1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

Type 1 Fimbriae, Curli, and Antigen 43: Adhesion, Colonization, and Biofilm Formation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Per Klemm1, and Mark Schembri2
  • Editor: Michael S. Donnenberg3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Microbial Adhesion Group, Center for Biomedical Microbiology, BioCentrum-DTU, Technical University of Denmark, Bldg. 301, Technical University of Denmark, DK-2800 Lyngby, Denmark; 2: Department of Microbiology and Parasitology, School of Molecular and Microbial Sciences, Bldg. 76, The University of Queensland, Brisbane, Qld 4072, Australia; 3: University of Maryland, School of Medicine, Baltimore, MD
  • Received 21 May 2004 Accepted 23 August 2004 Published 15 November 2004
  • Address correspondence to Per Klemm pkl@biocentrum.dtu.dk
image of Type 1 Fimbriae, Curli, and Antigen 43: Adhesion, Colonization, and Biofilm Formation
    Preview this reference work article:
    Zoom in
    Zoomout

    Type 1 Fimbriae, Curli, and Antigen 43: Adhesion, Colonization, and Biofilm Formation, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/1/1/8_3_2_6_module-1.gif /docserver/preview/fulltext/ecosalplus/1/1/8_3_2_6_module-2.gif
  • Abstract:

    This review is primarily concerned with the first step in biofilm formation, namely, bacterial attachment to surfaces. It describes three examples of bacterial adhesins, each of which belongs to a different subgroup and follows different strategies for surface presentation and adhesin exposure. These are type 1 fimbriae, very long stiff rodlike organelles; curli, amorphous fluffy coat structures; and finally antigen 43, short outer membrane structures with a simple assembly system. Their role as adhesins, their structure and biosynthesis, and their role in biofilm formation are described in detail in the review. The FimH protein presented by type 1 fimbriae seems to be a highly versatile adhesin fulfilling a diverse spectrum of roles ranging from pellicle and biofilm formation to being a bona fide virulence factor in uropathogenic (UPEC) strains, where it plays important roles in the manifestation of cystitis. Curli formation promotes two fundamental processes associated with biofilm formation: initial adhesion and cell-to-cell aggregation. A role for curli in the colonization of inert surfaces has been demonstrated. Severe sepsis and septic shock are frequently caused by gram-negative bacteria, and several factors suggest a significant role for curli during sepsis. The protection provided by Ag43-mediated aggregation was underlined in a series of experiments addressing the role of Ag43 in protection against oxidizing agents. Type 1 fimbriae, curli, and Ag43 are structurally different bacterial surface structures and follow completely different strategies for surface display and assembly.

  • Citation: Klemm P, Schembri M. 2004. Type 1 Fimbriae, Curli, and Antigen 43: Adhesion, Colonization, and Biofilm Formation, EcoSal Plus 2004; doi:10.1128/ecosalplus.8.3.2.6

Key Concept Ranking

Type 1 Fimbriae
0.8705512
Bacterial Pathogenesis
0.7353153
Bacterial Adhesins
0.56014323
Gene Expression and Regulation
0.49948624
Bacterial Virulence Factors
0.4745006
Urinary Tract Infections
0.43259797
0.8705512

References

1. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. [PubMed][CrossRef]
2. Klemm P, Schembri MA. 2000. Bacterial adhesins: function and structure. Int J Med Microbiol 290:27–35.[PubMed]
3. Soto GE, Hultgren SJ. 1999. Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181:1059–1071.[PubMed]
4. Schembri MA, Klemm P. 2001. Coordinate gene regulation by fimbriae-induced signal transduction. EMBO J 20:3074–3081. [PubMed][CrossRef]
5. Schembri MA, Ussery DW, Workman C, Hasman H, Klemm P. 2002. DNA microarray analysis of fim mutations in Escherichia coli. Mol Genet Genomics 267:721–729. [PubMed][CrossRef]
6. Duguid JP, Gillies RR. 1958. Fimbriae and haemagglutinating activity in Salmonella, Klebsiella, Proteus and Chromobacterium. J Pathol Bacteriol 75:519–520.
