1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 9: Life in Communities and the Environment

Colonization of Abiotic Surfaces

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Christophe Beloin1, Sandra Da Re2, and Jean-Marc Ghigo3
  • Editor: Michael S. Donnenberg4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Groupe de Génétique des Biofilms, Institut Pasteur, CNRS URA 2172, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; 2: Groupe de Génétique des Biofilms, Institut Pasteur, CNRS URA 2172, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; 3: Groupe de Génétique des Biofilms, Institut Pasteur, CNRS URA 2172, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; 4: University of Maryland, School of Medicine, Baltimore, MD
  • Received 19 January 2005 Accepted 20 April 2005 Published 29 August 2005
  • Address correspondence to Jean-Marc Ghigo jmghigo@pasteur.fr
image of Colonization of Abiotic Surfaces
    Preview this reference work article:
    Zoom in
    Zoomout

    Colonization of Abiotic Surfaces, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/2/8_3_1_3_module-1.gif /docserver/preview/fulltext/ecosalplus/1/2/8_3_1_3_module-2.gif
  • Abstract:

    is a relevant model organism for the study of the molecular mechanisms underlying surface colonization. This process requires two essential steps: adhesion to a surface, followed by cell-cell adhesion counteracting the shear forces of the environment, with both steps contributing to the formation of a biofilm. This review provides an overview of the current knowledge of the genetic analyses aiming at identifying factors involved in both of these two highly related biological processes, with a particular emphasis on studies performed in K-12. Bacterial adhesion to abiotic surfaces is likely to be highly dependent on the physicochemical and electrostatic interactions between the bacterial envelope and the substrate, which is itself often conditioned by the fluids to which it is exposed. Genetic analyses have revealed the diversity of genetic factors in that participate in colonization and biofilm formation on abiotic surfaces. The study of surface colonization and biofilm formation represents a rapidly expanding field of investigation. The use of K-12 to investigate the genetic basis of bacterial interactions with surfaces has led to the identification of a large repertoire of adhesins whose expression is subject to a complex interplay between regulatory networks. Understanding how K-12 behaves in complex biofilm communities will certainly contribute to an understanding of how natural commensal and pathogenic isolates develop.

  • Citation: Beloin C, Da Re S, Ghigo J. 2005. Colonization of Abiotic Surfaces, EcoSal Plus 2005; doi:10.1128/ecosalplus.8.3.1.3

Key Concept Ranking

Mobile Genetic Elements
0.53289115
Antibacterial Agents
0.45705223
Type 1 Pili
0.43306497
Confocal Laser Scanning Microscopy
0.41419894
Outer Membrane Proteins
0.3751189
0.53289115

