 February 2004
  • Address correspondence to Eduardo A. Groisman groisman@borcim.wustl.edu
image of Evolution and Ecology of <span class="jp-italic">Salmonella</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    Evolution and Ecology of , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/1/6_4_6_module-1.gif /docserver/preview/fulltext/ecosalplus/1/1/6_4_6_module-2.gif
  • Abstract:

    Over the past 120 to 160 million years, the genus has evolved into a complex group of more than 2,300 genetically and phenotypically diverse serovars. Members of this genus are able to infect a wide diversity of vertebrate and invertebrate hosts; disease manifestations in humans range from gastroenteritis to typhoid fever. The evolution of the genus and the divergence and radiation of particular lineages within this group have resulted from selection acting on new genetic variation generated by events such as the gain, loss, and/or rearrangement of genetic material. These types of genetic events have contributed to the speciation of from its ancestral association with cold-blood animals to a pathogen of warm-blooded hosts. Moreover, adaptive radiation due to changes in gene content within subspecies I has impacted host specificity and aided in the selection of host-restricted, host-adapted, and non-host-adapted serovars. In addition to the genetic diversity important for the wide phenotypic heterogeneity within the genus, a subset of core -specific genes present in all species and serovars has been identified that may contribute to the conserved aspects of the lifestyle of this microorganism, including the ability to survive in nutrient-poor nonhost environments such as soil and water. Whole-genome comparisons of isolates differing in host range and virulence will continue to elucidate the genetic mechanisms that have contributed to the evolution and diverse ecology of the genus .

  • Citation: Winfield M, Groisman E. 2004. Evolution and Ecology of , EcoSal Plus 2004; doi:10.1128/ecosalplus.6.4.6

Key Concept Ranking

Type III Secretion System
0.42771253
Restriction Fragment Length Polymorphism
0.4230635
Mobile Genetic Elements
0.37241912
O Antigen Lipopolysaccharide
0.33910298
0.42771253

References

1. Lawrence JG, Ochman H. 1998. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95:9413–9417. [PubMed][CrossRef]
2. Ochman H, Wilson AC. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86. (Erratum, 26:377.) [CrossRef]
3. Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ III. 1989. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 27:313–320.[PubMed]
4. Beltran P, Musser JM, Helmuth R, Farmer JJ III, Frerichs WM, Wachsmuth IK, Ferris K, McWhorter AC, Wells JG, Cravioto A, Selander RK. 1988. Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proc Natl Acad Sci USA 85:7753–7757. [CrossRef]
5. Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesus J, Platt DJ, Olsen JE. 2000. Host adapted serotypes of Salmonella enterica. Epidemiol Infect 125:229–255. [CrossRef]
6. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856. [PubMed][CrossRef]
7. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Holroyd S, Jagels K, Krogh A, Larsen TS, Leather S, Moule S, O’Gaora P, Parry C, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852. [PubMed][CrossRef]
8. Chan K, Baker S, Kim CC, Detweiler CS, Dougan G, Falkow S. 2003. Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar Typhimurium DNA microarray. J Bacteriol 185:553–563. [CrossRef]
9. Porwollik S, Wong RM, McClelland M. 2002. Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc Natl Acad Sci USA 99:8956–8961. [CrossRef]
10. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou S-R, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HLT, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024. [PubMed][CrossRef]
11. Li J, Ochman H, Groisman EA, Boyd EF, Solomon F, Nelson K, Selander RK. 1995. Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica. Proc Natl Acad Sci USA 92:7252–7256. [PubMed][CrossRef]
12. Baumler AJ, Tsolis RM, Ficht TA, Adams LG. 1998. Evolution of host adaptation in Salmonella enterica. Infect Immun 66:4579–4587.[PubMed]
13. Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304. [PubMed][CrossRef]
14. Groisman EA, Blanc-Potard AB, Uchiya K. 1999. Pathogenicity islands and the evolution of Salmonella virulence, p 127–149. In Kaper JB, and Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. American Society for Microbiology, Washington, D.C.