7. Duguid JP, Anderson ES. 1967. Terminology of bacterial fimbriae, or pili, and their types. Nature 215:89–90. [PubMed][CrossRef]
8. Duguid JP, Anderson ES, Campbell I. 1966. Fimbriae and adhesive properties in Salmonellae. J Pathol Bacteriol 92:107–138. [PubMed][CrossRef]
9. Abraham SN, Sun D, Dale JB, Beachey EH. 1988. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336:682–684. [PubMed][CrossRef]
10. Brinton CC Jr. 1965. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans NY Acad Sci 27:1003–1054.
11. Hahn E, Wild P, Hermanns U, Sebbel P, Glockshuber R, Haner M, Taschner N, Burkhard P, Aebi U, Muller SA. 2002. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 323:845–857. [PubMed][CrossRef]
12. Klemm P. 1984. The fimA gene encoding the type-1 fimbrial subunit of Escherichia coli. Nucleotide sequence and primary structure of the protein. Eur J Biochem 143:395–399. [PubMed][CrossRef]
13. Krogfelt KA, Klemm P. 1988. Investigation of minor components of Escherichia coli type 1 fimbriae: protein chemical and immunological aspects. Microb Pathog 4:231–238. [PubMed][CrossRef]
14. Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066. [PubMed][CrossRef]
15. Jones CH, Pinkner JS, Roth R, Heuser J, Nicholes AV, Abraham SN, Hultgren SJ. 1995. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA 92:2081–2085. [PubMed][CrossRef]
16. Krogfelt KA, Bergmans H, Klemm P. 1990. Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infect Immun 58:1995–1998.[PubMed]
17. Abraham SN, Goguen JD, Sun D, Klemm P, Beachey EH. 1987. Identification of two ancillary subunits of Escherichia coli type 1 fimbriae by using antibodies against synthetic oligopeptides of fim gene products. J Bacteriol 169:5530–5536.[PubMed]
18. Klemm P, Christiansen G. 1987. Three fim genes required for the regulation of length and mediation of adhesion of Escherichia coli type 1 fimbriae. Mol Gen Genet 208:439–445. [PubMed][CrossRef]
19. Russell PW, Orndorff PE. 1992. Lesions in two Escherichia coli type 1 pilus genes alter pilus number and length without affecting receptor binding. J Bacteriol 174:5923–5935.[PubMed]
20. Schembri MA, Hasman H, Klemm P. 2000. Expression and purification of the mannose recognition domain of the FimH adhesin. FEMS Microbiol Lett 188:147–151. [PubMed][CrossRef]
21. Thanassi DG, Saulino ET, Hultgren SJ. 1998. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1:223–231. [PubMed][CrossRef]
22. Klemm P. 1992. FimC, a chaperone-like periplasmic protein of Escherichia coli involved in biogenesis of type 1 fimbriae. Res Microbiol 143:831–838. [PubMed][CrossRef]
23. Klemm P, Christiansen G. 1990. The fimD gene required for cell surface localization of Escherichia coli type 1 fimbriae. Mol Gen Genet 220:334–338. [PubMed][CrossRef]
24. Thanassi DG, Saulino ET, Lombardo MJ, Roth R, Heuser J, Hultgren SJ. 1998. The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc Natl Acad Sci USA 95:3146–3151. [PubMed][CrossRef]
25. Barnhart MM, Pinkner JS, Soto GE, Sauer FG, Langermann S, Waksman G, Frieden C, Hultgren SJ. 2000. PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci USA 97:7709–7714. [PubMed][CrossRef]
26. Brinton CCJ, Gemski P Jr, Falkow S, Baron LS. 1961. Location of the piliation factor on the chromosome of Escherichia coli. Biochem Biophys Res Commun 5:293–298. [CrossRef]
27. Freitag CS, Eisenstein BI. 1983. Genetic mapping and transcriptional orientation of the fimD gene. J Bacteriol 156:1052–1058.[PubMed]
28. Sanderson KE, Hessel A, Rudd KE. 1995. Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev 59:241–303.[PubMed]
29. Klemm P, Jorgensen BJ, van Die I, de Ree H, Bergmans H. 1985. The fim genes responsible for synthesis of type 1 fimbriae in Escherichia coli, cloning and genetic organization. Mol Gen Genet 199:410–414. [PubMed][CrossRef]
30. Orndorff PE, Falkow S. 1984. Organization and expression of genes responsible for type 1 piliation in Escherichia coli. J Bacteriol 159:736–744.[PubMed]
31. Abraham JM, Freitag CS, Clements JR, Eisenstein BI. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci USA 82:5724–5727. [PubMed][CrossRef]
32. Olsen PB, Klemm P. 1994. Localization of promoters in the fim gene cluster and the effect of H-NS on the transcription of fimB and fimE. FEMS Microbiol Lett 116:95–100. [PubMed][CrossRef]