References

1. Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209. [PubMed][CrossRef]
2. Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890.[PubMed]
3. Geesey GG. 2001. Bacterial behavior at surfaces. Curr Opin Microbiol 4:296–300. [PubMed][CrossRef]
4. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol 49:711–745. [PubMed][CrossRef]
5. Probert HM, Gibson GR. 2002. Bacterial biofilms in the human gastrointestinal tract. Curr Issues Intest Microbiol 3:23–27.[PubMed]
6. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. [PubMed][CrossRef]
7. Ghannoum M, O'Toole GA (ed). 2004. Microbial Biofilms. ASM Press, Washington, D.C.
8. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. [PubMed][CrossRef]
9. Jefferson KK. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173. [PubMed][CrossRef]
10. Lejeune P. 2003. Contamination of abiotic surfaces: what a colonizing bacterium sees and how to blur it. Trends Microbiol 11:179–184. [PubMed][CrossRef]
11. O'Toole GA. 2003. To build a biofilm. J Bacteriol 185:2687–2689. [PubMed][CrossRef]
12. Stanley NR, Lazazzera BA. 2004. Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924. [PubMed][CrossRef]
13. Webb JS, Givskov M, Kjelleberg S. 2003. Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585. [PubMed][CrossRef]
14. Doyle RJ (ed). 1999. Biofilms, vol. 310. Academic Press, New York, N.Y.
15. Doyle RJ (ed). 2001. Microbial Growth in Biofilms, Part A: Developmental and Molecular Biological Aspects, vol. 336. Academic Press, New York, N.Y.
16. Doyle RJ (ed). 2001. Microbial Growth in Biofilms, Part B: Special Environments and Physicochemical Aspects, vol. 337. Academic Press, New York, N.Y.
17. Genevaux P, Muller S, Bauda P. 1996. A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiol Lett 142:27–30. [PubMed][CrossRef]
18. O'Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304. [PubMed][CrossRef]
19. Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293. [PubMed][CrossRef]
20. Ghigo JM. 2001. Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445. [PubMed][CrossRef]
21. Reisner A, Haagensen JA, Schembri MA, Zechner EL, Molin S. 2003. Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48:933–946. [PubMed][CrossRef]
22. Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK. 2004. Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524. [CrossRef]
23. Christensen BB, Sternberg C, Andersen JB, Palmer RJ, Jr, Nielsen AT, Givskov M, Molin S. 1999. Molecular tools for study of biofilm physiology. Methods Enzymol 310:20–42. [PubMed][CrossRef]
24. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE. 1991. Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567.[PubMed]
25. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE. 1994. The role of interactions, sessile growth and nutrient amendments on the degradative efficiency of a microbial consortium. Can J Microbiol 40:331–340.[PubMed]
26. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146(Pt 10):2395–2407.
27. Skillman LC, Sutherland IW, Jones MV, Goulsbra A. 1998. Green fluorescent protein as a novel species-specific marker in enteric dual-species biofilms. Microbiology 144(Pt 8):2095–2101. [CrossRef]
28. Sternberg C, Christensen BB, Johansen T, Toftgaard Nielsen A, Andersen JB, Givskov M, Molin S. 1999. Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65:4108–4117.[PubMed]
29. Licht TR, Christensen BB, Krogfelt KA, Molin S. 1999. Plasmid transfer in the animal intestine and other dynamic bacterial populations: the role of community structure and environment. Microbiology 145(Pt 9):2615–2622.
30. Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM. 2004. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674. [PubMed][CrossRef]
31. Schembri MA, Kjaergaard K, Klemm P. 2003. Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267. [PubMed][CrossRef]
32. Tenorio E, Saeki T, Fujita K, Kitakawa M, Baba T, Mori H, Isono K. 2003. Systematic characterization of Escherichia coli genes/ORFs affecting biofilm formation. FEMS Microbiol Lett 225:107–114. [PubMed][CrossRef]
33. O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. 1999. Genetic approaches to study of biofilms. Methods Enzymol 310:91–109. [PubMed][CrossRef]
34. Prigent-Combaret C, Lejeune P. 1999. Monitoring gene expression in biofilms. Methods Enzymol 310:56–79. [PubMed][CrossRef]
35. Genevaux P, Bauda P, DuBow MS, Oudega B. 1999. Identification of Tn10 insertions in the dsbA gene affecting Escherichia coli biofilm formation. FEMS Microbiol Lett 173:403–409. [PubMed][CrossRef]
36. Pratt LA, Kolter R. 1999. Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2:598–603. [PubMed][CrossRef]
37. Prigent-Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C. 2000. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2:450–464. [PubMed][CrossRef]
38. Genevaux P, Bauda P, DuBow MS, Oudega B. 1999. Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Arch Microbiol 172:1–8. [PubMed][CrossRef]
39. Sauer FG, Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ. 2000. Bacterial pili: molecular mechanisms of pathogenesis. Curr Opin Microbiol 3:65–72. [PubMed][CrossRef]
40. Cookson AL, Cooley WA, Woodward MJ. 2002. The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292:195–205. [PubMed][CrossRef]
41. Harris SL, Elliott DA, Blake MC, Must LM, Messenger M, Orndorff PE. 1990. Isolation and characterization of mutants with lesions affecting pellicle formation and erythrocyte agglutination by type 1 piliated Escherichia coli. J Bacteriol 172:6411–6418.[PubMed]
