1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

Adhesins of Enteropathogenic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Author: Alfredo G. Torres1
  • Editor: Michael S. Donnenberg2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Departments of Microbiology and Immunology and Pathology and The Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1070; 2: University of Maryland, School of Medicine, Baltimore, MD
  • Received 04 August 2005 Accepted 21 November 2005 Published 28 February 2006
  • Address correspondence to Alfredo G. Torres altorres@utmb.edu
image of Adhesins of Enteropathogenic <span class="jp-italic">Escherichia coli</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    Adhesins of Enteropathogenic , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/1/8_3_2_4_module-1.gif /docserver/preview/fulltext/ecosalplus/2/1/8_3_2_4_module-2.gif
  • Abstract:

    Enteropathogenic (EPEC) strains induce morphological changes in infected epithelial cells. The resulting attaching and effacing (A/E) lesion is characterized by intimate bacterial adherence to epithelial cells, with microvillus destruction, cytoskeletal rearrangement, and aggregation of host cytoskeletal proteins. This review presents an overview of the adhesion mechanisms used for the colonization of the human gastrointestinal tract by EPEC. The mechanisms underlying EPEC adhesion, prior to and during the formation of the A/E lesion, and the host cytosolic responses to bacterial infection leading to diarrheal disease are discussed.

  • Citation: Torres A. 2006. Adhesins of Enteropathogenic , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.3.2.4

Key Concept Ranking

Bacterial Proteins
0.51719636
Type IV Pilin Proteins
0.49168035
Type III Secretion System
0.42695346
0.51719636