33. Klemm P. 1986. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5:1389–1393.[PubMed]
34. Gally DL, Leathart J, Blomfield IC. 1996. Interaction of FimB and FimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K-12. Mol Microbiol 21:725–738. [PubMed][CrossRef]
35. Stentebjerg-Olesen B, Chakraborty T, Klemm P. 2000. FimE-catalyzed off-to-on inversion of the type 1 fimbrial phase switch and insertion sequence recruitment in an Escherichia coli K-12 fimB strain. FEMS Microbiol Lett 182:319–325. [PubMed][CrossRef]
36. Stentebjerg-Olesen B, Chakraborty T, Klemm P. 1999. Type 1 fimbriation and phase switching in a natural Escherichia coli fimB null strain, Nissle 1917. J Bacteriol 181:7470–7478.[PubMed]
37. Smith SG, Dorman CJ. 1999. Functional analysis of the FimE integrase of Escherichia coli K-12: isolation of mutant derivatives with altered DNA inversion preferences. Mol Microbiol 34:965–979. [PubMed][CrossRef]
38. Blomfield IC, Kulasekara DH, Eisenstein BI. 1997. Integration host factor stimulates both FimB- and FimE-mediated site-specific DNA inversion that controls phase variation of type 1 fimbriae expression in Escherichia coli. Mol Microbiol 23:705–717. [PubMed][CrossRef]
39. Blomfield IC, Calie PJ, Eberhardt KJ, McClain MS, Eisenstein BI. 1993. Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12. J Bacteriol 175:27–36.[PubMed]
40. Olsen PB, Schembri MA, Gally DL, Klemm P. 1998. Differential temperature modulation by H-NS of the fimB and fimE recombinase genes which control the orientation of the type 1 fimbrial phase switch. FEMS Microbiol Lett 162:17–23. [PubMed][CrossRef]
41. Schembri MA, Olsen PB, Klemm P. 1998. Orientation-dependent enhancement by H-NS of the activity of the type 1 fimbrial phase switch promoter in Escherichia coli. Mol Gen Genet 259:336–344. [PubMed][CrossRef]
42. Blomfield IC. 2001. The regulation of pap and type 1 fimbriation in Escherichia coli. Adv Microb Physiol 45:1–49. [PubMed][CrossRef]
43. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. 2000. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19:2803–2812. [PubMed][CrossRef]
44. Wu XR, Sun TT, Medina JJ. 1996. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci USA 93:9630–9635. [PubMed][CrossRef]
45. Firon N, Ashkenazi S, Mirelman D, Ofek I, Sharon N. 1987. Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect Immun 55:472–476.[PubMed]
46. Sokurenko EV, Chesnokova V, Dykhuizen DE, Ofek I, Wu XR, Krogfelt KA, Struve C, Schembri MA, Hasty DL. 1998. Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci USA 95:8922–8926. [PubMed][CrossRef]
47. Sokurenko EV, Courtney HS, Abraham SN, Klemm P, Hasty DL. 1992. Functional heterogeneity of type 1 fimbriae of Escherichia coli. Infect Immun 60:4709–4719.[PubMed]
48. Sokurenko EV, Courtney HS, Ohman DE, Klemm P, Hasty DL. 1994. FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes. J Bacteriol 176:748–755.[PubMed]
49. Madison B, Ofek I, Clegg S, Abraham SN. 1994. Type 1 fimbrial shafts of Escherichia coli and Klebsiella pneumoniae influence sugar-binding specificities of their FimH adhesins. Infect Immun 62:843–848.[PubMed]
50. Thankavel K, Shah AH, Cohen MS, Ikeda T, Lorenz RG, Curtiss R III, Abraham SN. 1999. Molecular basis for the enterocyte tropism exhibited by Salmonella typhimurium type 1 fimbriae. J Biol Chem 274:5797–5809. [PubMed][CrossRef]
51. Pouttu R, Puustinen T, Virkola R, Hacker J, Klemm P, Korhonen TK. 1999. Amino acid residue Ala-62 in the FimH fimbrial adhesin is critical for the adhesiveness of meningitis-associated Escherichia coli to collagens. Mol Microbiol 31:1747–1757. [PubMed][CrossRef]
52. Schembri MA, Sokurenko EV, Klemm P. 2000. Functional flexibility of the FimH adhesin: insights from a random mutant library. Infect Immun 68:2638–2646. [PubMed][CrossRef]
53. Sokurenko EV, Schembri MA, Trintchina E, Kjaergaard K, Hasty DL, Klemm P. 2001. Valency conversion in the type 1 fimbrial adhesin of Escherichia coli. Mol Microbiol 41:675–686. [PubMed][CrossRef]
54. Kukkonen M, Raunio T, Virkola R, Lahteenmaki K, Makela PH, Klemm P, Clegg S, Korhonen TK. 1993. Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin. Mol Microbiol 7:229–237. [PubMed][CrossRef]
55. Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV. 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109:913–923. [PubMed][CrossRef]
56. Old DC, Duguid JP. 1970. Selective outgrowth of fimbriate bacteria in static liquid medium. J Bacteriol 103:447–456.[PubMed]
57. Harris SL, Elliott DA, Blake MC, Must LM, Messenger M, Orndorff PE. 1990. Isolation and characterization of mutants with lesions affecting pellicle formation and erythrocyte agglutination by type 1 piliated Escherichia coli. J Bacteriol 172:6411–6418.[PubMed]
58. Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293. [PubMed][CrossRef]
59. Schembri MA, Kjaergaard K, Klemm P. 2003. Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267. [PubMed][CrossRef]
60. Schembri MA, Klemm P. 2001. Biofilm formation in a hydrodynamic environment by novel FimH variants and ramifications for virulence. Infect Immun 69:1322–1328. [PubMed][CrossRef]
61. Genevaux P, Bauda P, DuBow MS, Oudega B. 1999. Identification of Tn10 insertions in the dsbA gene affecting Escherichia coli biofilm formation. FEMS Microbiol Lett 173:403–409. [PubMed][CrossRef]
62. Schembri MA, Christiansen G, Klemm P. 2001. FimH-mediated autoaggregation of Escherichia coli. Mol Microbiol 41:1419–1430. [PubMed][CrossRef]
63. Bloch CA, Stocker BA, Orndorff PE. 1992. A key role for type 1 pili in enterobacterial communicability. Mol Microbiol 6:697–701. [PubMed][CrossRef]
64. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107. [PubMed][CrossRef]
65. Connell H, Poulsen LK, Klemm P. 2000. Expression of type 1 and P fimbriae in situ and localisation of a uropathogenic Escherichia coli strain in the murine bladder and kidney. Int J Med Microbiol 290:587–597.[PubMed]
66. Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci USA 93:9827–9832. [PubMed][CrossRef]
67. Baorto DM, Gao Z, Malaviya R, Dustin ML, van der Merwe A, Lublin DM, Abraham SN. 1997. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389:636–639. [PubMed][CrossRef]
68. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497. [PubMed][CrossRef]
69. Langermann S, Mollby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A, Strouse R, Schenerman MA, Hultgren SJ, Pinkner JS, Winberg J, Guldevall L, Soderhall M, Ishikawa K, Normark S, Koenig S. 2000. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181:774–778. [PubMed][CrossRef]
70. Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ. 1997. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276:607–611. [PubMed][CrossRef]
71. Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR. 2001. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276:9924–9930. [PubMed][CrossRef]
72. Gunther NWT, Lockatell V, Johnson DE, Mobley HL. 2001. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect Immun 69:2838–2846. [PubMed][CrossRef]
73. Hung CS, Bouckaert J, Hung D, Pinkner J, Widberg C, DeFusco A, Auguste CG, Strouse R, Langermann S, Waksman G, Hultgren SJ. 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44:903–915. [PubMed][CrossRef]
74. Olsen A, Jonsson A, Normark S. 1989. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655. [PubMed][CrossRef]
75. Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW. 1991. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173:4773–4781.[PubMed]
76. Sakellaris H, Hannink NK, Rajakumar K, Bulach D, Hunt M, Sasakawa C, Adler B. 2000. Curli loci of Shigella spp. Infect Immun 68:3780–3783. [PubMed][CrossRef]
77. Zogaj X, Bokranz W, Nimtz M, Romling U. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158. [PubMed][CrossRef]
78. Collinson SK, Clouthier SC, Doran JL, Banser PA, Kay WW. 1996. Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol 178:662–667.[PubMed]
79. Romling U, Bian Z, Hammar M, Sierralta WD, Normark S. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731.[PubMed]
80. Collinson SK, Emody L, Trust TJ, Kay WW. 1992. Thin aggregative fimbriae from diarrheagenic Escherichia coli. J Bacteriol 174:4490–4495.[PubMed]
81. Ben Nasr A, Olsen A, Sjobring U, Muller-Esterl W, Bjorck L. 1996. Assembly of human contact phase proteins and release of bradykinin at the surface of curli-expressing Escherichia coli. Mol Microbiol 20:927–935. [PubMed][CrossRef]