42. Moreira CG, Carneiro SM, Nataro JP, Trabulsi LR, Elias WP. 2003. Role of type I fimbriae in the aggregative adhesion pattern of enteroaggregative Escherichia coli. FEMS Microbiol Lett 226:79–85. [PubMed][CrossRef]
43. Orndorff PE, Devapali A, Palestrant S, Wyse A, Everett ML, Bollinger RR, Parker W. 2004. Immunoglobulin-mediated agglutination of and biofilm formation by Escherichia coli K-12 require the type 1 pilus fiber. Infect Immun 72:1929–1938. [PubMed][CrossRef]
44. Otto K, Norbeck J, Larsson T, Karlsson KA, Hermansson M. 2001. Adhesion of type 1-fimbriated Escherichia coli to abiotic surfaces leads to altered composition of outer membrane proteins. J Bacteriol 183:2445–2453. [PubMed][CrossRef]
45. Otto K, Hermansson M. 2004. Inactivation of ompX causes increased interactions of type 1 fimbriated Escherichia coli with abiotic surfaces. J Bacteriol 186:226–234. [PubMed][CrossRef]
46. Austin JW, Sanders G, Kay WW, Collinson SK. 1998. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301. [PubMed][CrossRef]
47. Hammar M, Arnqvist A, Bian Z, Olsen A, Normark S. 1995. Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670. [PubMed][CrossRef]
48. Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P. 1998. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449.[PubMed]
49. Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P, Dorel C. 2001. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183:7213–7223. [PubMed][CrossRef]
50. Jubelin G, Vianney A, Beloin C, Ghigo J-M, Lazzaroni J-C, Lejeune P, Dorel C. 2005. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 187:2038–2049. [PubMed][CrossRef]
51. Brombacher E, Dorel C, Zehnder AJ, Landini P. 2003. The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Microbiology 149:2847–2857. [PubMed][CrossRef]
52. Dorel C, Vidal O, Prigent-Combaret C, Vallet I, Lejeune P. 1999. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178:169–175. [PubMed][CrossRef]
53. Gerstel U, Park C, Romling U. 2003. Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49:639–654. [PubMed][CrossRef]
54. Danese PN, Pratt LA, Dove SL, Kolter R. 2000. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37:424–432. [PubMed][CrossRef]
55. Hasman H, Chakraborty T, Klemm P. 1999. Antigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation. J Bacteriol 181:4834–4841.[PubMed]
56. Henderson IR, Meehan M, Owen P. 1997. Antigen 43, a phase-variable bipartite outer membrane protein, determines colony morphology and autoaggregation in Escherichia coli K-12. FEMS Microbiol Lett 149:115–120. [PubMed][CrossRef]
57. Kjaergaard K, Schembri MA, Hasman H, Klemm P. 2000. Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens. J Bacteriol 182:4789–4796. [PubMed][CrossRef]
58. Owen P, Meehan M, de Loughry-Doherty H, Henderson I. 1996. Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol Med Microbiol 16:63–76. [PubMed][CrossRef]
59. Kjaergaard K, Schembri MA, Ramos C, Molin S, Klemm P. 2000. Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol 2:695–702. [PubMed][CrossRef]
60. Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F. 2002. Plasmids spread very fast in heterogeneous bacterial communities. Genetics 162:1525–1532.[PubMed]
61. Hausner M, Wuertz S. 1999. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713.[PubMed]
62. Lebaron P, Bauda P, Lett MC, Duval-Iflah Y, Simonet P, Jacq E, Frank N, Roux B, Baleux B, Faurie G, Hubert JC, Normand P, Prieur D, Schmitt S, Block JC. 1997. Recombinant plasmid mobilization between E. coli strains in seven sterile microcosms. Can J Microbiol 43:534–540.[PubMed]
63. Molin S, Tolker-Nielsen T. 2003. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261. [PubMed][CrossRef]
64. Wuertz S, Okabe S, Hausner M. 2004. Microbial communities and their interactions in biofilm systems: an overview. Water Sci Technol 49:327–336.[PubMed]
65. Simonsen L. 1990. Dynamics of plasmid transfer on surfaces. J Gen Microbiol 136(Pt 6):1001–1007.
66. Henderson IR, Navarro-Garcia F, Nataro JP. 1998. The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6:370–378. [PubMed][CrossRef]
67. Amabile-Cuevas CF, Chicurel ME. 1996. A possible role for plasmids in mediating the cell-cell proximity required for gene flux. J Theor Biol 181:237–243. [PubMed][CrossRef]
68. Roux A, Beloin C, Ghigo JM. 2005. Combined inactivation and expression strategy to study gene function under physiological conditions: application to identification of new Escherichia coli adhesins. J Bacteriol 187:1001–1013. [PubMed][CrossRef]
69. Dobrindt U, Hentschel U, Kaper JB, Hacker J. 2002. Genome plasticity in pathogenic and nonpathogenic enterobacteria. Curr Top Microbiol Immunol 264:157–175.[PubMed]
70. Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533. [PubMed][CrossRef]
71. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024. [PubMed][CrossRef]
72. Starkey M, Gray KA, Chang SI, Parsek MR. 2004. A sticky business: the extracellular polymeric substance matrix of bacterial biofilms, p 174–191. In Ghannoum M and O’Toole GA (ed), Microbial Biofilms. ASM Press, Washington, D.C.
73. Sutherland IW. 2001. The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227. [PubMed][CrossRef]
74. Sutherland IW. 2001. Exopolysaccharides in biofilms, flocs and related structures. Water Sci Technol 43:77–86.[PubMed]
75. Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR. 1996. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893.[PubMed]
76. Ebel W, Trempy JE. 1999. Escherichia coli RcsA, a positive activator of colanic acid capsular polysaccharide synthesis, functions to activate its own expression. J Bacteriol 181:577–584.[PubMed]
77. Gottesman S. 1995. Regulation of capsule synthesis: modification of the two-component paradigm by an accessory unstable regulator. In Hoch JA and Silhavy TJ (ed), Two-Component Signal Transduction. ASM Press, Washington, D.C.
78. Ferrieres L, Clarke DJ. 2003. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 50:1665–1682. [PubMed][CrossRef]
79. Ophir T, Gutnick D. 1994. A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745.[PubMed]
80. Sledjeski DD, Gottesman S. 1996. Osmotic shock induction of capsule synthesis in Escherichia coli K-12. J Bacteriol 178:1204–1206.[PubMed]
81. Sailer FC, Meberg BM, Young KD. 2003. beta-Lactam induction of colanic acid gene expression in Escherichia coli. FEMS Microbiol Lett 226:245–249. [PubMed][CrossRef]
82. Danese PN, Pratt LA, Kolter R. 2000. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596. [PubMed][CrossRef]
83. Hanna A, Berg M, Stout V, Razatos A. 2003. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl Environ Microbiol 69:4474–4481. [PubMed][CrossRef]
84. Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808. [PubMed][CrossRef]
85. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463. [PubMed][CrossRef]
86. Romling U, Bokranz W, Rabsch W, Zogaj X, Nimtz M, Tschape H. 2003. Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Int J Med Microbiol 293:273–285. [PubMed][CrossRef]
87. Romling U. 2002. Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212. [PubMed][CrossRef]
88. Zogaj X, Bokranz W, Nimtz M, Romling U. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158. [PubMed][CrossRef]
89. Garcia B, Latasa C, Solano C, Portillo FG, Gamazo C, Lasa I. 2004. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 54:264–277. [PubMed][CrossRef]
90. Wang X, Preston JF III, Romeo T. 2004. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734. [PubMed][CrossRef]
91. Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R. 1996. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183.[PubMed]
92. Maira-Litran T, Kropec A, Abeygunawardana C, Joyce J, Mark G III, Goldmann DA, Pier GB. 2002. Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 70:4433–4440. [PubMed][CrossRef]
93. Redfield RJ. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370. [PubMed][CrossRef]
94. Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M. 2004. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275. [PubMed][CrossRef]
95. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107. [PubMed][CrossRef]
96. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ. 2004. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101:1333–1338. [PubMed][CrossRef]
97. White AP, Gibson DL, Collinson SK, Banser PA, Kay WW. 2003. Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar enteritidis. J Bacteriol 185:5398–5407. [PubMed][CrossRef]
98. Itoh Y, Wang X, Hinnebusch BJ, Preston JF III, Romeo T. 2005. Depolymerization of β-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387. [PubMed][CrossRef]
99. Harshey RM, Toguchi A. 1996. Spinning tails: homologies among bacterial flagellar systems. Trends Microbiol 4:226–231. [PubMed][CrossRef]
100. Raivio TL, Silhavy TJ. 2001. Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 55:591–624. [PubMed][CrossRef]
101. Otto K, Silhavy TJ. 2002. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci USA 99:2287–2292. [PubMed][CrossRef]
102. Snyder WB, Davis LJ, Danese PN, Cosma CL, Silhavy TJ. 1995. Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J Bacteriol 177:4216–4223.[PubMed]
103. De Wulf P, McGuire AM, Liu X, Lin EC. 2002. Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem 277:26652–26661. [PubMed][CrossRef]
104. De Wulf P, Kwon O, Lin EC. 1999. The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons. J Bacteriol 181:6772–6778.[PubMed]
105. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002.[PubMed]
106. Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanie-Cornet MP, Gutierrez C, Cam K. 2003. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49:823–832. [PubMed][CrossRef]
107. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. 1987. Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464. [PubMed][CrossRef]
108. Yamamoto K, Yata K, Fujita N, Ishihama A. 2001. Novel mode of transcription regulation by SdiA, an Escherichia coli homologue of the quorum-sensing regulator. Mol Microbiol 41:1187–1198. [PubMed][CrossRef]
109. Aldea M, Hernandez-Chico C, de la Campa AG, Kushner SR, Vicente M. 1988. Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol 170:5169–5176.[PubMed]
110. Santos JM, Lobo M, Matos AP, De Pedro MA, Arraiano CM. 2002. The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol Microbiol 45:1729–1740. [PubMed][CrossRef]
111. Vieira HL, Freire P, Arraiano CM. 2004. Effect of Escherichia coli morphogene bolA on biofilms. Appl Environ Microbiol 70:5682–5684. [PubMed][CrossRef]
112. Wolfe AJ, Chang DE, Walker JD, Seitz-Partridge JE, Vidaurri MD, Lange CF, Pruss BM, Henk MC, Larkin JC, Conway T. 2003. Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol 48:977–988. [PubMed][CrossRef]
