1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 9: Life in Communities and the Environment

The Life of Commensal in the Mammalian Intestine

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Tyrell Conway1, Karen A. Krogfelt2, and Paul S. Cohen3
  • Editor: Michael S. Donnenberg4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019; 2: Department of Gastrointestinal Infections, Statens Seruminstitut, 2300 Copenhagen S, Denmark; 3: Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881; 4: University of Maryland, School of Medicine, Baltimore, MD
  • Received 06 May 2004 Accepted 13 August 2004 Published 29 December 2004
  • Address correspondence to Paul S. Cohen pco1697u@postoffice.uri.edu
image of The Life of Commensal <span class="jp-italic">Escherichia coli</span> in the Mammalian Intestine
    Preview this reference work article:
    Zoom in
    Zoomout

    The Life of Commensal in the Mammalian Intestine, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/1/8_3_1_2_module-1.gif /docserver/preview/fulltext/ecosalplus/1/1/8_3_1_2_module-2.gif
  • Abstract:

    In this chapter we review the literature with respect to what is known about how colonizesthe mammalian intestine. We begin with a brief discussion of the mammalian large intestine, the major site that commensal strains of colonize. Next, evidence is discussed showing that, in order to colonize, must be able to penetrate and grow in the mucus layer of the large intestine. This is followed by discussions of colonization resistance, i.e., factors that are involved in the ability of a complete microbiota (microflora) to resist colonization by an invading bacterium, the advantages and disadvantages of the in vivo colonization models used in colonization research, the initiation and maintenance stages of colonization, and the rate of growth in the intestine. The next two sections of the chapter discuss the role of motility in colonization and how adhesion to mucosal receptors aids or inhibits penetration of the intestinal mucus layer and thereby either promotes or prevents colonization. Finally, the contribution of nutrition to the ability of to colonize is discussed based on the surprising finding that different nutrients are used by MG1655, a commensal strain, and by EDL933, an enterohemorrhagic strain, to colonize the intestine.

  • Citation: Conway T, Krogfelt K, Cohen P. 2004. The Life of Commensal in the Mammalian Intestine, EcoSal Plus 2004; doi:10.1128/ecosalplus.8.3.1.2

Key Concept Ranking

Large Intestine
0.55184567
Type 1 Fimbriae
0.52808076
Acetyl Coenzyme A
0.5138889
Fatty Acid Degradation
0.45439506
Bacteroides thetaiotaomicron
0.37661576
0.55184567

References

1. Favre-Bonte S, Licht TR, Forestier C, Krogfelt KA. 1999. Klebsiella pneumoniae capsule expression is necessary for colonization of large intestines of streptomycin-treated mice. Infect Immun 67:6152–6156.[PubMed]
2. Møller AK, Leatham MP, Conway T, Nuijten PJM, de Haan LAM, Krogfelt KA, Cohen PS. 2003. An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine. Infect Immun 71:2142–2152. [PubMed][CrossRef]
3. Maroncle N, Balestrino D, Rich C, Forestier C. 2002. Identification of Klebsiella pneumoniae genes involved in intestinal colonization and adhesion using signature-tagged mutagenesis. Infect Immun 70:4729–4734. [PubMed][CrossRef]
4. Salyers AA, Leedle JAZ. 1983. Carbohydrate metabolism in the human colon, p.129–146. In Hentges DJ (ed), Human Intestinal Microflora in Health and Disease. Academic Press, New York, N.Y.
5. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474. [PubMed][CrossRef]
6. Craven SE. 1994. Altered colonizing ability for the ceca of broiler chicks by lipopolysaccharide-deficient mutants of Salmonella Typhimurium. Avian Dis 38:401–408. [PubMed][CrossRef]
7. Allan A. 1981. Structure and function of gastrointestinal mucus, p 637–639. In Johnson LR (ed), Physiology of the Gastrointestinal Tract. Raven Press, New York, N.Y.