82. Olsen A, Arnqvist A, Hammar M, Sukupolvi S, Normark S. 1993. The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536. [PubMed][CrossRef]
83. Provence DL, Curtiss R III. 1992. Role of crl in avian pathogenic Escherichia coli: a knockout mutation of crl does not affect hemagglutination activity, fibronectin binding, or curli production. Infect Immun 60:4460–4467.[PubMed]
84. Hammar M, Arnqvist A, Bian Z, Olsen A, Normark S. 1995. Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670. [PubMed][CrossRef]
85. Romling U, Sierralta WD, Eriksson K, Normark S. 1998. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249–264. [PubMed][CrossRef]
86. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. [PubMed][CrossRef]
87. Arnqvist A, Olsen A, Normark S. 1994. Sigma S-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by sigma 70 in the absence of the nucleoid-associated protein H-NS. Mol Microbiol 13:1021–1032. [PubMed][CrossRef]
88. Olsen A, Wick MJ, Morgelin M, Bjorck L. 1998. Curli, fibrous surface proteins of Escherichia coli, interact with major histocompatibility complex class I molecules. Infect Immun 66:944–949.[PubMed]
89. Sjobring U, Pohl G, Olsen A. 1994. Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA). Mol Microbiol 14:443–452. [PubMed][CrossRef]
90. Bian Z, Brauner A, Li Y, Normark S. 2000. Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J Infect Dis 181:602–612. [PubMed][CrossRef]
91. Bian Z, Normark S. 1997. Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J 16:5827–5836. [PubMed][CrossRef]
92. Hammar M, Bian Z, Normark S. 1996. Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci USA 93:6562–6566. [PubMed][CrossRef]
93. Loferer H, Hammar M, Normark S. 1997. Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 26:11–23. [PubMed][CrossRef]
94. Dibb-Fuller M, Allen-Vercoe E, Woodward MJ, Thorns CJ. 1997. Expression of SEF17 fimbriae by Salmonella enteritidis. Lett Appl Microbiol 25:447–452. [PubMed][CrossRef]
95. Brown PK, Dozois CM, Nickerson CA, Zuppardo A, Terlonge J, Curtiss R III. 2001. MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol Microbiol 41:349–363. [PubMed][CrossRef]
96. Maurer JJ, Brown TP, Steffens WL, Thayer SG. 1998. The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avian Dis 42:106–118. [PubMed][CrossRef]
97. Gerstel U, Romling U. 2001. Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ Microbiol 3:638–648. [PubMed][CrossRef]
98. Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P, Dorel C. 2001. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183:7213–7223. [PubMed][CrossRef]
99. Sukupolvi S, Lorenz RG, Gordon JI, Bian Z, Pfeifer JD, Normark SJ, Rhen M. 1997. Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells. Infect Immun 65:5320–5325.[PubMed]
100. Arnqvist A, Olsen A, Pfeifer J, Russell DG, Normark S. 1992. The Crl protein activates cryptic genes for curli formation and fibronectin binding in Escherichia coli HB101. Mol Microbiol 6:2443–2452.[PubMed]
101. Romling U, Rohde M, Olsen A, Normark S, Reinkoster J. 2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium, regulates at least two independent pathways. Mol Microbiol 36:10–23. [PubMed][CrossRef]
102. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463. [PubMed][CrossRef]
103. Gerstel U, Park C, Romling U. 2003. Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49:639–654. [PubMed][CrossRef]
104. Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P. 1998. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449.[PubMed]
105. Dorel C, Vidal O, Prigent-Combaret C, Vallet I, Lejeune P. 1999. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178:169–175. [PubMed][CrossRef]
106. Olsen A, Herwald H, Wikstrom M, Persson K, Mattsson E, Bjorck L. 2002. Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli. J Biol Chem 277:34568–34572. [PubMed][CrossRef]
107. Austin JW, Sanders G, Kay WW, Collinson SK. 1998. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301. [PubMed][CrossRef]
108. Pogliano J, Lynch AS, Belin D, Lin EC, Beckwith J. 1997. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev 11:1169–1182. [PubMed][CrossRef]
109. Uhlich GA, Keen JE, Elder RO. 2001. Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7. Appl Environ Microbiol 67:2367–2370. [PubMed][CrossRef]
