1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

Meningitis-Associated

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Author: Kwang Sik Kim1
  • Editor: Donnenberg Michael S.2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Park 256, Baltimore, MD 21287; 2: University of Maryland, School of Medicine, Baltimore, MD
  • Received 02 February 2006 Accepted 12 May 2006 Published 12 October 2006
  • Address correspondence to Kwang Sik Kimkwangkim@jhmi.edu
image of Meningitis-Associated <span class="jp-italic">Escherichia coli</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    Meningitis-Associated , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/1/8_6_1_2_module-1.gif /docserver/preview/fulltext/ecosalplus/2/1/8_6_1_2_module-2.gif
  • Abstract:

    is the most common Gram-negative organism causing neonatal meningitis. Neonatal meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis and pathophysiology contributes to such mortality and morbidity. Recent reports of neonatal meningitis caused by strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. penetration into the brain, the essential step in the development of meningitis, requires a high-degree of bacteremia and penetration of the blood-brain barrier as live bacteria, but the underlying mechanisms remain incompletely understood. Recent functional genomic approaches of meningitis-causing in both in vitro and in vivo models of the blood-brain barrier (e.g., human brain microvascular endothelial cells and animal models of experimental hematogenousmeningitis, respectively) have identified several factors contributing to a high-degree of bacteremia, as well as specific microbial factors contributing to invasion of the blood-brain barrier. In addition, penetration of the blood-brain barrier involves specific host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors and host cell signaling molecules is efficient in preventing penetration into the brain. Continued investigation of the microbial and host factors contributing to bacteremia andinvasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of meningitis, thereby limiting the exposure to emerging antimicrobial-resistant

  • Citation: Sik Kim K. 2006. Meningitis-Associated , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.6.1.2

Article Version

An updated version has been published for this content:
Human Meningitis-Associated