References

1. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201.[PubMed]
2. O’Ryan M, Prado V, Pickering LK. 2005. A millennium update on pediatric diarrheal illness in the developing world. Semin Pediatr Infect Dis 16:125–136. [PubMed][CrossRef]
3. Rothbaum RJ, Partin JC, Saalfield K, McAdams AJ. 1983. An ultrastructural study of enteropathogenic Escherichia coli infection in human infants. Ultrastruct Pathol 4:291–304. [PubMed][CrossRef]
4. Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, Knutton S. 1998. Enteropathogenic and enterohemorrhagic Escherichia coli: more subversive elements. Mol Microbiol 30:911–921. [PubMed][CrossRef]
5. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. [PubMed][CrossRef]
6. Knutton S, Baldwin T, Williams PH, McNeish AS. 1989. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 57:1290–1298.[PubMed]
7. Kaper JB. 1996. Defining EPEC. Rev Microbiol Sao Paolo 27:130–133.
8. Trabulsi LR, Keller R, Gomes TAT. 2002. Typical and atypical enteropathogenic Escherichia coli (EPEC). Emerg Infect Dis 8:508–513.[PubMed]
9. Baldini MM, Kaper JB, Levine MM, Candy DC, Moon HW. 1985. Plasmid-mediated adhesion in enteropathogenic Escherichia coli. J Pediatr Gastroenterol Nutr 2:534–538. [CrossRef]
10. Scaletsky IC, Silva MLM, Trabulsi LR. 1984. Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect Immun 45:534–536.[PubMed]
11. Donnenberg MS, Giron JA, Nataro JP, Kaper JB. 1992. A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol 6:3427–3437. [PubMed][CrossRef]
12. Tobe T, Sasakawa C. 2001. Role of bundle-forming pilus of enteropathogenic Escherichia coli in host cell adherence and in microcolony development. Cell Microbiol 3:579–585. [PubMed][CrossRef]
13. Tobe T, Sasakawa C. 2002. Species-specific cell adhesion of enteropathogenic Escherichia coli is mediated by type IV bundle-forming pili. Cell Microbiol 4:29–42. [PubMed][CrossRef]
14. Bortolini MR, Trabulsi LR, Keller R, Frankel G, Sperandio V. 1999. Lack of expression of bundle-forming pili in some clinical isolates of enteropathogenic Escherichia coli (EPEC) is due to a conserved large deletion in the bfp operon. FEMS Microbiol Lett 179:169–174. [PubMed][CrossRef]
15. Gomes TA, Vieira MA, Abe CM, Rodrigues D, Griffin PM, Ramos SR. 1998. Adherence patterns and adherence-related DNA sequences in Escherichia coli isolates from children with and without diarrhea in Sao Paulo city, Brazil. J Clin Microbiol 36:3609–3613.[PubMed]
16. Fitzhenry RJ, Pickard DJ, Hartland EL, Reece S, Dougan G, Phillips AD, Frankel G. 2002. Intimin type influences the site of human intestinal mucosal colonisation by enterohaemorrhagic Escherichia coli O157:H7. Gut 50:180–185. [PubMed][CrossRef]
17. Phillips AD, Frankel G. 2000. Intimin-mediated tissue specificity in enteropathogenic Escherichia coli interaction with human intestinal organ cultures. J Infect Dis 181:1496–1500. [PubMed][CrossRef]
18. Torres AG, Kaper JB. 2001. PAIs of intestinal E. coli, p 31–48. In Hacker J and Kaper JB (ed), Pathogenicity Islands (PAIs) and the Evolution of Pathogenic Microbes, vol. 1. Springer-Verlag, Berlin, Germany.
19. Jerse AE, Yu J, Tall BD, Kaper JB. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci USA 87:7839–7843. [PubMed][CrossRef]
20. Jerse AE, Kaper JB. 1991. The eae gene of enteropathogenic Escherichia coli encodes a 94-kilodalton membrane protein, the expression of which is influenced by the EAF plasmid. Infect Immun 59:4302–4309.[PubMed]
21. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci USA 92:1664–1668. [PubMed][CrossRef]
22. Deng W, Li Y, Vallance BA, Finlay BB. 2001. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect Immun 69:6323–6335. [PubMed][CrossRef]
23. McDaniel TK, Kaper JB. 1997. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol 23:399–407. [PubMed][CrossRef]
24. Zhu C, Agin TS, Elliott SJ, Johnson LA, Thate TE, Kaper JB, Boedeker EC. 2001. Complete nucleotide sequence and analysis of the locus of enterocyte effacement from rabbit diarrheagenic Escherichia coli RDEC-1. Infect Immun 69:2107–2115. [PubMed][CrossRef]
25. Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng YK, Lai LC, McNamara BP, Donnenberg MS, Kaper JB. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28:1–4. [PubMed][CrossRef]
26. Jerse AE, Gicquelais KG, Kaper JB. 1991. Plasmid and chromosomal elements involved in the pathogenesis of attaching and effacing Escherichia coli. Infect Immun 59:3869–3875.[PubMed]
27. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–520. [PubMed][CrossRef]
28. Rosenshine I, Ruschkowski S, Stein M, Reincheid DJ, Mills SD, Finlay BB. 1996. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J 15:2613–2624.[PubMed]
29. Campellone KG, Leong JM. 2003. Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E coli O157:H7. Curr Opin Microbiol 6:82–90. [PubMed][CrossRef]
30. Abe A, de Grado M, Pfuetzner RA, Sanchez-Sanmartin C, Devinney R, Puente JL, Strynadka NC, Finlay BB. 1999. Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Mol Microbiol 33:1162–1175. [PubMed][CrossRef]
31. Creasey EA, Delahay RM, Bishop AA, Shaw RK, Kenny B, Knutton S, Frankel G. 2003. CesT is a bivalent enteropathogenic Escherichia coli chaperone required for translocation of both Tir and Map. Mol Microbiol 47:209–221. [PubMed][CrossRef]
32. Elliott SJ, Hutcheson SW, Dubois MS, Mellies JL, Wainwright LA, Batchelor M, Frankel G, Knutton S, Kaper JB. 1999. Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli. Mol Microbiol 33:1176–1189. [PubMed][CrossRef]