110. White AP, Gibson DL, Collinson SK, Banser PA, Kay WW. 2003. Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar enteritidis. J Bacteriol 185:5398–5407. [PubMed][CrossRef]
111. Allen-Vercoe E, Collighan R, Woodward MJ. 1998. The variant rpoS allele of S. enteritidis strain 27655R does not affect virulence in a chick model nor constitutive curliation but does generate a cold-sensitive phenotype. FEMS Microbiol Lett 167:245–253. [PubMed][CrossRef]
112. Prigent-Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C. 2000. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2:450–464. [PubMed][CrossRef]
113. Romling U, Bokranz W, Rabsch W, Zogaj X, Nimtz M, Tschape H. 2003. Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Int J Med Microbiol 293:273–285. [PubMed][CrossRef]
114. van der Velden AW, Baumler AJ, Tsolis RM, Heffron F. 1998. Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect Immun 66:2803–2808.[PubMed]
115. Uhlich GA, Keen JE, Elder RO. 2002. Variations in the csgD promoter of Escherichia coli O157:H7 associated with increased virulence in mice and increased invasion of HEp-2 cells. Infect Immun 70:395–399. [PubMed][CrossRef]
116. La Ragione RM, Cooley WA, Woodward MJ. 2000. The role of fimbriae and flagella in the adherence of avian strains of Escherichia coli O78:K80 to tissue culture cells and tracheal and gut explants. J Med Microbiol 49:327–338.[PubMed]
117. Herwald H, Morgelin M, Olsen A, Rhen M, Dahlback B, Muller-Esterl W, Bjorck L. 1998. Activation of the contact-phase system on bacterial surfaces—a clue to serious complications in infectious diseases. Nat Med 4:298–302. [PubMed][CrossRef]
118. Bian Z, Yan ZQ, Hansson GK, Thoren P, Normark S. 2001. Activation of inducible nitric oxide synthase/nitric oxide by curli fibers leads to a fall in blood pressure during systemic Escherichia coli infection in mice. J Infect Dis 183:612–619. [PubMed][CrossRef]
119. Persson K, Russell W, Morgelin M, Herwald H. 2003. The conversion of fibrinogen to fibrin at the surface of curliated Escherichia coli bacteria leads to the generation of proinflammatory fibrinopeptides. J Biol Chem 278:31884–31890. [PubMed][CrossRef]
120. Gophna U, Barlev M, Seijffers R, Oelschlager TA, Hacker J, Ron EZ. 2001. Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69:2659–2665. [PubMed][CrossRef]
121. Diderichsen B. 1980. flu, a metastable gene controlling surface properties of Escherichia coli. J Bacteriol 141:858–867.[PubMed]
122. Owen P. 1983. Antigens of the Escherichia coli cell envelope, p 347–373. In Bjerrum OJ (ed), Electroimmunochemical Analysis of Membrane Proteins. Elsevier Science Publishing, Amsterdam, The Netherlands.
123. Hasman H, Chakraborty T, Klemm P. 1999. Antigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation. J Bacteriol 181:4834–4841.[PubMed]
124. Henderson IR, Owen P. 1999. The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and OxyR. J Bacteriol 181:2132–2141.[PubMed]
125. Owen P. 1992. The gram-negative outer membrane: structure, biochemistry and vaccine potential. Biochem Soc Trans 20:1–6.[PubMed]
126. Owen P, Meehan M, de Loughry-Doherty H, Henderson I. 1996. Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol Med Microbiol 16:63–76. [PubMed][CrossRef]
127. Klemm P, Hjerrild L, Gjermansen M, Schembri MA. 2004. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli. Mol Microbiol 51:283–296. [PubMed][CrossRef]
128. Roche A, McFadden J, Owen P. 2001. Antigen 43, the major phase-variable protein of the Escherichia coli outer membrane, can exist as a family of proteins encoded by multiple alleles. Microbiology 147:161–169.[PubMed]
129. Torres AG, Perna NT, Burland V, Ruknudin A, Blattner FR, Kaper JB. 2002. Characterization of Cah, a calcium-binding and heat-extractable autotransporter protein of enterohaemorrhagic Escherichia coli. Mol Microbiol 45:951–966. [PubMed][CrossRef]
130. Benz I, Schmidt MA. 1989. Cloning and expression of an adhesin (AIDA-I) involved in diffuse adherence of enteropathogenic Escherichia coli. Infect Immun 57:1506–1511.[PubMed]
131. Lindenthal C, Elsinghorst EA. 1999. Identification of a glycoprotein produced by enterotoxigenic Escherichia coli. Infect Immun 67:4084–4091.[PubMed]