15. Hansen-Wester I, Hensel M. 2002. Genome-based identification of chromosomal regions specific for Salmonella spp. Infect Immun 70:2351–2360. [PubMed][CrossRef]
16. Marcus SL, Brumell JH, Pfeifer CG, Finlay BB. 2000. Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2:145–156. [PubMed][CrossRef]
17. Baumler AJ, Heffron F, Reissbrodt R. 1997. Rapid detection of Salmonella enterica with primers specific for iroB. J Clin Microbiol 35:1224–1230.[PubMed]
18. Boyd EF, Li J, Ochman H, Selander RK. 1997. Comparative genetics of the inv-spa invasion gene complex of Salmonella enterica. J Bacteriol 179:1985–1991.[PubMed]
19. Galan JE. 1996. Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20:263–272. [PubMed][CrossRef]
20. Mills DM, Bajaj V, Lee CA. 1995. A 40 kilobase chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol 15:749–759. [PubMed][CrossRef]
21. Mirold S, Ehrbar K, Weissmuller A, Prager R, Tschape H, Russmann H, Hardt WD. 2001. Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J Bacteriol 183:2348–2358. [PubMed][CrossRef]
22. Blanc-Potard AB, Groisman EA. 1997. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16:5376–5385. [CrossRef]
23. Ochman H, Groisman EA. 1996. Distribution of pathogenicity islands in Salmonella spp. Infect Immun 64:5410–5412.[PubMed]
24. Le Minor L. 1984. Salmonella Lignieres 1900, 389AL, p 427–458. In Krieg NR, and Holt JG (ed), Bergey’s Manual of Systematic Bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore, Md.
25. Hickman-Brenner FW, Stubbs AD, Farmer JJ III. 1991. Phage typing of Salmonella enteritidis in the United States. J Clin Microbiol 29:2817–2823.[PubMed]
26. Boyd EF, Wang FS, Whittam TS, Selander RK. 1996. Molecular genetic relationships of the salmonellae. Appl Environ Microbiol 62:804–808.[PubMed]
27. Li J, Nelson K, McWhorter AC, Whittam TS, Selander RK. 1994. Recombinational basis of serovar diversity in Salmonella enterica. Proc Natl Acad Sci USA 91:2552–2556. [PubMed][CrossRef]
28. Selander RK, Beltran P, Smith NH, Barker RM, Crichton PB, Old DC, Musser JM, Whittam TS. 1990. Genetic population structure, clonal phylogeny, and pathogenicity of Salmonella paratyphi B. Infect Immun 58:1891–1901.[PubMed]
29. Lan R, Reeves PR. 1996. Gene transfer is a major factor in bacterial evolution. Mol Biol Evol 13:47–55.[PubMed]
30. Smith NH, Selander RK. 1990. Sequence invariance of the antigen-coding central region of the phase 1 flagellar filament gene (fliC) among strains of Salmonella typhimurium. J Bacteriol 172:603–609.[PubMed]
31. Fierer J, Guiney DG. 2001. Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J Clin Investig 107:775–780. [PubMed][CrossRef]
32. Wang L, Andrianopoulos K, Liu D, Popoff MY, Reeves PR. 2002. Extensive variation in the O-antigen gene cluster within one Salmonella enterica serogroup reveals an unexpected complex history. J Bacteriol 184:1669–1677. [PubMed][CrossRef]
33. Scherer CA, Miller SI. 2001. Molecular pathogenesis of salmonellae, p 265–333. In Groisman EA (ed), Principles of Bacterial Pathogenesis. Academic Press, San Diego, Calif.