33. Dean P, Maresca M, Kenny B. 2005. EPEC’s weapons of mass subversion. Curr Opin Microbiol 8:28–34. [PubMed][CrossRef]
34. Garmendia J, Frankel G, Crepin VF. 2005. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun 73:2573–2585. [PubMed][CrossRef]
35. Nougayrede JP, Fernandes PJ, Donnenberg MS. 2003. Adhesion of enteropathogenic Escherichia coli to host cells. Cell Microbiol 5:359–372. [PubMed][CrossRef]
36. Jarvis KG, Girón JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB. 1995. Enteropathogenic Escherichia coli contains a specialized secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci USA 92:7996–8000. [PubMed][CrossRef]
37. Kenny B, Jepson M. 2000. Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell Microbiol 2:579–590. [PubMed][CrossRef]
38. Jepson MA, Pellegrin S, Peto L, Banbury DN, Leard AD, Mellor H, Kenny B. 2003. Synergistic roles for the Map and Tir effector molecules in mediating uptake of enteropathogenic Escherichia coli (EPEC) into non-phagocytic cells. Cell Microbiol 5:773–783. [PubMed][CrossRef]
39. Tu X, Nisan I, Yona C, Hanski E, Rosenshine I. 2003. EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol Microbiol 47:595–606. [PubMed][CrossRef]
40. Shaw RK, Cleary J, Murphy MS, Frankel G, Knutton S. 2005. Interaction of enteropathogenic Escherichia coli with human intestinal mucosa: role of effector proteins in brush border remodeling and formation of attaching and effacing lesions. Infect Immun 73:1243–1251. [PubMed][CrossRef]
41. Devinney R, Nisan I, Ruschkowski S, Rosenshine I, Finlay BB. 2001. Tir tyrosine phosphorylation and pedestal formation are delayed in enteropathogenic Escherichia coli sepZ::TnphoA mutant 30-5-1(3). Infect Immun 69:559–563. [PubMed][CrossRef]
42. Rabinowitz RP, Lai LC, Jarvis K, McDaniel TK, Kaper JB, Stone KD, Donnenberg MS. 1996. Attaching and effacing of host cells by enteropathogenic Escherichia coli in the absence of detectable tyrosine kinase mediated signal transduction. Microb Pathog 21:157–171. [PubMed][CrossRef]
43. Kanack KJ, Crawford JA, Tatsuno I, Karmali MA, Kaper JB. 2005. SepZ/EspZ is secreted and translocated into HeLa cells by the enteropathogenic Escherichia coli type III secretion system. Infect Immun 73:4327–4337. [PubMed][CrossRef]
44. Elliott SJ, Krejany EO, Mellies JL, Robins-Browne RM, Sasakawa C, Kaper JB. 2001. EspG, a novel type III secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella. Infect Immun 69:4027–4033. [CrossRef]
45. Matsuzawa T, Kuwae A, Yoshida S, Sasakawa C, Abe A. 2004. Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J 23:3570–3582. [PubMed][CrossRef]
46. Shaw RK, Smollett K, Cleary J, Garmendia J, Straatman-Iwanowska A, Frankel G, Knutton S. 2005. Enteropathogenic Escherichia coli type III effectors EspG and EspG2 disrupt the microtubule network of intestinal epithelial cells. Infect Immun 73:4385–4390. [PubMed][CrossRef]
47. Tomson FL, Viswanathan VK, Kanack KJ, Kanteti RP, Straub KV, Menet M, Kaper JB, Hecht G. 2005. Enteropathogenic Escherichia coli EspG disrupts microtubules and in conjunction with Orf3 enhances perturbation of the tight junction barrier. Mol Microbiol 56:447–464. [PubMed][CrossRef]
48. Creasey EA, Friedberg D, Shaw RK, Umanski T, Knutton S, Rosenshine I, Frankel G. 2003. CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149:3639–3647. [PubMed][CrossRef]
49. Elliott SJ, Sperandio V, Giron JA, Shin S, Mellies JL, Wainwright L, Hutcheson SW, McDaniel TK, Kaper JB. 2000. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 68:6115–6126. [PubMed][CrossRef]
50. Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB. 1999. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33:296–306. [PubMed][CrossRef]
51. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, Vazquez A, Barba J, Ibarra JA, O’Donnell P, Metalnikov P, Ashman K, Lee S, Goode D, Pawson T, Finlay BB. 2004. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci USA 101:3597–3602. [PubMed][CrossRef]
52. Iyoda S, Watanabe H. 2005. ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol 187:4086–4094. [PubMed][CrossRef]
53. Neves BC, Mundy R, Petrovska L, Dougan G, Knutton S, Frankel G. 2003. CesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD. Infect Immun 71:2130–2141. [PubMed][CrossRef]
54. Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff C, Dougan G, Frankel G. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17:2166–2176. [PubMed][CrossRef]
55. Sekiya K, Ohishi M, Ogino T, Tamano K, Sasakawa C, Abe A. 2001. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci USA 98:11638–11643. [PubMed][CrossRef]
56. Shaw RK, Daniell S, Ebel F, Frankel G, Knutton S. 2001. EspA filament-mediated protein translocation into red blood cells. Cell Microbiol 3:213–222. [PubMed][CrossRef]
57. Taylor KA, O’Connell CB, Luther PW, Donnenberg MS. 1998. The EspB protein of enteropathogenic Escherichia coli is targeted to the cytoplasm of infected HeLa cells. Infect Immun 66:5501–5507.[PubMed]
58. Wolff C, Nisan I, Hanski E, Frankel G, Rosenshine I. 1998. Protein translocation into host epithelial cells by infecting enteropathogenic Escherichia coli. Mol Microbiol 28:143–155. [PubMed][CrossRef]
59. Lai L-C, Wainwright LA, Stone KD, Donnenberg MS. 1997. A third secreted protein that is encoded by the enteropathogenic Escherichia coli pathogenicity island is required for transduction of signals and for attaching and effacing activities in host cells. Infect Immun 65:2211–2217.[PubMed]