8. Atuma C, Strugala V, Allen A, Holm L. 2001. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol 280:G922–G929.
9. Fioramonti J, Bueno L. 1980. Motor activity in the large intestine of the pig related to dietary fiber and retention time. Br J Nutr 43:155–162. [PubMed][CrossRef]
10. Kaper JP, Elliot S, Sperandio V, Perna NT, Mayhew F, Blattner FR. 1998. Attaching-and effacing intestinal histopathology and the locus of enterocyte effacement, p 163–182. In Kaper JP and O’Brien AD (ed), Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. American Society for Microbiology, Washington, D.C.
11. Peekhaus N, Conway T. 1998. What’s for dinner? Entner-Doudoroff metabolism in Escherichia coli. J Bacteriol 180:3495–3502.[PubMed]
12. Poulsen LK, Licht TR, Rang C, Krogfelt KA, Molin S. 1995. Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J Bacteriol 177:5840–5845.[PubMed]
13. Silva AJ, Pham K, Benitez JA. 2003. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology 149:1883–1891. [PubMed][CrossRef]
14. Struve C, Forestier C, Krogfelt KA. 2003. Application of a novel multi-screening signature-tagged mutagenesis assay for identification of Klebsiella pneumoniae genes essential in colonization and infection. Microbiology 149:167–176. [PubMed][CrossRef]
15. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. 1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96:9833–9838. [PubMed][CrossRef]
16. Neill MA. 1998. Treatment of disease due to Shiga toxin-producing Escherichia coli: infectious disease management, p 357–363. In Kaper JB and O′Brien AD(ed), Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. ASM Press, Washington, D.C.
17. Freter R. 1983. Mechanisms that control the microflora in the large intestine, p 33–54. In Hentges DJ (ed), Human Intestinal Microflora in Health and Disease. Academic Press, New York, N.Y.
18. Celli J, Deng W, Finlay BB. 2000. Enteropathogenic Escherichia coli (EPEC) attachment to epithelial cells: exploiting the host cell cytoskeleton from the outside. Cell Microbiol 2:1–9. [PubMed][CrossRef]
19. Jin LZ, Zhao X. 2000. Intestinal receptors for adhesive fimbriae of enterotoxigenic Escherichia coli (ETEC) K88 in swine: a review. Appl Microbiol Biotechnol 54:311–318. [PubMed][CrossRef]
20. Komine Y, Adachi T, Inokuchi H, Ozeki H. 1990. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol 212:579–598. [PubMed][CrossRef]
21. Lai YC, Peng HL, Chang HY. 2001 Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect Immun 69:7140–7145. [PubMed][CrossRef]
22. Lee A. 1980. Normal flora of animal intestinal surfaces, p 145–173. In Bitton G and Marshall KC (ed), Adsorption of Microorganisms to Surfaces. John Wiley & Sons, Inc., New York, N.Y.
23. Nishi J, Sheikh J, Mizuguchi K, Luisi B, Burland V, Boutin A, Rose DJ, Blattner FR, Nataro JP. 2003. The export of coat protein from enteroaggregative Escherichia coli by a specific ATP-binding cassette transporter system. J Biol Chem 278:45680–45689. [PubMed][CrossRef]
24. Miranda RL, Conway T, Leatham MP, Chang DE, Norris WE, Allen JH, Stevenson SJ, Laux DC, Cohen PS. 2004. Glycolytic and gluconeogenic growth of Escherichia coli O157:H7 (EDL933) and E. coli K-12 (MG1655) in the mouse intestine. Infect Immun 72:1666–1676. [PubMed][CrossRef]
25. Potten CS, Allen TD. 1977. Ultrastructure of cell loss in intestinal mucosa. J Ultrastruct Res 60:272–277. [PubMed][CrossRef]
26. Poulsen LK, Lan F, Kristensen CS, Hobolth P, Molin S, Krogfelt KA. 1994. Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun 62:5191–5194.[PubMed]
27. Quastler H, Sherman FG. 1959. Cell population in the intestinal epithelium of the mouse. Exp Cell Res 17:420–438. [PubMed][CrossRef]
28. Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, Sokolow R, Morris GK. 1983. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 18:512–520.