References

1. Escherichia coli and Listeria monocytogenes. J Infect. Dis. 184:732–737.
2. Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P. 1997. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733. [PubMed][CrossRef]
3. Kim YV, DiCello F, Hillaire CS, Kim KS. 2004. Protease-activated receptors of human brain microvascular endothelial cells: Expression and differential Ca2+ signaling induced by thrombin and protease-activated receptor-1 activating peptide. Am J Physiol Cell Physiol 286:C31–C42.[PubMed]
4. Soderstrom T, Hansson G, Larson G. 1984. The Escherichia coli K1 capsule shares antigenic determinants with the human ganglioside GM3 and GD3. N Engl J Med 15:726–727.
5. Teng C-H, Xie Y, Shin S, Di Cello F, Paul-Satyaseela M, Cai M, Kim KS. 2006. Effects of ompA deletion on expression of type 1 fimbriae in Escherichia coli K1 strain RS218 and on the association of E. coli with human brain microvascular endothelial cells. Infect Immun 74:5609–5616. [PubMed][CrossRef]
6. Kim KJ, Elliott SA, DiCello F, Stins MF, Kim KS. 2003. The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell Microbiol 5:245–252. [PubMed][CrossRef]
7. Massia SP, Rao SS, Hubbell JA. 1993. Covalently immobilized laminin peptide Tyr-Ile-Gly-Ser-Arg (YIGSR) supports cell spreading and co-localization of the 67-kilodalton laminin receptor with alpha-actinin and vinculin. J Biol Chem 268:8053–8059. [PubMed]
8. Greiffenberg L, Goebel W, Kim KS, Kuhn M. 1998. Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth and spread from macrophages to endothelial cells. Infect Immun 66:5260–5267.[PubMed]
9. Korczak B, Frey J, Schrenzel J, Pluschke G, Pfister R, Ehricht R, Kuhnert P. 2005. Use of diagnostic microarrays for determination of virulence gene patterns of Escherichia coli K1, a major cause of neonatal meningitis. J Clin Microbiol 43:1024–1031. [PubMed][CrossRef]
10. Reddy MA, Wass CA, Kim KS, Schlaepfer DD, Nemani PV. 2000. Involvement of focal adhesion kinases in Escherichia coli invasion of human brain microvascular endothelial cells. Infect Immun 68:6423–6430. [PubMed][CrossRef]
11. Bonacorsi S, Clermont O, Houdouin V, Cordevant C, Brahimi N, Marecat A, Tinsley C, Nassif X, Lange M, Bingen E. 2003. Molecular analysis and experimental virulence of French and North American Escherichia coli neonatal meningitis isolates: identification of a new virulent clone. J Infect Dis 187:1895–1906. [PubMed][CrossRef]
12. Ruffer C, Strey A, Janning A, Kim KS, Gerke V. 2004. Cell-cell junctions of dermal microvascular endothelial cells contain tight and adherens junction proteins in spatial proximity. Biochemistry 43:5360–5369. [PubMed][CrossRef]
13. Kim KS. 1985. Comparison of cefotaxime, imipenem-cilastatin, ampicillin-gentamicin and ampicillin-chloramphenicol in the treatment of experimental E. coli bacteremia and meningitis. Antimicrob Agents Chemother 28:433–436.[PubMed]
14. Kim KS. 2001. E. coli translocation at the blood-brain barrier. Infect Immun 69:5217–5222. [PubMed][CrossRef]
15. Kim KS. 2002. Strategy of E. coli for crossing the blood-brain barrier. J Infect Dis 186:S220–S224. [PubMed][CrossRef]
16. Rode CK, Melkerson-Watson LJ, Johnson AT, Bloch CA. 1999. Type-specific contributions to chromosome size differences in Escherichia coli. Infect Immun 67:230–236.[PubMed]
17. Khan NA, Wang Y, Kim KJ, Chung JW, Wass CA, Kim KS. 2002. Cytotoxic necrotizing factor 1 contributes to Escherichia coli K1 invasion of the central nervous system. J Biol Chem 277:15607–15612. [PubMed][CrossRef]
18. Kim KS, Wass CA, Cross AS. 1997. Blood-brain barrier permeability during the development of experimental bacterial meningitis in the rat. Exp Neurol 145:253–257. [CrossRef]
19. Nemani PV, Wass C, Stins MF, Weiser J, Huang SH, Kim KS. 1996. Outer membrane protein A of E. coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 64:146–153.[PubMed]
20. Rubin LL, Staddon JM. 1999. The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28. [PubMed][CrossRef]
21. Stevens JP, Eames M, Kent A, Halket S, Holt D, Harvey D. 2003. Long term outcome of neonatal meningitis. Arch. Dis. Child. Fetal Neonatal Ed. 88:F179–F184. [CrossRef]
22. Stins MF, Badger JL, Kim KS. 2001. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 30:19–28. [PubMed][CrossRef]
23. Nemani PV, Huang SH, Wass CA, Kim KS. 1999. Identification and characterization of a novel Ibe10 binding protein contributing to E. coli invasion of brain microvascular endothelial cells. Infect Immun 67:1131–1138.[PubMed]
24. Gunther NW IV, Snyder JA, Lockatell V, Blomfield I, Johnson DE, Mobley HLT. 2002. Assessment of virulence of uropathogenic E. coli type 1 fimbrial mutants in which the invertible element is phase-locked ON or OFF. Infect Immun 70:3344–3354. [PubMed][CrossRef]
25. Hoffman JA, Badger JL, Zhang Y, Huang SH, Kim KS. 2000. E. coli K1 aslA contributed to invasion of brain microvascular endothelial cells in vitro and in vivo. Infect Immun 68:5062–5067. [PubMed][CrossRef]
26. Khan NA, Shin S, Chung JW, Kim KJ, Elliot S, Wang Y, Kim KS. 2003. Outer membrane protein A and cytotoxic necrotizing factor-1 use diverse signaling mechanisms for Escherichia coli K1 invasion of human brain microvascular endothelial cells. Microb Pathog 35:35–42. [PubMed][CrossRef]
27. Kim KS. 2003. Neurological diseases: pathogenesis of bacterial meningitis: from bacteremia to neuronal injury. Nat Rev Neurosci 4:376–385. [PubMed][CrossRef]