60. Wachter C, Beinke C, Mattes M, Schmidt MA. 1999. Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli. Mol Microbiol 31:1695–1707. [PubMed][CrossRef]
61. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA. 2001. Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3:669–679. [PubMed][CrossRef]
62. McNamara BP, Donnenberg MS. 1998. A novel proline-rich protein, EspF, is secreted from enteropathogenic Escherichia coli via the type III export pathway. FEMS Microbiol Lett 166:71–78. [PubMed][CrossRef]
63. Muza-Moons MM, Schneeberger EE, Hecht GA. 2004. Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol 6:783–793. [PubMed][CrossRef]
64. Nagai T, Abe A, Sasakawa C. 2005. Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J Biol Chem 280:2998–3011. [PubMed][CrossRef]
65. Nougayrede JP, Donnenberg MS. 2004. Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell Microbiol 6:1097–1111. [PubMed][CrossRef]
66. Kenny B. 2002. Enteropathogenic Escherichia coli (EPEC)—a crafty subversive little bug. Microbiology 148:1967–1978.[PubMed]
67. Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG, Haynes CA, Finlay BB, Strynadka NC. 2000. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405:1073–1077. [PubMed][CrossRef]
68. Batchelor M, Prasannan S, Daniell S, Reece S, Connerton I, Bloomberg G, Dougan G, Frankel G, Matthews S. 2000. Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli. EMBO J 19:2452–2464. [PubMed][CrossRef]
69. Liu H, Radhakrishnan P, Magoun L, Prabu M, Campellone KG, Savage P, He F, Schiffer CA, Leong JM. 2002. Point mutants of EHEC intimin that diminish Tir recognition and actin pedestal formation highlight a putative Tir binding pocket. Mol Microbiol 45:1557–1573. [PubMed][CrossRef]
70. Hartland EL, Batchelor M, Delahay RM, Hale C, Matthews S, Dougan G, Knutton S, Connerton I, Frankel G. 1999. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol Microbiol 32:151–158. [PubMed][CrossRef]
71. Kelly G, Prasannan S, Daniell S, Fleming K, Frankel G, Dougan G, Connerton I, Matthews S. 1999. Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat Struct Biol 6:313–318. [PubMed][CrossRef]
72. Liu H, Magoun L, Leong JM. 1999. Beta1-chain integrins are not essential for intimin-mediated host cell attachment and enteropathogenic Escherichia coli-induced actin condensation. Infect Immun 67:2045–2049.[PubMed]
73. Touze T, Hayward RD, Eswaran J, Leong JM, Koronakis V. 2004. Self-association of EPEC intimin mediated by the beta-barrel-containing anchor domain: a role in clustering of the Tir receptor. Mol Microbiol 51:73–87. [PubMed][CrossRef]
74. Frankel G, Lider O, Hershkoviz R, Mould AP, Kachalsky SG, Candy DC, Cahalon L, Humphries MJ, Dougan G. 1996. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins. J Biol Chem 271:20359–20364. [PubMed][CrossRef]
75. Muza-Moons MM, Koutsouris A, Hecht G. 2003. Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect Immun 71:7069–7078. [PubMed][CrossRef]
76. Frankel G, Phillips AD, Novakova M, Batchelor M, Hicks S, Dougan G. 1998. Generation of Escherichia coli intimin derivatives with differing biological activities using site-directed mutagenesis of the intimin C-terminus domain. Mol Microbiol 29:559–570. [PubMed][CrossRef]
77. Higgins LM, Frankel G, Connerton I, Goncalves NS, Dougan G, MacDonald TT. 1999. Role of bacterial intimin in colonic hyperplasia and inflammation. Science 285:588–591. [PubMed][CrossRef]
78. Goncalves NS, Hale C, Dougan G, Frankel G, MacDonald TT. 2003. Binding of intimin from enteropathogenic Escherichia coli to lymphocytes and its functional consequences. Infect Immun 71:2960–2965. [PubMed][CrossRef]
79. Sinclair JF, O’Brien AD. 2002. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J Biol Chem 277:2876–2885. [PubMed][CrossRef]
80. Sinclair JF, O’Brien AD. 2004. Intimin types alpha, beta, and gamma bind to nucleolin with equivalent affinity but lower avidity than to the translocated intimin receptor. J Biol Chem 279:33751–33758. [PubMed][CrossRef]
81. Phillips AD, Giron J, Hicks S, Dougan G, Frankel G. 2000. Intimin from enteropathogenic Escherichia coli mediates remodelling of the eukaryotic cell surface. Microbiology 146:1333–1344.[PubMed]
82. Donnenberg MS, Tacket CO, James SP, Losonsky G, Nataro JP, Wasserman SS, Kaper JB, Levine MM. 1993. Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J Clin Investig 92:1412–1417. [PubMed][CrossRef]
83. Torres AG, Zhou X, Kaper JB. 2005. Adherence of diarrheagenic Escherichia coli strains to epithelial cells. Infect Immun 73:18–29. [PubMed][CrossRef]
84. Jenkins C, Lawson AJ, Cheasty T, Willshaw GA, Wright P, Dougan G, Frankel G, Smith HR. 2003. Subtyping intimin genes from enteropathogenic Escherichia coli associated with outbreaks and sporadic cases in the United Kingdom and Eire. Mol Cell Probes 17:149–156. [PubMed][CrossRef]
85. Whittam TS, Wolfe ML, Wachsmuth IK, Orskov F, Orskov I, Wilson RA. 1993. Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun 61:1619–1629.[PubMed]
86. Cantey JR, Inman LR. 1981. Diarrhea due to Escherichia coli strain RDEC-1 in the rabbit: the Peyer’s patch as the initial site of attachment and colonization. J Infect Dis 143:440–446.[PubMed]
87. Adu-Bobie J, Frankel G, Bain C, Goncalves AG, Trabulsi LR, Douce G, Knutton S, Dougan G. 1998. Detection of intimins alpha, beta, gamma, and delta, four intimin derivatives expressed by attaching and effacing microbial pathogens. J Clin Microbiol 36:662–668.[PubMed]