29. Licht TR, Krogfelt KA, Cohen PS, Poulsen LK, Urbance J, Molin S. 1996. Role of lipopolysaccharide in colonization of the mouse intestine by Salmonella Typhimurium studied by in situ hybridization. Infect Immun 64:3811–3817.[PubMed]
30. McCormick BA, Laux DC, Cohen PS. 1990. Neither motility nor chemotaxis plays a role in the ability of Escherichia coli F-18 to colonize the streptomycin-treated mouse large intestine. Infect Immun 58:2957–2961.[PubMed]
31. Nevola JJ, Laux DC, Cohen PS. 1987. In vivo colonization of the mouse large intestine and in vitro penetration of intestinal mucus by an avirulent strain of Salmonella Typhimurium and its lipopolysaccharide-deficient mutant. Infect Immun 55:2884–2890.[PubMed]
32. van der Waaij D, Berghuis de Vries JM, Lekkerkerk JEC. 1971. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg 69:405–441. [PubMed][CrossRef]
33. Lee A. 1985. Neglected niches, the microbial ecology of the gastrointestinal tract. Adv Microb Ecol 8:115–162.
34. McCormick BA, Franklin DP, Laux DC, Cohen PS. 1989. Type 1 pili are not necessary for colonization of the streptomycin-treated mouse large intestine by type 1-piliated Escherichia coli F-18 and E. coli K-12 Infect Immun 57:3022–3029. (Erratum, 57:3949.)
35. Sweeney NJ, Klemm P, McCormick BA, Moller-Nielsen E, Utley M, Schembri MA, Laux DC, Cohen PS. 1996. The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine. Infect Immun 64:3497–3503.[PubMed]
36. Taylor PA, Williams PJ. 1975. Theoretical studies on the coexistence of competing species under continuous-flow conditions. Can J Microbiol 21:90–98.[PubMed]
37. Anderson JD, Gillespie WA, Richmond MH. 1973. Chemotherapy and antibiotic-resistance transfer between Enterobacteria in the human gastrointestinal tract. J Med Microbiol 6:461–473. [PubMed][CrossRef]
38. Freter R. 1992. Factors affecting the microecology of the gut, p 111–144. In Fuller R (ed), Probiotics: The Scientific Basis. Chapman & Hall, London, United Kingdom.
39. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403. [PubMed][CrossRef]
40. Freter R, Brickner H, Botney M, Cleven D, Aranki A. 1983. Mechanisms that control bacterial populations in continuous-flow culture models or mouse large intestinal flora. Infect Immun 39:676–685.[PubMed]
41. Franklin DP, Laux DC, Williams TJ, Falk MC, Cohen PS. 1990. Growth of Salmonella Typhimurium SL5319 and Escherichia coli F-18 in mouse cecal mucus: role of peptides and iron. FEMS Microbiol Ecol 74:229–240. [CrossRef]
42. Takata T, Fujimoto S, Amako K. 1992. Isolation of nonchemotactic mutants of Campylobacter jejuni and their colonization of the mouse intestinal tract. Infect Immun 60:3596–3600.
