1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

Uropathogenic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Harry L. T. Mobley1, Michael S. Donnenberg2, and Erin C. Hagan3
  • Editor: Michael S. Donnenberg4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Departments of Medicine and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; 2: Departments of Medicine and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; 3: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620; 4: University of Maryland, School of Medicine, Baltimore, MD
  • Received 01 May 2009 Accepted 07 August 2009 Published 21 December 2009
  • Address correspondence to Harry L. T. Mobley hmobley@umich.edu.
image of Uropathogenic <span class="jp-italic">Escherichia coli</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    Uropathogenic , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/3/2/8_6_1_3_module-1.gif /docserver/preview/fulltext/ecosalplus/3/2/8_6_1_3_module-2.gif
  • Abstract:

    The urinary tract is among the most common sites of bacterial infection, and is by far the most common species infecting this site. Individuals at high risk for symptomatic urinary tract infection (UTI) include neonates, preschool girls, sexually active women, and elderly women and men. that cause the majority of UTIs are thought to represent only a subset of the strains that colonize the colon. strains that cause UTIs are termed uropathogenic (UPEC). In general, UPEC strains differ from commensal strains in that the former possess extragenetic material, often on pathogenicity-associated islands (PAIs), which code for gene products that may contribute to bacterial pathogenesis. Some of these genes allow UPEC to express determinants that are proposed to play roles in disease. These factors include hemolysins, secreted proteins, specific lipopolysaccharide and capsule types, iron acquisition systems, and fimbrial adhesions. The current dogma of bacterial pathogenesis identifies adherence, colonization, avoidance of host defenses, and damage to host tissues as events vital for achieving bacterial virulence. These considerations, along with analysis of the CFT073, UTI89, and 536 genomes and efforts to identify novel virulence genes should advance the field significantly and allow for the development of a comprehensive model of pathogenesis for uropathogenic .Further study of the adaptive immune response to UTI will be especially critical to refine our understanding and treatment of recurrent infections and to develop vaccines.

  • Citation: Mobley H, Donnenberg M, Hagan E. 2009. Uropathogenic , EcoSal Plus 2009; doi:10.1128/ecosalplus.8.6.1.3

Key Concept Ranking

Type 1 Fimbriae
0.46424225
Bacterial Pathogenesis
0.44907135
gamma delta T Cell
0.43565422
Type I Secretion System
0.40876362
Urinary Tract Infections
0.3955523
0.46424225