132. Henderson IR, Nataro JP. 2001. Virulence functions of autotransporter proteins. Infect Immun 69:1231–1243. [PubMed][CrossRef]
133. Henderson IR, Navarro-Garcia F, Nataro JP. 1998. The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6:370–378. [PubMed][CrossRef]
134. Kjaergaard K, Hasman H, Schembri MA, Klemm P. 2002. Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system. J Bacteriol 184:4197–4204. [PubMed][CrossRef]
135. Kjaergaard K, Schembri MA, Hasman H, Klemm P. 2000. Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens. J Bacteriol 182:4789–4796. [PubMed][CrossRef]
136. Emsley P, Charles IG, Fairweather NF, Isaacs NW. 1996. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381:90–92. [PubMed][CrossRef]
137. Welch RA, Burland V, Plunkett G, 3rd, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024. [PubMed][CrossRef]
138. Hasman H, Schembri MA, Klemm P. 2000. Antigen 43 and type 1 fimbriae determine colony morphology of Escherichia coli K-12. J Bacteriol 182:1089–1095. [PubMed][CrossRef]
139. Henderson IR, Meehan M, Owen P. 1997. A novel regulatory mechanism for a novel phase-variable outer membrane protein of Escherichia coli. Adv Exp Med Biol 412:349–355.[PubMed]
140. Christman MF, Storz G, Ames BN. 1989. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci USA 86:3484–3488. [PubMed][CrossRef]
141. Warne SR, Varley JM, Boulnois GJ, Norton MG. 1990. Identification and characterization of a gene that controls colony morphology and auto-aggregation in Escherichia coli K12. J Gen Microbiol 136(Part 3):455–62.[PubMed]
142. Schembri MA, Hjerrild L, Gjermansen M, Klemm P. 2003. Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 185:2236–2242. [PubMed][CrossRef]
143. Aslund F, Zheng M, Beckwith J, Storz G. 1999. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA 96:6161–6165. [PubMed][CrossRef]
144. Zheng M, Aslund F, Storz G. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721. [PubMed][CrossRef]
145. Toledano MB, Kullik I, Trinh F, Baird PT, Schneider TD, Storz G. 1994. Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78:897–909. [PubMed][CrossRef]
146. Haagmans W, van der Woude M. 2000. Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol Microbiol 35:877–887. [PubMed][CrossRef]
147. Waldron DE, Owen P, Dorman CJ. 2002. Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol Microbiol 44:509–520. [PubMed][CrossRef]
148. Xia Y, Gally D, Forsman-Semb K, Uhlin BE. 2000. Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB protein. EMBO J 19:1450–1457. [PubMed][CrossRef]
149. Giron JA, Ho AS, Schoolnik GK. 1991. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254:710–713. [PubMed][CrossRef]
150. Bieber D, Ramer SW, Wu CY, Murray WJ, Tobe T, Fernandez R, Schoolnik GK. 1998. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280:2114–2118. [PubMed][CrossRef]
151. Czeczulin JR, Balepur S, Hicks S, Phillips A, Hall R, Kothary MH, Navarro-Garcia F, Nataro JP. 1997. Aggregative adherence fimbria II, a second fimbrial antigen mediating aggregative adherence in enteroaggregative Escherichia coli. Infect Immun 65:4135–4145.[PubMed]
152. Nataro JP, Deng Y, Maneval DR, German AL, Martin WC, Levine MM. 1992. Aggregative adherence fimbriae I of enteroaggregative Escherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect Immun 60:2297–2304.[PubMed]
153. Nataro JP, Kaper JB, Robins-Browne R, Prado V, Vial P, Levine MM. 1987. Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr Infect Dis J 6:829–831. [PubMed][CrossRef]
154. Henderson IR, Owen P, Nataro JP. 1999. Molecular switches—the ON and OFF of bacterial phase variation. Mol Microbiol 33:919–932. [PubMed][CrossRef]
155. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545.[PubMed]
156. Danese PN, Pratt LA, Dove SL, Kolter R. 2000. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37:424–432. [PubMed][CrossRef]
157. Kjaergaard K, Schembri MA, Ramos C, Molin S, Klemm P. 2000. Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol 2:695–702. [PubMed][CrossRef]
158. Schembri MA, Dalsgaard D, Klemm P. 2004. Capsule shields the function of short bacterial adhesins. J Bacteriol 186:1249–1257. [PubMed][CrossRef]