34. Smith NH, Beltran P, Selander RK. 1990. Recombination of Salmonella phase 1 flagellin genes generates new serovars. J Bacteriol 172:2209–2216.[PubMed]
35. Selander RK, Beltran P, Smith NH, Helmuth R, Rubin FA, Kopecko DJ, Ferris K, Tall BD, Cravioto A, Musser JM. 1990. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun 58:2262–2275.[PubMed]
36. Zinder ND, Lederberg J. 1952. Genetic exchange in Salmonella. J Bacteriol 64:679–699. [PubMed][CrossRef]
37. Ochman H, Soncini FC, Solomon F, Groisman EA. 1996. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci USA 93:7800–7804. [PubMed][CrossRef]
38. Shea JE, Hensel M, Gleeson C, Holden DW. 1996. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA 93:2593–2597. [PubMed][CrossRef]
39. Hensel M, Shea JE, Baumler AJ, Gleeson C, Blattner FR, Holden DW. 1997. Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol 179:1105–1111.[PubMed]
40. Selander RK, McKinney RM, Whittam TS, Bibb WF, Brenner DJ, Nolte FS, Pattison PE. 1985. Genetic structure of populations of Legionella pneumophila. J Bacteriol 163:1021–1037.
41. Moshitch S, Doll L, Rubinfeld BZ, Stocker BA, Schoolnik GK, Gafni Y, Frankel G. 1992. Mono- and bi-phasic Salmonella typhi: genetic homogeneity and distinguishing characteristics. Mol Microbiol 6:2589–2597. [PubMed][CrossRef]
42. Silverman M, Zieg J, Hilmen M, Simon M. 1979. Phase variation in Salmonella: genetic analysis of a recombinational switch. Proc Natl Acad Sci USA 76:391–395. [PubMed][CrossRef]
43. Simon M, Zieg J, Silverman M, Mandel G, Doolittle R. 1980. Phase variation: evolution of a controlling element. Science 209:1370–1374. [PubMed][CrossRef]
44. Galton MM. 1969. Humans and pets as sources of salmonellae. J Am Oil Chem Soc 46:230–232. [PubMed][CrossRef]
45. Sanyal D, Douglas T, Roberts R. 1997. Salmonella infection acquired from reptilian pets. Arch Dis Child 77:345–346. [PubMed][CrossRef]
46. Emmerth M, Goebel W, Miller SI, Hueck CJ. 1999. Genomic subtraction identifies Salmonella typhimurium prophages, F-related plasmid sequences, and a novel fimbrial operon, stf, which are absent in Salmonella typhi. J Bacteriol 181:5652–5661.[PubMed]
47. Tsolis RM, Townsend SM, Miao EA, Miller SI, Ficht TA, Adams LG, Baumler AJ. 1999. Identification of a putative Salmonella enterica serotype Typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect Immun 67:6385–6393.[PubMed]
48. Shivaprasad HL. 2000. Fowl typhoid and pullorum disease. Rev Sci Technol 19:405–424.
49. Crosa JH, Brenner DJ, Ewing WH, Falkow S. 1973. Molecular relationships among the salmonelleae. J Bacteriol 115:307–315.[PubMed]
50. Amavisit P, Lightfoot D, Browning GF, Markham PF. 2003. Variation between pathogenic serovars within Salmonella pathogenicity islands. J Bacteriol 185:3624–3635. [CrossRef]
51. Wood MW, Jones MA, Watson PR, Hedges S, Wallis TS, Galyov EE. 1998. Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 29:883–891. [CrossRef]
52. Li J, Smith NH, Nelson K, Crichton PB, Old DC, Whittam TS, Selander RK. 1993. Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. J Med Microbiol 38:129–139. [PubMed][CrossRef]
53. Selander RK, Smith NH, Li J, Beltran P, Ferris KE, Kopecko DJ, Rubin FA. 1992. Molecular evolutionary genetics of the cattle-adapted serovar Salmonella dublin. J Bacteriol 174:3587–3592.[PubMed]
54. Liu GR, Rahn A, Liu WQ, Sanderson KE, Johnston RN, Liu SL. 2002. The evolving genome of Salmonella enterica serovar Pullorum. J Bacteriol 184:2626–2633. [PubMed][CrossRef]
55. Mian LS, Maag H, Tacal JV. 2002. Isolation of Salmonella from muscoid flies at commercial animal establishments in San Bernardino County, California. J Vector Ecol 27:82–85.[PubMed]
56. Orskov F, Orskov I. 1983. From the National Institutes of Health. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the enterobacteriaceae and other bacteria. J Infect Dis 148:346–357.[PubMed]