43. Fredrickson AG. 1977. Behavior of mixed cultures of microorganisms. Annu Rev Microbiol 31:63–87. [PubMed][CrossRef]
44. Apperloo-Renkema HZ, Van der Waaij BD, Van der Waaij D. 1990. Determination of colonization resistance of the digestive tract by biotyping of Enterobacteriaceae. Epidemiol Infect 105:355–361. [PubMed][CrossRef]
45. Sweeney NJ, Laux DC, Cohen PS. 1996. Escherichia coli F-18 and K-12 eda mutants do not colonize the streptomycin-treated mouse large intestine. Infect Immun 64:3504–3511.[PubMed]
46. Hooper LV, Midtvedt T, Gordon JI. 2002. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307. [PubMed][CrossRef]
47. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884. [PubMed][CrossRef]
48. Worton KJ, Candy DC, Wallis TS, Clarke GJ, Osborne MP, Haddon SJ, Stephen J. 1989. Studies on early association of Salmonella Typhimurium with intestinal mucosa in vivo and in vitro: relationship to virulence. J Med Microbiol 29:283–294. [PubMed][CrossRef]
49. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC. 2003. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47:103–118. [PubMed][CrossRef]
50. Herbert MA, Hayes S, Deadman ME, Tang CM, Hood DW, Moxon ER. 2002. Signature tagged mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival. Microb Pathog 33:211–223. [PubMed][CrossRef]
51. Hooper LV, Stoppenbeck TS, Hong CV, Gordon JI. 2003. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273. [PubMed][CrossRef]
52. Bohnhoff M, Drake BL, Miller CP. 1954. Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc Soc Exp Biol Med 86:132–137.[PubMed]
53. Hentges DJ. 1983. Role of the intestinal microflora in host defense against infection, p.311–331. In Hentges DJ (ed), Human Intestinal Microflora in Health and Disease. Academic Press, New York, N.Y.
54. Favre-Bonte S, Joly B, Forestier C. 1999. Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. Infect Immun 67:554–561.[PubMed]
55. Neutra MR. 1984. The mechanism of intestinal mucous secretion, p 33–41. In Boedecker EC (ed), Attachment of Organisms to the Gut Mucosa, vol. II. CRC Press, Inc., Boca Raton, Fla.
56. Klemm P, Krogfelt KA. 1994. Type 1 fimbriae of Escherichia coli, p 9–26. In Klemm P (ed), Fimbriae: Adhesion, Biogenesis, Genetics, and Vaccines. CRC Press, Inc., Boca Raton, Fla.
57. Finegold SM, Sutter VL, Mathisen GE. 1983. Normal indigenous intestinal flora, p 3–31. In Hentges DJ (ed), Human Intestinal Microflora in Health and Disease. Academic Press, New York, N.Y.
58. Freter R, O’Brien PC, Macsai MS. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect Immun 34:234–240.[PubMed]
59. Gibbons RJ, Kapsimalis B. 1967. Estimates of the overall rate of growth of the intestinal microflora of hamsters, guinea pigs, and mice. J. Bacteriol. 93:510–512.
60. Savage DC. 1977. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133. [PubMed][CrossRef]
61. Mouricout M, Petit JM, Carias JR, Julien R. 1990. Glycoprotein glycans that inhibit adhesion of Escherichia coli mediated by K99 fimbriae: treatment of experimental colibacillosis. Infect Immun 58:98–106.[PubMed]
62. McCormick BA, Klemm P, Krogfelt KA, Burghoff RL, Pallesen L, Laux DC, Cohen PS. 1993. Escherichia coli F-18 phase locked “ON” for expression of type 1 fimbriae is a poor colonizer of the streptomycin-treated mouse large intestine. Microb Pathog 14:33–43. [PubMed][CrossRef]
63. Freter R, Brickner H, Fekete J, Vickerman MM, Carey KE. 1983. Survival and implantation of Escherichia coli in the intestinal tract. Infect Immun 39:686–703.[PubMed]