28. Unhanand M, Musatafa MM, McCracken GH, Nelson JD. 1993. Gram-negative enteric bacillary meningitis: a twenty-one year experience. J Pediatr 122:15–21. [PubMed][CrossRef]
29. Wang Y, Huang SH, Wass C, Kim KS. 1999. The gene locus yijP contributes to E. coli K1 invasion of brain microvascular endothelial cells. Infect Immun 67:4751–4756.[PubMed]
30. Wang Y, Kim KS. 2002. Role of OmpA and IbeB in Escherichia coli invasion of brain microvascular endothelial cells in vitro and in vivo. Pediatr Res 51:559–563. [PubMed][CrossRef]
31. Kim, Kang KS., JH, Cross AS, Kaufman B, Zollinger W, Sadoff J. 1988. Functional activities of monoclonal antibodies to O-side chain of Escherichia coli lipopolysaccharides in vitro and in vivo. J Infect Dis 157:47–53.[PubMed]
32. Dawson KG, Emerson JC, Burns JL. 1999. Fifteen years of experience with bacterial meningitis. Pediatr Infect Dis J 18:816–822. [PubMed][CrossRef]
33. Cross AS, Kim KS, Wright DC, Sadoff JC, Gemski P. 1986. Role of lipopolysaccharide and capsule in the serum-resistance of bacteremia strains of E. coli. J Infect Dis 154:497–503. [PubMed]
34. Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS. 1992. The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Invest 90:897–905. [PubMed][CrossRef]
35. Kim KS, Kang JH, Cross AS. 1986. The role of capsular antigens in serum resistance and in vivo virulence of Escherichia coli. FEMS Microbiol Lett 35:275–278. [CrossRef]
36. Cross A, Artenstein A, Que J, Fredeking T, Furer E, Sadoff JC, Cryz SJ, Jr. 1994. Safety and immunogenicity of a polyvalent Escherichia coli vaccine in human volunteers. J Infect Dis 170:834–840. [PubMed]
37. Fabbri A, Falzano L, Travaglione S, Stringaro A, Malorni W, Fais S, Fiorentini C. 2002. Rho-activating Escherichia coli cytotoxic necrotizing factor 1: macropinocytosis of apoptotic bodies in human epithelial cells. Int J Med Microbiol 291:551–554. [PubMed][CrossRef]
38. Shin S, Lu G, Cai M, Kim KS. 2005. Escherichia coli outer membrane protein A adheres to human brain microvascular endothelial cells. Biochem Biophys Res Commun 330:1199–1204. [PubMed][CrossRef]
39. Huang SH, Chen YH, Fu Q, Wang Y, Stins M, Wass C, K S. Kim. 1999. Identification and characterization of an E. coli invasion gene locus ibeB required for penetration of brain microvascular endothelial cells. Infect Immun 67:2103–2109.[PubMed]
40. Teng CH, Cai M, Shin S, Xie Y, Kim KJ, Khan NA, Di Cello F, Kim KS. 2005. Escherichia coli K1 RS218 interacts with human brain microvascular endothelial cells via type 1 fimbria phase-on bacteria. Infect Immun 73:2923–2931. [PubMed][CrossRef]
41. Kallenius G, Svenson S, Mollby R, Cedergren B, Hultberg H, Winberg J. 1981. Structure of carbohydrate part of receptor on human uroepithelial cells for pyelonephritogenic Escherichia coli. Lancet 2:604–606. [PubMed][CrossRef]
42. Reddy MA, Nemani PV, Wass CA, Kim KS. 2000. Phosphatidylinositol 3-kinase activation and interaction with focal adhesion kinase in E coli K1 invasion of human brain microvascular endothelial cells. J Biol Chem 275:36769–36774. [PubMed][CrossRef]
43. Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K. 1997. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-I. Nature 387:725–729. [PubMed][CrossRef]
44. Stins MF, Prasadarao NV, Ibric L, Wass CA, Luckett P, Kim KS. 1994. Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am J Pathol 145:1228–1236.[PubMed]
45. Johnson JR, Oswald E, O’Bryan TT, Kuskowski MA, Spanjaard L. 2002. Phylogenetic distribution of virulence-associated genes among Escherichia coli isolates associated with neonatal bacterial meningitis in the Netherlands. J Infect Dis 185:774–784. [PubMed][CrossRef]
46. Nizet V, Kim KS, Stins M, Jonas M, Nguyen D, Rubens CE. 1997. Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun 65:5074–5081.[PubMed]
47. Gross RJ, Ward LR, Threlfall EJ, Cheasty T, Rowe B. 1982. Drug resistance among Escherichia coli strains isolated from cerebrospinal fluid. J Hyg 90:195–198. [CrossRef]
48. Orskov I, Orskov F. 1983. Serology of Escherichia coli fimbriae. Prog Allergy 33:80–105. [PubMed]
49. Prasadarao NV, Srivastava PK, Rudrabhatla SV, Kim KS, Huang SH, Sukumaran SK. 2003. Cloning and expression of the E. coli K1 outer membrane protein A receptor, a gp96 homologue. Infect Immun 71:1680–1688. [PubMed][CrossRef]
50. Stins MF, Gilles F, Kim KS. 1997. Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76:81–90. [PubMed][CrossRef]
51. Nemani PV, Wass CA, Kim KS. 1996. Endothelial cell GlcNAcB1–4 GlcNAc epitopes for outer membrane protein A traversal of E. coli across the blood-brain barrier. Infect Immun 64:154–160.[PubMed]
52. Parkkinen J, Korhonen TK, Pere A, Hacker J, Soinila S. 1988. Binding sites of the rat brain for Escherichia coli S-fimbriae associated with neonatal meningitis. J Clin Invest 81:860–865. [PubMed][CrossRef]
53. Nemani PV, Stins M, Wass CA, Shimada H, Kim KS. 1999. Outer membrane A promoted cytoskeletal rearrangement of brain microvascular endothelial cells is required for E. coli invasion. Infect Immun 67:5775–5783.[PubMed]
54. Badger JB, Wass CA, Kim KS. 2000. Identification of E. coli KI genes contributing to human brain microvascular endothelia cell invasion by differential fluorescence induction. Mol Microbiol 36:174–182. [PubMed][CrossRef]