57. Maher KO, Morris JG, Jr, Gotuzzo E, Ferreccio C, Ward LR, Benavente L, Black RE, Rowe B, Levine MM. 1986. Molecular techniques in the study of Salmonella typhi in epidemiologic studies in endemic areas: comparison with Vi phage typing. Am J Trop Med Hyg 35:831–835.[PubMed]
58. Thong KL, Puthucheary SD, Pang T. 1997. Genome size variation among recent human isolates of Salmonella typhi. Res Microbiol 148:229–235. [PubMed][CrossRef]
59. Liu SL, Sanderson KE. 1996. Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci USA 93:10303–10308. [PubMed][CrossRef]
60. Ng I, Liu SL, Sanderson KE. 1999. Role of genomic rearrangements in producing new ribotypes of Salmonella typhi. J Bacteriol 181:3536–3541.[PubMed]
61. Dobrindt U, Hacker J. 2001. Whole genome plasticity in pathogenic bacteria. Curr Opin Microbiol 4:550–557. [PubMed][CrossRef]
62. Moran NA. 2002. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586. [PubMed][CrossRef]
63. LeClerc JE, Li B, Payne WL, Cebula TA. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211. [PubMed][CrossRef]
64. Radman M, Matic I, Halliday JA, Taddei F. 1995. Editing DNA replication and recombination by mismatch repair: from bacterial genetics to mechanisms of predisposition to cancer in humans. Phil Trans R Soc Lond B 347:97–103. [CrossRef]
65. Modrich P. 1991. Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25:229–253. [PubMed][CrossRef]
66. Matic I, Rayssiguier C, Radman M. 1995. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80:507–515. [PubMed][CrossRef]
67. Rayssiguier C, Thaler DS, Radman M. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396–401. [PubMed][CrossRef]
68. Taddei F, Matic I, Godelle B, Radman M. 1997. To be a mutator, or how pathogenic and commensal bacteria can evolve rapidly. Trends Microbiol 5:427–428. (Discussion, 428–429.) [PubMed][CrossRef]
69. Figueroa-Bossi N, Uzzau S, Maloriol D, Bossi L. 2001. Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol Microbiol 39:260–271. [PubMed][CrossRef]
70. Hansen-Wester I, Stecher B, Hensel M. 2002. Analyses of the evolutionary distribution of Salmonella translocated effectors. Infect Immun 70:1619–1622. [PubMed][CrossRef]
71. Dykhuizen DE, Green L. 1991. Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268.[PubMed]
72. Brown EW, Kotewicz ML, Cebula TA. 2002. Detection of recombination among Salmonella enterica strains using the incongruence length difference test. Mol Phylogenet Evol 24:102–120. [PubMed][CrossRef]
73. Kimura M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, United Kingdom.
74. Strickberger MW. 1996. Evolution. Jones and Bartlett Publishers, Boston, Mass.
75. Baumler AJ, Hargis BM, Tsolis RM. 2000. Tracing the origins of Salmonella outbreaks. Science 287:50–52. [PubMed][CrossRef]
76. Mead GC. 2000. Prospects for ‘competitive exclusion’ treatment to control salmonellas and other foodborne pathogens in poultry. Vet J 159:111–123. [PubMed][CrossRef]
77. Rabsch W, Hargis BM, Tsolis RM, Kingsley RA, Hinz KH, Tschape H, Baumler AJ. 2000. Competitive exclusion of Salmonella enteritidis by Salmonella gallinarum in poultry. Emerg Infect Dis 6:443–448. [CrossRef]
78. van der Wielen PW, Lipman LJ, van Knapen F, Biesterveld S. 2002. Competitive exclusion of Salmonella enterica serovar Enteritidis by Lactobacillus crispatus and Clostridium lactatifermentans in a sequencing fed-batch culture. Appl Environ Microbiol 68:555–559. [PubMed][CrossRef]
79. Bullis KL. 1977. The history of avian medicine in the U.S. II. Pullorum disease and fowl typhoid. Avian Dis 21:422–429. [PubMed][CrossRef]
80. Sojka WJ, Field HI. 1970. Salmonellosis in England and Wales, 1958–1967. Vet Bull 40:515–531.
81. Angulo FJ, Swerdlow DL. 1998. Salmonella enteritidis infections in the United States. J Am Vet Med Assoc 213:1729–1731.