64. Ritter A, Gally DL, Olsen PB, Dobrindt U, Friedrich A, Klemm P, Hacker J. 1997. The Pai-associated leuX specific tRNA5(Leu) affects type 1 fimbriation in pathogenic Escherichia coli by control of FimB recombinase expression. Mol Microbiol 25:871–882. [PubMed][CrossRef]
65. Wilson KH, Blitchington RB. 1996. Human biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278.[PubMed]
66. Syed SS, Abrams GD, Freter R. 1970. Efficiency of various intestinal bacteria in assuming normal functions of enteric flora after association with germ-free mice. Infect Immun 2:376–386.[PubMed]
67. Forstner GG. 1970. [1-14C]glucosamine incorporation by subcellular fractions of small intestine mucosa. J Biol Chem 245:3584–3592.[PubMed]
68. Chang DE, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ, Anderson AB, Grissom JE, Laux DC, Cohen PS, Conway T. 2004. Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci USA 101:7427–7432. [CrossRef]
69. Hoskins LC, Agustines M, McKee WB, Boulding ET, Kriaris M, Niedermeyer G. 1985. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 75:944–953. [PubMed][CrossRef]
70. Conway T, Schoolnik GK. 2003. Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol Microbiol 47:879–889. [PubMed][CrossRef]
71. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. [PubMed][CrossRef]
72. Moore WEC, Holdeman LV. 1974. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979.[PubMed]
73. Dobrindt U, Hacker J. 2001. Regulation of tRNA5Leu-encoding gene leuX that is associated with a pathogenicity island in the uropathogenic Escherichia coli strain 536. Mol Genet Genomics 265:895–904. [PubMed][CrossRef]
74. Okeke IN, Nataro JP. 2001. Enteroaggregative Escherichia coli. Lancet Infect Dis 1:304–313. [PubMed][CrossRef]
75. Heithoff DM, Conner CP, Hanna PC, Julio SM, Hentschel U, Mahan MJ. 1997. Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad Sci USA 94:934–939. [PubMed][CrossRef]
76. Savageau MA. 1983. Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat 122:732–744. [CrossRef]
77. Newman JV, Kolter R, Laux DC, Cohen PS. 1994. The role of leuX in Escherichia coli colonization of the streptomycin-treated mouse large intestine. Microb Pathog 17:301–311. [PubMed][CrossRef]
78. Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP. 1999. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun 67:5587–5596.[PubMed]
79. Brunder W, Schmidt H, Karch H. 1997. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol 24:767–778. [PubMed][CrossRef]
80. Drumm B, Roberton AM, Sherman PM. 1988. Inhibition of attachment of Escherichia coli RDEC-1 to intestinal microvillus membranes by rabbit ileal mucus and mucin in vitro. Infect Immun 56:2437–2442.[PubMed]
81. Walter J, Heng NC, Hammes WP, Loach DM, Tannock GW, Hertel C. 2003. Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl Environ Microbiol 69:2044–2051. [PubMed][CrossRef]
82. Slomiany A, Yano S, Slomiany BI, Glass GBJ. 1978. Lipid composition of the gastric mucus barrier in the rat. J Biol Chem 253:3785–3791.[PubMed]
83. Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR, Le Bouguenec C, Gounon P, Phillips A, Nataro JP. 2002. A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest 110:1329–1337. [PubMed][CrossRef]
84. Dean EA. 1990. Comparison of receptors for 987P pili of enterotoxigenic Escherichia coli in the small intestines of neonatal and older pigs. Infect Immun 58:4030–4035.[PubMed]
85. Kim YS, Morita A, Miura S, Siddiqui B. 1984. Structure of glycoconjugates of intestinal mucosal membranes. Role of bacterial adherence, p 99–109. In Boedecker EC (ed), Attachment of Organisms to the Gut Mucosa, vol. II. CRC Press, Inc., Boca Raton, Fla.