55. Badger J, Wass C, Weissman S, Kim KS. 2000. Application of signature-tagged mutagenesis for the identification of E coli K1 genes that contribute to invasion of the blood-brain barrier. Infect Immun 68:5056–5061. [PubMed][CrossRef]
56. Menard S, Tagliabue E, Colnaghi MI. 1998. The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat 52:137–145. [PubMed][CrossRef]
57. Bouquet P. 2001. The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. Toxicon 39:1673–1680. [PubMed][CrossRef]
58. Finne J, Bitterman-Suermann D, Goridis C, Finne U. 1987. An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J Immunol 138:4402–4407.
59. Sarff LC, Mccracken GH, Jr, Schiffer MS, Glode MO, Robbins JB, Orskov I, Orskov F. 1975. Epidemiology of Escherichia coli in healthy and diseased newborns. Lancet 1:1099–1104. [PubMed][CrossRef]
60. Dietzman DE, Schoenknecht G W Fischer FD. 1974. Neonatal Escherichia coli septicemia–bacterial counts in blood. J Pediatr 85:128–130. [PubMed][CrossRef]
61. Chung JW, Hong SJ, Kim KJ, Goti D, Stins MF, Shin S, Dawson VL, Dawson TM, Kim KS. 2003. 37 kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. J Biol Chem 278:16857–16862. [PubMed][CrossRef]
62. Korhonen TK, Valtonen MV, Parkkinen J, Vaisanen-Rhen V, Finne J, Orskov F, Orskov I, Svenson SB, Makela PH. 1985. Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis. Infect Immun 48:486–491. [PubMed]
63. Kim BY, Kang J, Kim KS. 2005. Invasion processes of pathogenic Escherichia coli. Int J Med Microbiol 295:463–470. [PubMed][CrossRef]
64. McCracken GH Jr, Threlkeld N, Mize S, Baker CJ, Kapal SL, Fraingezicht I, Feldman WF, Schad U, the Neonatal Meningitis Cooperative Study Group. 1984. Moxalactam therapy for neonatal meningitis due to gram-negative sepsis enteric bacilli. JAMA 252:1427–1432. [PubMed][CrossRef]
65. Cossart P, Sansonetti PJ. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248. [PubMed][CrossRef]
66. Klinger G, Chin C-N, Beyene J, Perlman M. 2000. Predicting the outcome of neonatal bacterial meningitis. Pediatrics 106:477–482. [PubMed][CrossRef]
67. Das A, Asatryan L, Reddy MA, Wass CA, Stins M, Joshi S, Bonentre JV, Kim KS. 2001. Differential role of cytosolic phospholipase A2 in the invasion of brain
68. Prasadarao NV, Wass CA, Hacker J, Jann K, Kim KS. 1993. Adhesin of S-fimbriated Escherichia coli to brain glycolipids mediated by sfaA gene-encoded protein of S-fimbriae. J Biol Chem 268:10356–10363. [PubMed]
69. Gladstone IM, Ehrenkranz RA, Edberg SC, Baltimore RS. 1990. A ten-year review of neonatal sepsis and comparison with the previous fifty-year experience. Pediatr Infect Dis 9:819–825. [CrossRef]
70. Kim KJ, Chung JW, Kim KS. 2005. 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J Biol Chem 280:1360–1368. [PubMed][CrossRef]
71. Wang Y, Wen ZG, Kim KS. 2004. Role of S. fimbriae in E. coli K1 binding to brain microvascular endothelial cells in vitro and penetration into the central nervous system in vivo. Microb. Pathog. 37:287–293. [CrossRef]
72. Xie Y, Kim KJ, Kim KS. 2004. Current concepts on E. coli K1 translocation of the blood-brain barrier. FEMS Immunol Med Microbiol 42:271–279. [PubMed][CrossRef]
73. Robbins JB, McCracken GH, Jr, Gotschlich EC, Orskov F, Orskov I, Hanson LA. 1974. Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis. N Engl J Med 290:1216–1220. [PubMed]
74. Bonacorsi SP, Clermont O, Tinsley C, Le Gall I, Beaudoin JC, Elion J, Nassif X, Bingen E. 2000. Identification of regions of the Escherichia coli chromosome specific for neonatal meningitis-associated strains. Infect Immun 68:2096–2101. [PubMed][CrossRef]
75. Bingen E, Picard B, Brahimi N, Mathy S, Desjardins P, Elion J, Denamur E. 1998. Phylogenetic analysis of Escherichia coli strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. J Infect Dis 177:642–650. [PubMed][CrossRef]
76. Ideses D, Gophna U, Paitan Y, Chaudhuri RR, Pallen MJ, Ron EZ. 2005. A degenerate type III secretion system from septicemic Escherichia coli contributes to pathogenesis. J Bacteriol 187:8164–8171. [PubMed][CrossRef]
77. Johnson JR, Delavari P, O’Brien TT. 2001. Escherichia coli O18:K1:H7 isolates from patients with acute cystitis and neonatal meningitis exhibit common phylogenetic origins and virulence factor profiles. J Infect Dis 183:425–434. [PubMed][CrossRef]
78. Knodler LA, Celli J, Finlay BB. 2001. Pathogenic trickery: deception of host cell processes. Nat Rev Mol Cell Biol 2:578–588. [PubMed][CrossRef]
79. Xie Y, Kolisnychenko V, Paul-Satyassela M, Elliot S, Parthasarathy G, Yao Y, Plunkett G, Blattner FR, Kim KS. 2006. Identification and characterization of Escherichia coli RS218-derived islands in the pathogenesis of E. coli meningitis. J Infect. Dis. 194:358–364. [CrossRef]
80. Yao,Y, Xie Y, Kim KS. 2006. Genomic comparison of E. coli K1 strains isolated from the cerebrospinal fluid of patients with meningitis. Infect. Immun. 74:2196–2206. [CrossRef]
81. Huang SH, Wass CA, Fu Q, Nemani PV, Stins M, Kim KS. 1995. E. coli invasion of brain microvascular endothelial cells in vitro and in vivo: molecular cloning and characterization of E coli invasion gene ibe10. Infect Immun 63:4470–4475.[PubMed]
ecosalplus.8.6.1.2.citations
ecosalplus/2/1
content/journal/ecosalplus/10.1128/ecosalplus.8.6.1.2
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.6.1.2
2006-10-12
2017-07-22