82. Aserkoff B, Schroeder SA, Brachman PS. 1970. Salmonellosis in the United States—a five-year review. Am J Epidemiol 92:13–24.[PubMed]
83. Henzler DJ, Ebel E, Sanders J, Kradel D, Mason J. 1994. Salmonella enteritidis in eggs from commercial chicken layer flocks implicated in human outbreaks. Avian Dis 38:37–43. [PubMed][CrossRef]
84. Poppe C, Irwin RJ, Forsberg CM, Clarke RC, Oggel J. 1991. The prevalence of Salmonella enteritidis and other Salmonella spp. among Canadian registered commercial layer flocks. Epidemiol Infect 106:259–270. [PubMed][CrossRef]
85. Rodrigue DC, Tauxe RV, Rowe B. 1990. International increase in Salmonella enteritidis: a new pandemic? Epidemiol Infect 105:21–27. [PubMed][CrossRef]
86. St Louis ME, Morse DL, Potter ME, DeMelfi TM, Guzewich JJ, Tauxe RV, Blake PA. 1988. The emergence of grade A eggs as a major source of Salmonella enteritidis infections. New implications for the control of salmonellosis. JAMA 259:2103–2107. [PubMed][CrossRef]
87. Coyle EF, Palmer SR, Ribeiro CD, Jones HI, Howard AJ, Ward L, Rowe B. 1988. Salmonella enteritidis phage type 4 infection: association with hen’s eggs. Lancet ii:1295–1297.
88. Barrow PA, Berchieri A, Jr, al-Haddad O. 1992. Serological response of chickens to infection with Salmonella gallinarum-S. pullorum detected by enzyme-linked immunosorbent assay. Avian Dis 36:227–236. [CrossRef]
89. Nassar TJ, al-Nakhli HM, al-Ogaily ZH. 1994. Use of live and inactivated Salmonella enteritidis phage type 4 vaccines to immunize laying hens against experimental infection. Rev Sci Technol 13:855–867.
90. Hormaeche CE, Mastroeni P, Harrison JA, Demarco de Hormaeche R, Svenson S, Stocker BA. 1996. Protection against oral challenge three months after i.v. immunization of BALB/c mice with live Aro Salmonella typhimurium and Salmonella enteritidis vaccines is serotype (species)-dependent and only partially determined by the main LPS O antigen. Vaccine 14:251–259. [PubMed][CrossRef]
91. Methner U, Barrow PA, Martin G, Meyer H. 1997. Comparative study of the protective effect against Salmonella colonisation in newly hatched SPF chickens using live, attenuated Salmonella vaccine strains, wild-type Salmonella strains or a competitive exclusion product. Int J Food Microbiol 35:223–230. [CrossRef]
92. Nelson K, Selander RK. 1994. Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria. Proc Natl Acad Sci USA 91:10227–10231. [PubMed][CrossRef]
93. Hilbert F, del Portillo FG, Groisman EA. 1999. A periplasmic D-alanyl-D-alanine dipeptidase in the gram-negative bacterium Salmonella enterica. J Bacteriol 181:2158–2165.[PubMed]
94. Lessard IA, Pratt SD, McCafferty DG, Bussiere DE, Hutchins C, Wanner BL, Katz L, Walsh CT. 1998. Homologs of the vancomycin resistance D-Ala-D-Ala dipeptidase VanX in Streptomyces toyocaensis, Escherichia coli and Synechocystis: attributes of catalytic efficiency, stereoselectivity and regulation with implications for function. Chem Biol 5:489–504. [PubMed][CrossRef]
95. Mouslim C, Hilbert F, Huang H, Groisman EA. 2002. Conflicting needs for a Salmonella hypervirulence gene in host and non-host environments. Mol Microbiol 45:1019–1027. [PubMed][CrossRef]
96. Huang CJ, Barrett EL. 1991. Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J Bacteriol 173:1544–1553.[PubMed]
97. Price-Carter M, Tingey J, Bobik TA, Roth JR. 2001. The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar Typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol 183:2463–2475. [PubMed][CrossRef]
98. Tsang AW, Horswill AR, Escalante-Semerena JC. 1998. Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J Bacteriol 180:6511–6518.[PubMed]
99. Baumler AJ, Norris TL, Lasco T, Voight W, Reissbrodt R, Rabsch W, Heffron F. 1998. IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. J Bacteriol 180:1446–1453.