86. Martindale J, Stroud D, Moxon ER, Tang CM. 2000. Genetic analysis of Escherichia coli K1 gastrointestinal colonization. Mol Microbiol 37:1293–1305. [PubMed][CrossRef]
87. Wadolkowski EA, Laux DC, Cohen PS. 1988. Colonization of the streptomycin-treated mouse large intestine by a human fecal Escherichia coli strain: role of growth in mucus. Infect Immun 56:1030–1035.[PubMed]
88. Krogfelt KA. 1991. Bacterial adhesion: genetics, biogenesis, and role in pathogenesis of fimbrial adhesions of Escherichia coli. Rev Infect Dis 13:721–735.[PubMed]
89. Denkin SM, Nelson DR. 1999. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl Environ Microbiol 65:3555–3560.[PubMed]
90. Revel AT, Talaat AM, Norgard MV. Borrelia burgdorferi, the Lyme disease spirochete. Proc. Natl. Acad. Sci. USA 99:1562–1567. [CrossRef]
91. Conway PL, Welin A, Cohen PS. 1990. Presence of K88-specific receptors in porcine ileal mucus is age dependent. Infect Immun 58:3178–3182.[PubMed]
92. Mahan MJ, Tobias JW, Slauch JM, Hanna PC, Collier RJ, Mekalanos JJ. 1995. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci USA 92:669–673. [PubMed][CrossRef]
93. Falk PG, Hooper LV, Midtvedt T, Gordon JI. 1998. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62:1157–1170. [PubMed]
94. Robertson JM, Grant G, Allen-Bercoe E, Woodward MJ, Pusztai A, Flint HJ. 2000. Adhesion of Salmonella enterica var. Enteritidis strains lacking fimbriae and flagella to rat ileal explants cultured at the air interface or submerged in tissue culture medium. J Med Microbiol 49:691–696.[PubMed]
95. Allen A. 1984. The structure and function of gastrointestinal mucus, p 3–11. In Boedecker EC (ed), Attachment of Organisms to the Gut Mucosa, vol. II. CRC Press, Inc., Boca Raton, Fla.
96. Anderson KL, Salyers AA. 1989. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J Bacteriol 171:3192–3198.[PubMed]
97. Anderson KL, Salyers AA. 1989. Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 171:3199–3204.[PubMed]
98. Hoskins L. 1984. Mucin degradation by enteric bacteria: ecological aspects and implications for bacterial attachment to gut mucosa, p 51–65. In Boedecker EC (ed), Attachment of Organisms to the Gut Mucosa, vol. II. CRC Press, Inc., Boca Raton, Fla.
99. Foynes S, Dorrell N, Ward SJ, Stabler RA, McColm AA, Rycroft AN, Wren BW. 2000. Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect Immun 68:2016–2023. [PubMed][CrossRef]
100. Paerregaard A, Espersen F, Jensen OM, Skurnik M. 1991. Interactions between Yersinia enterocolitica and rabbit ileal mucus: growth, adhesion, penetration, and subsequent changes in surface hydrophobicity and ability to adhere to ileal brush border membrane vesicles. Infect Immun 59:253–260.[PubMed]
101. Henderson IR, Nataro JP. 2001. Virulence functions of autotransporter proteins. Infect Immun 69:1231–1243. [PubMed][CrossRef]
102. Marteau P, Pochart P, Dore J, Bera-Maillet C, Bernalier A, Corthier G. 2001. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67:4939–4942. [PubMed][CrossRef]
103. Stathopoulos C, Provence DL, Curtiss II RI. 1999. Characterization of the avian pathogenic Escherichia coli hemagglutinin Tsh, a member of the immunoglobulin A protease-type family of autotransporters. Infect Immun 67:772–781.[PubMed]
104. Markowitz SM, Veazey JM, Jr, Macrina FL, Mayhall CG , Lamb VA. 1980. Sequential outbreaks of infection due to Klebsiella pneumoniae in a neonatal intensive care unit: implication of a conjugative R plasmid. Infect Dis 142:106–112.
105. Hentges DJ, Que JU, Casey SW, Stein AJ. 1984. The influence of streptomycin on colonization resistance in mice. Microecol Ther 14:53–62.
106. Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A. 2002. Host-induced epidemic spread of the cholera bacterium. Nature 417:642–645. [PubMed][CrossRef]
107. Lorenz MC, Fink GR. 2002. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1:657–662. [PubMed][CrossRef]
108. Grovum W, Phillips GD. 1973. Rate of passage of digesta in sheep. Br J Nutr 30:377–390. [PubMed][CrossRef]
109. Mahan MJ, Slauch JM, Mekalanos JJ. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686–688. [PubMed][CrossRef]
110. Krogfelt KA, McCormick BA, Burghoff RL, Laux DC, Cohen PS. 1991. Expression of Escherichia coli F-18 type 1 fimbriae in the streptomycin-treated mouse large intestine. Infect Immun 59:1567–1568.[PubMed]
111. Wadolkowski EA, Laux DC, Cohen PS. 1988. Colonization of the streptomycin-treated mouse large intestine by a human fecal Escherichia coli strain: role of adhesion to mucosal receptors. Infect Immun 56:1036–1043.[PubMed]
112. Cohen PS, Laux DC. 1994. The role of interactions between fimbriae and the intestinal mucus layer in bacterial colonization and enteric pathogenesis, p 213–225. In Klemm P (ed), Fimbriae: Adhesion, Biogenesis, Genetics, and Vaccines. CRC Press, Inc., Boca Raton, Fla.
113. Rang CU, Licht TR, Midtvedt T, Conway PL, Chao L, Krogfelt KA, Cohen PS, Molin S. 1999. Estimation of growth rates of Escherichia coli BJ4 in streptomycin-treated and previously germfree mice by in situ rRNA hybridization. Clin Diagn Lab Immunol 6:434–436.[PubMed]
114. McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR, Jr, Russell DG. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738. [PubMed][CrossRef]
115. Xu J, Gordon JI. 2003. Honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459. [PubMed][CrossRef]
116. Xu Q, Dziejman M, Mekalanos JJ. 2003. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci USA 100:1286–1291. [PubMed][CrossRef]
117. Dutta PR, Cappello R, Navarro-Garcia F, Nataro JP. 2002. Functional comparison of serine protease autotransporters of Enterobacteriaceae. Infect Immun 70:7105–7113. [PubMed][CrossRef]
118. Licht TR, Tolker-Nielsen T, Holmstrom K, Krogfelt KA, Molin S. 1999. Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents. Environ Microbiol 1:23–32. [PubMed][CrossRef]
119. McCormick BA, Stocker BAD, Laux DC, Cohen PS. 1988. The role of motility, chemotaxis, penetration through, and growth in intestinal mucus in the ability of an avirulent strain of Salmonella Typhimurium to colonize the large intestines of streptomycin-treated mice. Infect Immun 56:2209–2217.[PubMed]
120. Croft CN, Cotton PB. 1973. Gastrointestinal cell loss in man. Digestion 8:144–160. [PubMed][CrossRef]
121. Merrell DS, Hava DL, Camilli A. 2002. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 43:1471–1491. [PubMed][CrossRef]
122. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 99:17020–17024. [CrossRef]
123. Neidhardt FC, Magasanik B. 1960. Studies on the role of ribonucleic acid in bacteria. Biochim Biophys Acta 42:99–116. [PubMed][CrossRef]
ecosalplus.8.3.1.2.citations
ecosalplus/1/1
content/journal/ecosalplus/10.1128/ecosalplus.8.3.1.2
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.3.1.2
2004-12-29
2017-03-26

Abstract:

In this chapter we review the literature with respect to what is known about how colonizesthe mammalian intestine. We begin with a brief discussion of the mammalian large intestine, the major site that commensal strains of colonize. Next, evidence is discussed showing that, in order to colonize, must be able to penetrate and grow in the mucus layer of the large intestine. This is followed by discussions of colonization resistance, i.e., factors that are involved in the ability of a complete microbiota (microflora) to resist colonization by an invading bacterium, the advantages and disadvantages of the in vivo colonization models used in colonization research, the initiation and maintenance stages of colonization, and the rate of growth in the intestine. The next two sections of the chapter discuss the role of motility in colonization and how adhesion to mucosal receptors aids or inhibits penetration of the intestinal mucus layer and thereby either promotes or prevents colonization. Finally, the contribution of nutrition to the ability of to colonize is discussed based on the surprising finding that different nutrients are used by MG1655, a commensal strain, and by EDL933, an enterohemorrhagic strain, to colonize the intestine.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error