88. Agin TS, Wolf MK. 1997. Identification of a family of intimins common to Escherichia coli causing attaching-effacing lesions in rabbits, humans, and swine. Infect Immun 65:320–326.[PubMed]
89. Oswald E, Schmidt H, Morabito S, Karch H, Marches O, Caprioli A. 2000. Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infect Immun 68:64–71. [PubMed][CrossRef]
90. Blanco JE, Blanco M, Alonso MP, Mora A, Dahbi G, Coira MA, Blanco J. 2004. Serotypes, virulence genes and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from human patients: prevalence in Lugo (Spain) from 1992 through 1999. J Clin Microbiol 42:311–319. [PubMed][CrossRef]
91. Blanco M, Blanco JE, Mora A, Rey J, Alonso JM, Hermoso M, Hermoso J, Alonso MP, Dhabi G, González EA, Bernárdez MI, Blanco J. 2003. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from healthy sheep in Spain. J Clin Microbiol 41:1351–1365. [PubMed][CrossRef]
92. Jores J, Zehmke K, Eichberg J, Rumer L, Wieler LH. 2003. Description of a novel intimin variant (type zeta) in the bovine O84:NM verotoxin-producing Escherichia coli strain 537/89 and the diagnostic value of intimin typing. Exp Biol Med (Maywood) 228:370–376.
93. Tarr CL, Whittam TS. 2002. Molecular evolution of the intimin gene O111 clones of pathogenic Escherichia coli. J Bacteriol 184:479–487. [PubMed][CrossRef]
94. Zhang WL, Köhler B, Oswald E, Beutin L, Karch H, Morabito S, Caprioli A, Suerbaum S, Schmidt H. 2002. Genetic diversity of intimin genes of attaching and effacing Escherichia coli strains. J Clin Microbiol 40:4486–4492. [PubMed][CrossRef]
95. Phillips AD, Navabpour S, Hicks S, Dougan G, Wallis T, Frankel G. 2000. Enterohaemorrhagic Escherichia coli O157:H7 target Peyer’s patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut 47:377–381. [PubMed][CrossRef]
96. Fitzhenry RJ, Stevens MP, Jenkins C, Wallis TS, Heuschkel R, Murch S, Thomson M, Frankel G, Phillips AD. 2003. Human intestinal tissue tropism of intimin epsilon O103 Escherichia coli. FEMS Microbiol Lett 218:311–316. [PubMed][CrossRef]
97. Vuopio-Varkila J, Schoolnik GK. 1991. Localized adherence by enteropathogenic Escherichia coli is an inducible phenotype associated with the expression of new outer membrane proteins. J Exp Med 174:1167–1177. [PubMed][CrossRef]
98. Girón JA, Ho AS, Schoolnik GK. 1991. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254:710–713. [PubMed][CrossRef]
99. Tobe T, Schoolnik GK, Sohel I, Bustamante VH, Puente JL. 1996. Cloning and characterization of bfpTVW, genes required for the transcriptional activation of bfpA in enteropathogenic Escherichia coli. Mol Microbiol 21:963–975. [PubMed][CrossRef]
100. Sohel I, Puente JL, Ramer SW, Bieber D, Wu CY, Schoolnik GK. 1996. Enteropathogenic Escherichia coli: identification of a gene cluster coding for bundle-forming pilus morphogenesis. J Bacteriol 178:2613–2628.[PubMed]
101. Stone KD, Zhang HZ, Carlson LK, Donnenberg MS. 1996. A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for the biogenesis of a type IV pilus. Mol Microbiol 20:325–337. [PubMed][CrossRef]
102. Hicks S, Frankel G, Kaper JB, Dougan G, Phillips AD. 1998. Role of intimin and bundle-forming pili in enteropathogenic Escherichia coli adhesion to pediatric intestinal tissue in vitro. Infect Immun 66:1570–1578.[PubMed]
103. Cleary J, Lai LC, Shaw RK, Straatman-Iwanowska A, Donnenberg MS, Frankel G, Knutton S. 2004. Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology 150:527–538. [PubMed][CrossRef]
104. Anantha RP, Stone KD, Donnenberg MS. 2000. Effects of bfp mutations on biogenesis of functional enteropathogenic Escherichia coli type IV pili. J Bacteriol 182:2498–2506. [PubMed][CrossRef]
105. Ramer SW, Schoolnik GK, Wu CY, Hwang J, Schmidt SA, Bieber D. 2002. The type IV pilus assembly complex: biogenic interactions among the bundle-forming pilus proteins of enteropathogenic Escherichia coli. J Bacteriol 184:3457–3465. [PubMed][CrossRef]
106. Bieber D, Ramer SW, Wu CY, Murray WJ, Tobe T, Fernandez R, Schoolnik GK. 1998. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280:2114–2118. [PubMed][CrossRef]
107. Blank TE, Zhong H, Bell AL, Whittam TS, Donnenberg MS. 2000. Molecular variation among type IV pilin (bfpA) genes from diverse enteropathogenic Escherichia coli strains. Infect Immun 68:7028–7038. [PubMed][CrossRef]
108. Donnenberg MS, Zhang HZ, Stone KD. 1997. Biogenesis of the bundle-forming pilus of enteropathogenic Escherichia coli: reconstitution of fimbriae in recombinant E. coli and role of DsbA in pilin stability—a review. Gene 192:33–38. [PubMed][CrossRef]
109. Ramboarina S, Fernandes P, Simpson P, Frankel G, Donnenberg M, Matthews S. 2004. Complete resonance assignments of bundlin (BfpA) from the bundle-forming pilus of enteropathogenic Escherichia coli. J Biomol NMR 29:427–428. [PubMed][CrossRef]
110. Zhang HZ, Lory S, Donnenberg MS. 1994. A plasmid-encoded prepilin peptidase gene from enteropathogenic Escherichia coli. J Bacteriol 176:6885–6891.[PubMed]
111. Zhang HZ, Donnenberg MS. 1996. DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli. Mol Microbiol 21:787–797. [PubMed][CrossRef]
112. Crowther LJ, Yamagata A, Craig L, Tainer JA, Donnenberg MS. 2005. The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. J Biol Chem 280:24839–24848. [PubMed][CrossRef]