113. Balzer GJ, McLean RJ. 2002. The stringent response genes relA and spoT are important for Escherichia coli biofilms under slow-growth conditions. Can J Microbiol 48:675–680. [PubMed][CrossRef]
114. Gentry DR, Hernandez VJ, Nguyen LH, Jensen DB, Cashel M. 1993. Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. J Bacteriol 175:7982–7989.[PubMed]
115. Jackson DW, Simecka JW, Romeo T. 2002. Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184:3406–3410. [PubMed][CrossRef]
116. Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P. 1999. Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508.[PubMed]
117. Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T. 2002. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184:290–301. [PubMed][CrossRef]
118. Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, Romeo T. 2001. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40:245–256. [PubMed][CrossRef]
119. Sauer K, Camper AK. 2001. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183:6579–6589. [PubMed][CrossRef]
120. Sahu SN, Acharya S, Tuminaro H, Patel I, Dudley K, LeClerc JE, Cebula TA, Mukhopadhyay S. 2003. The bacterial adaptive response gene, barA, encodes a novel conserved histidine kinase regulatory switch for adaptation and modulation of metabolism in Escherichia coli. Mol Cell Biochem 253:167–177. [PubMed][CrossRef]
121. Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, Babitzke P, Romeo T. 2002. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184:5130–5140. [PubMed][CrossRef]
122. Nagasawa S, Tokishita S, Aiba H, Mizuno T. 1992. A novel sensor-regulator protein that belongs to the homologous family of signal-transduction proteins involved in adaptive responses in Escherichia coli. Mol Microbiol 6:799–807. [PubMed][CrossRef]
123. Mukhopadhyay S, Audia JP, Roy RN, Schellhorn HE. 2000. Transcriptional induction of the conserved alternative sigma factor RpoS in Escherichia coli is dependent on BarA, a probable two-component regulator. Mol Microbiol 37:371–381. [PubMed][CrossRef]
124. Pernestig AK, Melefors O, Georgellis D. 2001. Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J Biol Chem 276:225–231. [PubMed][CrossRef]
125. Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T. 2002. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46:281–291. [PubMed][CrossRef]
126. Venturi V. 2003. Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different? Mol Microbiol 49:1–9. [PubMed][CrossRef]
127. Dorman CJ. 2004. H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400. [PubMed][CrossRef]
128. Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P. 2001. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36. [PubMed][CrossRef]
129. Soutourina OA, Bertin PN. 2003. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505–523. [PubMed][CrossRef]
130. Dorman CJ, Bhriain NNT. 1992. Thermal regulation of fimA, the Escherichia coli gene coding for the type 1 fimbrial subunit protein. FEMS Microbiol Lett 78:125–130. [PubMed][CrossRef]
131. Olsen PB, Schembri MA, Gally DL, Klemm P. 1998. Differential temperature modulation by H-NS of the fimB and fimE recombinase genes which control the orientation of the type 1 fimbrial phase switch. FEMS Microbiol Lett 162:17–23. [PubMed][CrossRef]
132. Sledjeski D, Gottesman S. 1995. A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. Proc Natl Acad Sci USA 92:2003–2007. [PubMed][CrossRef]
133. Barth M, Marschall C, Muffler A, Fischer D, Hengge-Aronis R. 1995. Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli. J Bacteriol 177:3455–3464.[PubMed]
134. Landini P, Zehnder AJ. 2002. The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagellar genes and lipopolysaccharide production. J Bacteriol 184:1522–1529. [PubMed][CrossRef]
135. Hengge-Aronis R. 2002. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395. [PubMed][CrossRef]
136. Hengge-Aronis R. 1996. Stationary-phase gene regulation, p 1497–1512. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, D.C.
137. Olsen A, Arnqvist A, Hammar M, Sukupolvi S, Normark S. 1993. The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536. [PubMed][CrossRef]
138. Adams JL, McLean RJ. 1999. Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65:4285–4287.[PubMed]
139. Corona-Izquierdo FP, Membrillo-Hernandez J. 2002. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett 211:105–110. [PubMed][CrossRef]
140. Schembri MA, Klemm P. 2001. Coordinate gene regulation by fimbriae-induced signal transduction. EMBO J 20:3074–3081. [PubMed][CrossRef]
141. Schembri MA, Ussery DW, Workman C, Hasman H, Klemm P. 2002. DNA microarray analysis of fim mutations in Escherichia coli. Mol Genet Genomics 267:721–729. [PubMed][CrossRef]
142. Henderson IR, Meehan M, Owen P. 1997. A novel regulatory mechanism for a novel phase-variable outer membrane protein of Escherichia coli. Adv Exp Med Biol 412:349–355.[PubMed]
143. Henderson IR, Owen P, Nataro JP. 1999. Molecular switches—the ON and OFF of bacterial phase variation. Mol Microbiol 33:919–932. [PubMed][CrossRef]
144. Waldron DE, Owen P, Dorman CJ. 2002. Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol Microbiol 44:509–520. [PubMed][CrossRef]
145. Wallecha A, Munster V, Correnti J, Chan T, van der Woude M. 2002. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J Bacteriol 184:3338–3347. [PubMed][CrossRef]