159. Menozzi FD, Boucher PE, Riveau G, Gantiez C, Locht C. 1994. Surface-associated filamentous hemagglutinin induces autoagglutination of Bordetella pertussis. Infect Immun 62:4261–4269.[PubMed]
160. Menozzi FD, Rouse JH, Alavi M, Laude-Sharp M, Muller J, Bischoff R, Brennan MJ, Locht C. 1996. Identification of a heparin-binding hemagglutinin present in mycobacteria. J Exp Med 184:993–1001. [PubMed][CrossRef]
161. McDevitt D, Francois P, Vaudaux P, Foster TJ. 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol 11:237–248. [PubMed][CrossRef]
162. Frick IM, Morgelin M, Bjorck L. 2000. Virulent aggregates of Streptococcus pyogenes are generated by homophilic protein-protein interactions. Mol Microbiol 37:1232–1247. [PubMed][CrossRef]
163. Berge A, Kihlberg BM, Sjoholm AG, Bjorck L. 1997. Streptococcal protein H forms soluble complement-activating complexes with IgG, but inhibits complement activation by IgG-coated targets. J Biol Chem 272:20774–20781. [PubMed][CrossRef]
164. Ochiai K, Kurita-Ochiai T, Kamino Y, Ikeda T. 1993. Effect of co-aggregation on the pathogenicity of oral bacteria. J Med Microbiol 39:183–190. [PubMed][CrossRef]
165. Low DA, Weyand NJ, Mahan MJ. 2001. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun 69:7197–7204. [PubMed][CrossRef]
ecosalplus.8.3.2.6.citations
ecosalplus/1/1
content/journal/ecosalplus/10.1128/ecosalplus.8.3.2.6
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.3.2.6
2004-11-15
2017-03-28

Abstract:

This review is primarily concerned with the first step in biofilm formation, namely, bacterial attachment to surfaces. It describes three examples of bacterial adhesins, each of which belongs to a different subgroup and follows different strategies for surface presentation and adhesin exposure. These are type 1 fimbriae, very long stiff rodlike organelles; curli, amorphous fluffy coat structures; and finally antigen 43, short outer membrane structures with a simple assembly system. Their role as adhesins, their structure and biosynthesis, and their role in biofilm formation are described in detail in the review. The FimH protein presented by type 1 fimbriae seems to be a highly versatile adhesin fulfilling a diverse spectrum of roles ranging from pellicle and biofilm formation to being a bona fide virulence factor in uropathogenic (UPEC) strains, where it plays important roles in the manifestation of cystitis. Curli formation promotes two fundamental processes associated with biofilm formation: initial adhesion and cell-to-cell aggregation. A role for curli in the colonization of inert surfaces has been demonstrated. Severe sepsis and septic shock are frequently caused by gram-negative bacteria, and several factors suggest a significant role for curli during sepsis. The protection provided by Ag43-mediated aggregation was underlined in a series of experiments addressing the role of Ag43 in protection against oxidizing agents. Type 1 fimbriae, curli, and Ag43 are structurally different bacterial surface structures and follow completely different strategies for surface display and assembly.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Citation: Klemm P, Schembri M. 2004. Type 1 Fimbriae, Curli, and Antigen 43: Adhesion, Colonization, and Biofilm Formation, EcoSal Plus 2004; doi:10.1128/ecosalplus.8.3.2.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Bacterial cells were probed with CsgA-specific antibody.

Reproduced with permission from reference ( 90 ).

Citation: Klemm P, Schembri M. 2004. Type 1 Fimbriae, Curli, and Antigen 43: Adhesion, Colonization, and Biofilm Formation, EcoSal Plus 2004; doi:10.1128/ecosalplus.8.3.2.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(A) Settling of cells from static liquid suspensions after overnight growth. (B) Phase-contrast microscopy demonstrating the aggregation phenotype conveyed by Ag43. (C) Biofilm formation of Ag43-negative (i) and -positive (ii) cells on a glass slide after 24 h of growth in glucose minimal medium using a continuous flow chamber system.

Citation: Klemm P, Schembri M. 2004. Type 1 Fimbriae, Curli, and Antigen 43: Adhesion, Colonization, and Biofilm Formation, EcoSal Plus 2004; doi:10.1128/ecosalplus.8.3.2.6
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error