113. Anantha RP, Stone KD, Donnenberg MS. 1998. The role of BfpF, a member of the PilT family of putative nucleotide-binding proteins, in type IV pilus biogenesis and in interactions between enteropathogenic Escherichia coli and host cells. Infect Immun 66:122–131.
114. Knutton S, Shaw RK, Anantha RP, Donnenberg MS, Zorgani AA. 1999. The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal. Mol Microbiol 33:499–509. [PubMed][CrossRef]
115. Ramer SW, Bieber D, Schoolnik GK. 1996. BfpB, an outer membrane lipoprotein required for the biogenesis of bundle-forming pili in enteropathogenic Escherichia coli. J Bacteriol 178:6555–6563.[PubMed]
116. Genin S, Boucher CA. 1994. A superfamily of proteins involved in different secretion pathways in gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Gen Genet 243:112–118. [PubMed][CrossRef]
117. Schmidt SA, Bieber D, Ramer SW, Hwang J, Wu CY, Schoolnik G. 2001. Structure-function analysis of BfpB, a secretin-like protein encoded by the bundle-forming-pilus operon of enteropathogenic Escherichia coli. J Bacteriol 183:4848–4859. [PubMed][CrossRef]
118. Crowther LJ, Anantha RP, Donnenberg MS. 2004. The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol Microbiol 52:67–79. [PubMed][CrossRef]
119. Schreiber W, Stone KD, Strong MA, DeTolla LJJ, Hoppert M, Donnenberg MS. 2002. BfpU, a soluble protein essential for type IV pilus biogenesis in enteropathogenic Escherichia coli. Microbiology 148:2507–2518.[PubMed]
120. Kirchner M, Meyer TF. 2005. The PilC adhesin of the Neisseria type IV pilus-binding specificities and new insights into the nature of the host cell receptor. Mol Microbiol 56:945–957. [PubMed][CrossRef]
121. Rudel T, Scheuerpflug I, Meyer TF. 1995. Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 373:357–359. [PubMed][CrossRef]
122. Hazes B, Sastry PA, Hayakawa K, Read RJ, Irvin RT. 2000. Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol 299:1005–1017. [PubMed][CrossRef]
123. Lee KK, Sheth HB, Wong WY, Sherburne R, Paranchych W, Hodges RS, Lingwood CA, Krivan H, Irvin RT. 1994. The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol 11:705–713. [PubMed][CrossRef]
124. Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168:1487–1492. [PubMed][CrossRef]
125. Tamamoto T, Nakashima K, Nakasone N, Honma Y, Higa N, Yamashiro T. 1998. Adhesive property of toxin-coregulated pilus of Vibrio cholerae O1. Microbiol Immunol 42:41–45.[PubMed]
126. Scaletsky IC, Milani SR, Trabulsi LR, Travassos LR. 1988. Isolation and characterization of the localized adherence factor of enteropathogenic Escherichia coli. Infect Immun 56:2979–2983.[PubMed]
127. Jagannatha HM, Sharma UK, Ramaseshan T, Surolia A, Balganesh TS. 1991. Identification of carbohydrate structures as receptors for localised adherent enteropathogenic Escherichia coli. Microb Pathog 11:259–268. [PubMed][CrossRef]
128. Cravioto A, Tello A, Villafán H, Ruiz J, Del Vedovo S, Neeser JR. 1991. Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J Infect Dis 163:1247–1255.[PubMed]
129. Vanmaele RP, Heerze LD, Armstrong GD. 1999. Role of lactosyl glycan sequences in inhibiting enteropathogenic Escherichia coli attachment. Infect Immun 67:3302–3307.[PubMed]
130. Barnett Foster D, Philpott D, Abul-Milh M, Huesca M, Sherman PM, Lingwood CA. 1999. Phosphatidylethanolamine recognition promotes enteropathogenic E. coli and enterohemorrhagic E. coli host cell attachment. Microb Pathog 27:289–301. [PubMed][CrossRef]
131. Wu Y, Lau B, Smith S, Troyan K, Barnett Foster DE. 2004. Enteropathogenic Escherichia coli infection triggers host phospholipid metabolism perturbations. Infect Immun 72:6764–6772. [PubMed][CrossRef]
132. DeVinney R, Knoechel DG, Finlay BB. 1999. Enteropathogenic Escherichia coli: cellular harassment. Curr Opin Microbiol 2:83–88. [PubMed][CrossRef]
133. Donnenberg MS, Kaper JB. 1992. Enteropathogenic Escherichia coli. Infect Immun 60:3953–3961.[PubMed]
134. Hawrani A, Dempsey CE, Banfield MJ, Scott DJ, Clarke AR, Kenny B. 2003. Effect of protein kinase A-mediated phosphorylation on the structure and association properties of the enteropathogenic Escherichia coli Tir virulence protein. J Biol Chem 278:25839–25846. [PubMed][CrossRef]
135. Swimm A, Bommarius B, Li Y, Cheng D, Reeves P, Sherman M, Veach D, Bornmann W, Kalman D. 2004. Enteropathogenic Escherichia coli use redundant tyrosine kinases to form actin pedestals. Mol Biol Cell 15:3520–3529. [PubMed][CrossRef]
136. Girón JA, Torres AG, Freer E, Kaper JB. 2002. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379. [PubMed][CrossRef]
137. Yona-Nadler C, Umanski T, Aizawa SI, Friedberg D, Rosenshine I. 2003. Integration host factor (IHF) mediates repression of flagella in enteropathogenic and enterohemorrhagic Escherichia coli. Microbiology 149:877–884. [PubMed][CrossRef]
138. Zhou X, Girón JA, Torres AG, Crawford JA, Negrete E, Vogel SN, Kaper JB. 2003. Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells. Infect Immun 71:2120–2129. [PubMed][CrossRef]
139. Klapproth JM, Donnenberg MS, Abraham JM, James SP. 1996. Products of enteropathogenic E. coli inhibit lymphokine production by gastrointestinal lymphocytes. Am J Physiol 271:G841–G848.[PubMed]
140. Klapproth JM, Scaletsky IC, McNamara BP, Lai LC, Malstrom C, James SP, Donnenberg MS. 2000. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect Immun 68:2148–2155. [PubMed][CrossRef]