146. Haagmans W, van der Woude M. 2000. Phase variation of Ag43 in Escherichia coli: dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol Microbiol 35:877–887. [PubMed][CrossRef]
147. Henderson IR, Owen P. 1999. The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and OxyR. J Bacteriol 181:2132–2141.[PubMed]
148. Wallecha A, Correnti J, Munster V, van der Woude M. 2003. Phase variation of Ag43 is independent of the oxidation state of OxyR. J Bacteriol 185:2203–2209. [PubMed][CrossRef]
149. Schembri MA, Hjerrild L, Gjermansen M, Klemm P. 2003. Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 185:2236–2242. [PubMed][CrossRef]
150. Schembri MA, Dalsgaard D, Klemm P. 2004. Capsule shields the function of short bacterial adhesins. J Bacteriol 186:1249–1257. [PubMed][CrossRef]
151. Kjelleberg S, Molin S. 2002. Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5:254–258. [PubMed][CrossRef]
152. Ahmer BM. 2004. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol 52:933–945. [PubMed][CrossRef]
153. Xavier KB, Bassler BL. 2003. LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197. [PubMed][CrossRef]
154. Xavier KB, Bassler BL. 2005. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J Bacteriol 187:238–248. [PubMed][CrossRef]
155. Merritt J, Qi F, Goodman SD, Anderson MH, Shi W. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979. [PubMed][CrossRef]
156. Wen ZT, Burne RA. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol 186:2682–2691. [PubMed][CrossRef]
157. Colon-Gonzalez M, Mendez-Ortiz MM, Membrillo-Hernandez J. 2004. Anaerobic growth does not support biofilm formation in Escherichia coli K-12. Res Microbiol 155:514–521. [PubMed][CrossRef]
158. Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK. 2004. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng 88:630–642. [CrossRef]
159. Ren D, Sims JJ, Wood TK. 2001. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3:731–736. [PubMed][CrossRef]
160. Prouty AM, Schwesinger WH, Gunn JS. 2002. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70:2640–2649. [PubMed][CrossRef]
161. Michael B, Smith JN, Swift S, Heffron F, Ahmer BM. 2001. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol 183:5733–5742. [PubMed][CrossRef]
162. Di Martino PD, Fursy R, Bret L, Sundararaju B, Phillips RS. 2003. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 49:443–449. [PubMed][CrossRef]
163. Wang D, Ding X, Rather PN. 2001. Indole can act as an extracellular signal in Escherichia coli. J Bacteriol 183:4210–4216. [PubMed][CrossRef]
164. Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK. 2004. Stationary-phase quorum-sensing signals affect autoinducer-2 and gene expression in Escherichia coli. Appl Environ Microbiol 70:2038–2043. [PubMed][CrossRef]
165. Sturgill G, Toutain CM, Komperda J, O'Toole GA, Rather PN. 2004. Role of CysE in production of an extracellular signaling molecule in Providencia stuartii and Escherichia coli: loss of CysE enhances biofilm formation in Escherichia coli. J Bacteriol 186:7610–7017. [PubMed][CrossRef]
166. Huang CT, Xu KD, McFeters GA, Stewart PS. 1998. Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol 64:1526–1531.[PubMed]
167. Beloin C, Ghigo JM. 2005. Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13:16–19. [PubMed][CrossRef]
168. Huang CT, Yu FP, McFeters GA, Stewart PS. 1995. Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Appl Environ Microbiol 61:2252–2256.[PubMed]
169. Wentland EJ, Stewart PS, Huang CT, McFeters GA. 1996. Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnol Prog 12:316–321. [PubMed][CrossRef]
170. Agladze K, Jackson D, Romeo T. 2003. Periodicity of cell attachment patterns during Escherichia coli biofilm development. J Bacteriol 185:5632–5638. [PubMed][CrossRef]
171. Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122. [PubMed][CrossRef]
172. Drenkard E. 2003. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219. [PubMed][CrossRef]
173. Stewart PS, Costerton JW. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138. [PubMed][CrossRef]
174. Stewart PS, Mukherjee PK, Ghannoum MA. 2004. Biofilm antimicrobial resistance, p 250–268. In Ghannoum M and O’Toole GA (ed), Microbial Biofilms. ASM Press, Washington, D.C.
175. Ashby MJ, Neale JE, Knott SJ, Critchley IA. 1994. Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. J Antimicrob Chemother 33:443–452. [PubMed][CrossRef]
176. Evans DJ, Allison DG, Brown MR, Gilbert P. 1990. Effect of growth-rate on resistance of gram-negative biofilms to cetrimide. J Antimicrob Chemother 26:473–478. [PubMed][CrossRef]
177. Gander S, Gilbert P. 1997. The development of a small-scale biofilm model suitable for studying the effects of antibiotics on biofilms of gram-negative bacteria. J Antimicrob Chemother 40:329–334. [PubMed][CrossRef]
178. Stone G, Wood P, Dixon L, Keyhan M, Matin A. 2002. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob Agents Chemother 46:2458–2461. [PubMed][CrossRef]
179. Maira-Litran T, Allison DG, Gilbert P. 2000. Expression of the multiple antibiotic resistance operon (mar) during growth of Escherichia coli as a biofilm. J Appl Microbiol 88:243–247. [PubMed][CrossRef]
180. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18. [PubMed][CrossRef]
ecosalplus.8.3.1.3.citations
ecosalplus/1/2
content/journal/ecosalplus/10.1128/ecosalplus.8.3.1.3
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.3.1.3
2005-08-29
2017-11-19