100. Baumler AJ, Tsolis RM, van der Velden AW, Stojiljkovic I, Anic S, Heffron F. 1996. Identification of a new iron regulated locus of Salmonella typhi. Gene 183:207–213. [PubMed][CrossRef]
101. Snavely MD, Miller CG, Maguire ME. 1991. The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem 266:815–823.[PubMed]
102. Groisman EA, Saier MH, Jr, Ochman H. 1992. Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J 11:1309–1316.
103. Kier LD, Weppelman RM, Ames BN. 1979. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J Bacteriol 138:155–161.
104. Clark M, Barrett E. 1987. The phs gene and hydrogen sulfide production by Salmonella typhimurium. J Bacteriol 169:2391–2397.[PubMed]
105. Gupta SD, Wu HC, Rick PD. 1997. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J Bacteriol 179:4977–4984.[PubMed]
106. Casse FM, Pascal M-C, Chippaux M. 1972. A mutant of Salmonella typhimurium deficient in tetrathionate reductase activity. Mol Gen Genet 119:71–74. [PubMed][CrossRef]
107. Roof DM, Roth JR. 1989. Functions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium. J Bacteriol 171:3316–3323.[PubMed]
108. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474. [PubMed][CrossRef]
109. Rondon MR, Escalante-Semerena JC. 1992. The poc locus is required for 1,2-propandiol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium. J Bacteriol 174:2267–2272.[PubMed]
110. Guerinot ML. 1994. Microbial iron transport. Annu Rev Microbiol 48:743–772. [PubMed][CrossRef]
111. Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA. 2000. A signal transduction system that responds to extracellular iron. Cell 103:113–125. [PubMed][CrossRef]
112. Roland KL, Martin LE, Esther CR, Spitznagel JK. 1993. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J Bacteriol 175:4154–4164.[PubMed]
113. Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI. 2000. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect Immun 68:6139–6146. [PubMed][CrossRef]
114. Zhao Y, Jansen R, Gaastra W, Arkesteijn G, van der Zeijst BA, van Putten JP. 2002. Identification of genes affecting Salmonella enterica serovar Enteritidis infection of chicken macrophages. Infect Immun 70:5319–5321. [PubMed][CrossRef]
115. Chamnongpol S, Dodson W, Cromie MJ, Harris ZL, Groisman EA. 2002. Fe(III)-mediated cellular toxicity. Mol Microbiol 45:711–719. [PubMed][CrossRef]
116. Bagg A, Neilands JB. 1987. Ferric uptake regulation protein acts as a repressor, employing iron(II), as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochem Btry 26:5471–5477.