141. Malstrom C, James S. 1998. Inhibition of murine splenic and mucosal lymphocyte function by enteric bacterial products. Infect Immun 66:3120–3127.[PubMed]
142. Nicholls L, Grant TH, Robins-Browne RM. 2000. Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol Microbiol 35:275–288. [PubMed][CrossRef]
143. Tatsuno I, Horie M, Abe H, Miki T, Makino K, Shinagawa H, Taguchi H, Kamiya S, Hayashi T, Sasakawa C. 2001. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect Immun 69:6660–6669. [PubMed][CrossRef]
144. Badea L, Doughty S, Nicholls L, Sloan J, Robins-Browne RM, Hartland EL. 2003. Contribution of Efa1/LifA to the adherence of enteropathogenic Escherichia coli to epithelial cells. Microb Pathog 34:205–215. [PubMed][CrossRef]
145. Klapproth JM, Sasaki M, Sherman M, Babbin B, Donnenberg MS, Fernandes PJ, Scaletsky IC, Kalman D, Nusrat A, Williams IR. 2004. Citrobacter rodentium lifA/efa1 is essential for colonic colonization and crypt cell hyperplasia in vivo. Infect Immun 73:1441–1451. [CrossRef]
146. Karch H, Heesemann J, Laufs R, Kroll HP, Kaper JB, Levine MM. 1987. Serological response to type 1-like somatic fimbriae in diarrheal infection due to classical enteropathogenic Escherichia coli. Microb Pathog 2:425–434. [PubMed][CrossRef]
147. Elliott SJ, Kaper JB. 1997. Role of type 1 fimbriae in EPEC infections. Microb Pathog 23:113–118. [PubMed][CrossRef]
148. Tatsuno I, Mundy R, Frankel G, Chong Y, Phillips AD, Torres AG, Kaper JB. 2006. The lpf gene cluster for long polar fimbriae is not involved in adherence of enteropathogenic Escherichia coli or virulence of Citrobacter rodentium. Infect Immun 74:265–272. [PubMed][CrossRef]
149. Baumler AJ, Heffron F. 1995. Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium. J Bacteriol 177:2087–2097.[PubMed]
150. Baumler AJ, Tsolis RM, Heffron F. 1996. The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer’s patches. Proc Natl Acad Sci USA 93:279–283. [PubMed][CrossRef]
151. Torres AG, Giron JA, Perna NT, Burland V, Blattner FR, Avelino-Flores F, Kaper JB. 2002. Identification and characterization of lpfABCC’DE, a fimbrial operon of enterohemorrhagic Escherichia coli O157:H7. Infect Immun 70:5416–5427. [PubMed][CrossRef]
152. Torres AG, Kanack KJ, Tutt CB, Popov V, Kaper JB. 2004. Characterization of the second long polar (LP) fimbriae of Escherichia coli O157:H7 and distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol Lett 238:333–344. [PubMed][CrossRef]
153. Jordan DM, Cornick N, Torres AG, Dean-Nystrom EA, Kaper JB, Moon HW. 2004. Long polar fimbriae contribute to colonization by Escherichia coli O157:H7 in vivo. Infect Immun 72:6168–6171. [PubMed][CrossRef]
154. Newton HJ, Sloan J, Bennett-Wood V, Adams LM, Robins-Browne RM, Hartland EL. 2004. Contribution of long polar fimbriae to the virulence of rabbit-specific enteropathogenic Escherichia coli. Infect Immun 72:1230–1239. [PubMed][CrossRef]
155. Ideses D, Biran D, Gophna U, Levy-Nissenbaum O, Ron EZ. 2005. The lpf operon of invasive Escherichia coli. Int J Med Microbiol 295:227–236. [PubMed][CrossRef]
156. Warawa J, Finlay BB, Kenny B. 1999. Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli. Infect Immun 67:5538–5540.[PubMed]
157. Gismero-Ordonez J, Dall’Agnol M, Trabulsi LR, Giron JA. 2002. Expression of the bundle-forming pilus by enteropathogenic Escherichia coli strains of heterologous serotypes. J Clin Microbiol 40:2291–2296. [PubMed][CrossRef]
158. Pelayo JS, Scaletsky IC, Pedroso MZ, Sperandio V, Giron JA, Frankel G, Trabulsi LR. 1999. Virulence properties of atypical EPEC strains. J Med Microbiol 48:41–49. [PubMed][CrossRef]
159. Valle GR, Gomes TAT, Irino K, Trabulsi LR. 1997. The traditional enteropathogenic Escherichia coli (EPEC) serogroup O125 comprises serotypes which are mainly associated with the category of enteroaggregative E. coli. FEMS Microbiol Lett 152:95–100. [PubMed][CrossRef]
160. Keller R, Ordonez JG, De Oliveira RR, Trabulsi LR, Baldwin TJ, Knutton S. 2002. Afa, a diffuse adherence fibrillar adhesin associated with enteropathogenic Escherichia coli. Infect Immun 70:2681–2689. [PubMed][CrossRef]
161. Garcia MI, Gounon P, Courcoux P, Labigne A, Le Bouguenec C. 1996. The afimbrial adhesive sheath encoded by the afa-3 gene cluster of pathogenic Escherichia coli is composed of two adhesins. Mol Microbiol 19:683–693. [PubMed][CrossRef]
162. Garcia MI, Jouve M, Nataro JP, Gounon P, Le Bouguenec C. 2000. Characterization of the AfaD-like family of invasins encoded by pathogenic Escherichia coli associated with intestinal and extra-intestinal infections. FEBS Lett 479:111–117. [PubMed][CrossRef]
163. Jouve M, Garcia MI, Courcoux P, Labigne A, Gounon P, Le Bouguenec C. 1997. Adhesion to and invasion of HeLa cells by pathogenic Escherichia coli carrying the afa-3 gene cluster are mediated by the AfaE and AfaD proteins, respectively. Infect Immun 65:4082–4089.[PubMed]
164. Scaletsky IC, Michalski J, Torres AG, Dulguer MV, Kaper JB. 2005. Identification and characterization of the locus of diffuse adhesion (LDA), a novel adherence locus found in atypical enteropathogenic Escherichia coli. Infect Immun 73:4753–4765. [PubMed][CrossRef]
165. Mooi FR, Harms N, Bakker D, de Graaf FK. 1981. Organization and expression of genes involved in the production of the K88ab antigen. Infect Immun 32:1155–1163.[PubMed]
ecosalplus.8.3.2.4.citations
ecosalplus/2/1
content/journal/ecosalplus/10.1128/ecosalplus.8.3.2.4
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.3.2.4
2006-02-28
2017-04-26