Abstract:

is a relevant model organism for the study of the molecular mechanisms underlying surface colonization. This process requires two essential steps: adhesion to a surface, followed by cell-cell adhesion counteracting the shear forces of the environment, with both steps contributing to the formation of a biofilm. This review provides an overview of the current knowledge of the genetic analyses aiming at identifying factors involved in both of these two highly related biological processes, with a particular emphasis on studies performed in K-12. Bacterial adhesion to abiotic surfaces is likely to be highly dependent on the physicochemical and electrostatic interactions between the bacterial envelope and the substrate, which is itself often conditioned by the fluids to which it is exposed. Genetic analyses have revealed the diversity of genetic factors in that participate in colonization and biofilm formation on abiotic surfaces. The study of surface colonization and biofilm formation represents a rapidly expanding field of investigation. The use of K-12 to investigate the genetic basis of bacterial interactions with surfaces has led to the identification of a large repertoire of adhesins whose expression is subject to a complex interplay between regulatory networks. Understanding how K-12 behaves in complex biofilm communities will certainly contribute to an understanding of how natural commensal and pathogenic isolates develop.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Major panel: Confocal scanning laser microscopy (CSLM) of a biofilm formed by F+ strain expressing the green fluorescent protein (GFP) after 6 h of growth in minimal medium at 37°C. Front, tilted view; bottom and side, axis profile views. (A) Insets corresponding to scanning electron microscopy (SEM) of bacteria at early colonization stages. (B) Insets corresponding to SEM of bacteria at mature biofilm stage.