117. Halliwell B, Gutteridge JM. 1984. Free radicals, lipid peroxidation, and cell damage. Lancet ii:1095. [CrossRef]
118. Halliwell B, Gutteridge JM. 1984. Role of iron in oxygen radical reactions. Methods Enzymol 105:47–56. [PubMed][CrossRef]
119. Hantke K. 1981. Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292. [PubMed][CrossRef]
120. Xiong A, Singh VK, Cabrera G, Jayaswal RK. 2000. Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus. Microbiology 146:659–668.[PubMed]
121. Braun V, Hantke K, Koster W. 1998. Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145.[PubMed]
122. Neilands JB. 1993. Siderophores. Arch Biochem Biophys 302:1–3. [PubMed][CrossRef]
123. Neilands JB. 1995. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726.[PubMed]
124. Foster JW, Hall HK. 1992. Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J Bacteriol 174:4317–4323.[PubMed]
125. Foster JW, Park YK, Bang IS, Karem K, Betts H, Hall HK, Shaw E. 1994. Regulatory circuits involved with pH-regulated gene expression in Salmonella typhimurium. Microbiology 140:341–352. [PubMed][CrossRef]
126. Wu WS, Hsieh PC, Huang TM, Chang YF, Chang CF. 2002. Cloning and characterization of an iron regulated locus, iroA, in Salmonella enterica serovar Choleraesuis. DNA Seq 13:333–341. [PubMed][CrossRef]
127. Montgomery DM, Dean AC, Wiffen P, Macaskie LE. 1995. Phosphatase production and activity in Citrobacter freundii and a naturally occurring, heavy-metal-accumulating Citrobacter sp. Microbiology 141:2433–2441. [PubMed][CrossRef]
128. Groisman EA. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835–1842. [PubMed][CrossRef]
129. Smith RL, Maguire ME. 1998. Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol 28:217–226. [PubMed][CrossRef]
130. Kehres DG, Lawyer CH, Maguire ME. 1998. The CorA magnesium transporter gene family. Microb Comp Genomics 3:151–169.[PubMed]
131. Snavely MD, Gravina SA, Cheung TT, Miller CG, Maguire ME. 1991. Magnesium transport in Salmonella typhimurium. Regulation of mgtA and mgtB expression. J Biol Chem 266:824–829.[PubMed]
132. Groisman EA, Ochman H. 1994. How to become a pathogen. Trends Microbiol 2:289–294. [PubMed][CrossRef]
133. Snavely MD, Florer JB, Miller CG, Maguire ME. 1989. Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol 171:4761–4766.[PubMed]
ecosalplus.6.4.6.citations
ecosalplus/1/1
content/journal/ecosalplus/10.1128/ecosalplus.6.4.6
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.6.4.6
2004-02-27
2017-07-21

Abstract:

Over the past 120 to 160 million years, the genus has evolved into a complex group of more than 2,300 genetically and phenotypically diverse serovars. Members of this genus are able to infect a wide diversity of vertebrate and invertebrate hosts; disease manifestations in humans range from gastroenteritis to typhoid fever. The evolution of the genus and the divergence and radiation of particular lineages within this group have resulted from selection acting on new genetic variation generated by events such as the gain, loss, and/or rearrangement of genetic material. These types of genetic events have contributed to the speciation of from its ancestral association with cold-blood animals to a pathogen of warm-blooded hosts. Moreover, adaptive radiation due to changes in gene content within subspecies I has impacted host specificity and aided in the selection of host-restricted, host-adapted, and non-host-adapted serovars. In addition to the genetic diversity important for the wide phenotypic heterogeneity within the genus, a subset of core -specific genes present in all species and serovars has been identified that may contribute to the conserved aspects of the lifestyle of this microorganism, including the ability to survive in nutrient-poor nonhost environments such as soil and water. Whole-genome comparisons of isolates differing in host range and virulence will continue to elucidate the genetic mechanisms that have contributed to the evolution and diverse ecology of the genus .

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The genus is divided into two species, and . is further subdivided into seven subspecies. The two groups that are closest to the ancestral form, and subsp. IIIa, are typically associated with cold-blooded hosts and are not capable of flagellar phase variation. All other subgroups are associated with warm-blooded hosts and harbor the genetic machinery required for flagellar phase variation.

Citation: Winfield M, Groisman E. 2004. Evolution and Ecology of , EcoSal Plus 2004; doi:10.1128/ecosalplus.6.4.6
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Salmonella-specific genes with putative functions in survival outside the animal host

Citation: Winfield M, Groisman E. 2004. Evolution and Ecology of , EcoSal Plus 2004; doi:10.1128/ecosalplus.6.4.6

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error