Abstract:

Enteropathogenic (EPEC) strains induce morphological changes in infected epithelial cells. The resulting attaching and effacing (A/E) lesion is characterized by intimate bacterial adherence to epithelial cells, with microvillus destruction, cytoskeletal rearrangement, and aggregation of host cytoskeletal proteins. This review presents an overview of the adhesion mechanisms used for the colonization of the human gastrointestinal tract by EPEC. The mechanisms underlying EPEC adhesion, prior to and during the formation of the A/E lesion, and the host cytosolic responses to bacterial infection leading to diarrheal disease are discussed.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

(A) Fluorescent actin staining assay of HEp-2 cells infected with EPEC strain E2348/69. After 3 h of infection, cells were fixed, permeabilized, and colabeled with DAPI (4′,6′-diamidino-2-phenylindole; eukaryotic and prokaryotic DNA staining) and AlexaFluor 488-phalloidin (actin staining). (B through D) Adherence patterns of EPEC strains: LA (B), DA (C), and AA (D). Magnification, ×100.

Citation: Torres A. 2006. Adhesins of Enteropathogenic , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.3.2.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The genetic organization of the chromosomally located LEE PAI and that of the BFP cluster are depicted. The LEE is organized into five main operons (LEE1 through LEE5) and contains 41 genes, and since the function of almost all the genes is known, the genes can be grouped on the basis of function (color coded). The BFP operon is located on the EAF plasmid and contains 14 genes associated with the biogenesis of the fimbriae. The BFP proteins are grouped on the basis of their locations within the EPEC membranes or the bacterial compartments. Also depicted are chromosomally, non-LEE-encoded factors that have been associated with adherence, such as those encoding flagella, LifA, and LPF. ERIC, enterobacterial repetitive intergenic consensus.

Citation: Torres A. 2006. Adhesins of Enteropathogenic , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.3.2.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(A) The early events in EPEC adhesion are poorly understood but begin with the expression of BFP, the intimate adhesin intimin, surface-associated EspA filaments, and flagella and may involve binding of intimin to a host cell receptor, such as nucleolin, and binding of the EspA filament directly to the cell or via secreted EspB and EspD proteins. EPEC cells adhering to epithelial cells will use the TTSS to inject the translocated intimin receptor (Tir) and a number of effector molecules directly into the host cell.

The role of the other proposed adhesins (BFP and flagella) has not been clearly elucidated. (B) EPEC cells translocate LEE-encoded and other effector proteins (Cif and EspI; Chapter Enteropathogenic ) into the host cell cytosol. Once Tir is inserted into the membrane, it dimerizes and serves as the receptor for intimin. However, EPEC intimin has been shown to interact also with several known and putative cell surface proteins. EPEC Tir is phosphorylated, which allows binding of Nck and recruitment and activation of neuronal-Wiskott-Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex, essential to promote the reorganization of the actin cytoskeleton underneath adherent EPEC bacteria. The effector proteins trigger cytoskeleton rearrangements (Tir, EspH, EspF, and EspG/EspG2), disruption of the epithelial barrier (EspF and Map), cytotoxicity (EspF, Map, and Cif), and host cell responses that ultimately generate watery diarrhea. The present model of EPEC adhesion was created by compiling information from recent review articles ( 33 , 34 , 35 ).

Citation: Torres A. 2006. Adhesins of Enteropathogenic , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.3.2.4
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Types of intimins of typical and atypical EPEC strains, their origins, and associated tissue tropism

Citation: Torres A. 2006. Adhesins of Enteropathogenic , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.3.2.4

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error