Citation: Beloin C, Da Re S, Ghigo J. 2005. Colonization of Abiotic Surfaces, EcoSal Plus 2005; doi:10.1128/ecosalplus.8.3.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

(A) Optical microscopy (×40) of F+ grown on PVC coupon and stained with crystal violet dye. (B) CSLM (×40) of a biofilm formed by F+ strain expressing the GFP after 10 h of growth in minimal medium at 37°C. Front, tilted view. Sides, and axis profile views. (C) Transmission electron microscopy (×2,000) of F+ grown on microscopy plastic coupon in a continuous-flow microfermentor (see Fig. 3 ). Bar, 5 μm. (D) Scanning electron microscopy (×10,000) of an environmental grown on microscopy plastic coupon in a continuous-flow microfermentor (see Fig. 3 ). Bar, 2 μm.

Citation: Beloin C, Da Re S, Ghigo J. 2005. Colonization of Abiotic Surfaces, EcoSal Plus 2005; doi:10.1128/ecosalplus.8.3.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Experimental models commonly used for the study of bacterial biofilms. (A) Microtiter plate model used to screen mutant libraries for biofilm-negative mutants, starting from a biofilm-positive strain. Biofilm rings are revealed after coloration with the nonspecific crystal violet dye. (B) Air-liquid interface biofilm pellicle formed by a sp. standing culture. (C) Continuous-flow dynamic analysis of biofilm formed by a GFP-expressing in a flow cell. The biofilm formed after 10 h was analyzed by CSLM (see Fig. 2 ). (D) Continuous-flow analysis of mature biofilm in a fermentor. The right part shows biofilm formed on Pyrex glass surfaces by an F+ strain after 24 h of culture.

Citation: Beloin C, Da Re S, Ghigo J. 2005. Colonization of Abiotic Surfaces, EcoSal Plus 2005; doi:10.1128/ecosalplus.8.3.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Curli production at low or moderate osmolarity results essentially from transcriptional activation of the promoter by OmpR. When cells encounter high osmolarity due to an increase in salt concentration, curli production will be repressed by the response regulator CpxR. In an increase of osmolarity due to sucrose, the repression of the operon expression is due to the histone-like protein H-NS. The different regulations are indicated by arrows for positive controls or via a line with a bar for negative controls. This schematic representation of the regulation of expression results from conclusions drawn in the recent article of Jubelin et al. ( 50 ).

Citation: Beloin C, Da Re S, Ghigo J. 2005. Colonization of Abiotic Surfaces, EcoSal Plus 2005; doi:10.1128/ecosalplus.8.3.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Ag43 is an adhesin that promotes bacterial aggregation in culture tube (top). This aggregation is due to increased cell-to-cell interactions (middle: SEM microscopy of mature biofilms; bar, 2 μm; inset, optical microscopy of liquid cultures, ×40). The formation of cell aggregates favors three-dimensional biofilm formation (bottom: biofilm formation in a microfermentor; see Fig. 3 ). (A) MG1655 that expresses only low levels of Ag43. (B) MG1655, a strain that is derepressed for the expression of Ag43

Citation: Beloin C, Da Re S, Ghigo J. 2005. Colonization of Abiotic Surfaces, EcoSal Plus 2005; doi:10.1128/ecosalplus.8.3.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Regulatory circuits and signaling molecules involved in biofilm formation

Citation: Beloin C, Da Re S, Ghigo J. 2005. Colonization of Abiotic Surfaces, EcoSal Plus 2005; doi:10.1128/ecosalplus.8.3.1.3

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error