Abstract:

is the most common Gram-negative organism causing neonatal meningitis. Neonatal meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis and pathophysiology contributes to such mortality and morbidity. Recent reports of neonatal meningitis caused by strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. penetration into the brain, the essential step in the development of meningitis, requires a high-degree of bacteremia and penetration of the blood-brain barrier as live bacteria, but the underlying mechanisms remain incompletely understood. Recent functional genomic approaches of meningitis-causing in both in vitro and in vivo models of the blood-brain barrier (e.g., human brain microvascular endothelial cells and animal models of experimental hematogenousmeningitis, respectively) have identified several factors contributing to a high-degree of bacteremia, as well as specific microbial factors contributing to invasion of the blood-brain barrier. In addition, penetration of the blood-brain barrier involves specific host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors and host cell signaling molecules is efficient in preventing penetration into the brain. Continued investigation of the microbial and host factors contributing to bacteremia andinvasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of meningitis, thereby limiting the exposure to emerging antimicrobial-resistant

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Scale bar = 1 μm. Modified with permission from the (607–614, 2006).

Citation: Sik Kim K. 2006. Meningitis-Associated , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.6.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

1 and 2 represent the phylogenetic groups and the O serotypes of 11 K1 strains. Modified with permission from ( 79 ).

Citation: Sik Kim K. 2006. Meningitis-Associated , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.6.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Mechanisms involved in translocation of the blood-brain barrier and determinants contributing to translocation of the blood-brain barrier

Citation: Sik Kim K. 2006. Meningitis-Associated , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.6.1.2
Generic image for table
Table 2

Development of bacteremia and meningitis (defined as positive CSF cultures) in newborn rats receiving the . K1 strain RS 218 or its isogenic mutants

Citation: Sik Kim K. 2006. Meningitis-Associated , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.6.1.2
Generic image for table
Table 3

Comparison of host cell cytoskeleton and signaling mechanisms involved in bacterial invasion of human brain microvascular endothelial cells. Modified with permission from the (607–614, 2006)

Citation: Sik Kim K. 2006. Meningitis-Associated , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.6.1.2
Generic image for table
Table 4

Size and characteristics of eight RSIs relevant to the pathogenesis of meningitis

Citation: Sik Kim K. 2006. Meningitis-Associated , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.6.1.2

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error