References

1. Kunin CM. 1987. Detection, Prevention and Management of Urinary Tract Infections, 4th ed. Lea & Febiger, Philadelphia, PA.
2. Graves EJ, Gillum BS. 1997. Detailed diagnoses and procedures, National Hospital Discharge Survey, 1994. National Center for Health Statistics. Vital Health Stat 12(127).
3. Litwin MS, Saigal CS, Yano EM, Avila C, Geschwind SA, Hanley JM, Joyce GF, Madison R, Pace J, Polich SM, Wang M. 2005. Urologic Diseases in America Project: analytical methods and principal findings. J Urol 173:933–937.[PubMed]
4. Schappert SM. 1993. National Ambulatory Medical Care Survey: 1991 Summary. Advance data from Vital and Health Statistics no. 230. National Center for Health Statistics, Hyattsville, MD.
5. Bacheller CD, Bernstein JM. 1997. Urinary tract infections. Med Clin N Am 81:719–730. [PubMed][CrossRef]
6. Faro S, Fenner DE. 1998. Urinary tract infections. Clin Obstet Gynecol 41:744–754. [PubMed][CrossRef]
7. Warren JW, Abrutyn E, Hebel JR, Johnson JR, Schaeffer AJ, Stamm WE. 1999. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis 29:745–758. [PubMed][CrossRef]
8. Ferry S, Burman LG, Holm SE. 1988. Clinical and bacteriological effects of therapy of urinary tract infection in primary health care: relation to in vitro sensitivity testing. Scand J Infect Dis 20:535–544. [PubMed][CrossRef]
9. Warren JW (ed). 1996. Urinary Tract Infections: Molecular Pathogenesis and Clinical Management. ASM Press, Washington, DC.
10. Warren JW, Mobley HL, Donnenberg MS. 2001. Host-parasite interactions and host defense mechanisms. In Schrier RW (ed), Diseases of the Kidney and Urinary Tract. Lippincott Williams & Wilkins, Philadelphia, PA.
11. Heptinstall RH (ed). 1983. Pyelonephritis: pathologic features, p 1323–1396. In Pathology of the Kidney, 3rd ed. Little, Brown and Company, Boston, MA.
12. Roberts JA. 1986. Pyelonephritis, cortical abscess, and perinephric abscess. Urol Clin N Am 13:637–645.[PubMed]
13. Ikaheimo R, Siitonen A, Karkkainen U, Mustonen J, Heiskanen T, Makela PH. 1994. Community-acquired pyelonephritis in adults: characteristics of E. coli isolates in bacteremic and non-bacteremic patients. Scand J Infect Dis 26:289–296. [PubMed][CrossRef]
14. Lee BK, Crossley K, Gerding DN. 1978. The association between Staphylococcus aureus bacteremia and bacteriuria. Am J Med 65:303–306. [PubMed][CrossRef]
15. Hooton TM, Stapleton AE, Roberts PL, Winter C, Scholes D, Bavendam T, Stamm WE. 1999. Perineal anatomy and urine-voiding characteristics of young women with and without recurrent urinary tract infections. Clin Infect Dis 29:1600–1601. [PubMed][CrossRef]
16. Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. 2007. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4:e329. [PubMed][CrossRef]
17. Foxman B. 1990. Recurring urinary tract infection: incidence and risk factors. Am J Public Health 80:331–333. [PubMed][CrossRef]
18. Johnson JR, Russo TA. 2005. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 295:383–404. [PubMed][CrossRef]
19. Mysorekar IU, Hultgren SJ. 2006. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci USA 103:14170–14175. [PubMed][CrossRef]
20. Finer G, Landau D. 2004. Pathogenesis of urinary tract infections with normal female anatomy. Lancet Infect Dis 4:631–635. [PubMed][CrossRef]
21. Andreu A, Stapleton AE, Fennell C, Lockman HA, Xercavins M, Fernandez F, Stamm WE. 1997. Urovirulence determinants in Escherichia coli strains causing prostatitis. J Infect Dis 176:464–469. [PubMed][CrossRef]
22. Donnenberg MS, Welch RA. 1996. Virulence determinants of uropathogenic Escherichia coli. In Mobley HL and Warren JW (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management. ASM Press, Washington, DC.
23. Guyer DM, Henderson IR, Nataro JP, Mobley HL. 2000. Identification of sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol Microbiol 38:53–66. [PubMed][CrossRef]
24. Heimer SR, Rasko DA, Lockatell CV, Johnson DE, Mobley HL. 2004. Autotransporter genes pic and tsh are associated with Escherichia coli strains that cause acute pyelonephritis and are expressed during urinary tract infection. Infect Immun 72:593–597. [PubMed][CrossRef]
25. Roos V, Nielsen EM, Klemm P. 2006. Asymptomatic bacteriuria Escherichia coli strains: adhesins, growth and competition. FEMS Microbiol Lett 262:22–30. [PubMed][CrossRef]
26. Yamamoto S, Tsukamoto T, Terai A, Kurazono H, Takeda Y, Yoshida O. 1995. Distribution of virulence factors in Escherichia coli isolated from urine of cystitis patients. Microbiol Immunol 39:401–404.[PubMed]
27. Kauffmann F. 1947. The serology of the coli group. J Immunol 57:71–100.
28. Ørskov F, I Ørskov. 1992. Escherichia coli serotyping and disease in man and animals. Can J Microbiol 38:699–704.[PubMed]
29. Lindberg U, Hanson LA, Jodal U, Lidin-Janson G, Lincoln K, Olling S. 1975. Asymptomatic bacteriuria in schoolgirls. II. Differences in Escherichia coli causing asymptomatic bacteriuria. Acta Paediatr Scand 64:432–436.[PubMed]
30. Burns SM, Hull SI. 1998. Comparison of loss of serum resistance by defined lipopolysaccharide mutants and an acapsular mutant of uropathogenic Escherichia coli O75:K5. Infect Immun 66:4244–4253.[PubMed]
31. Devine DA, Roberts AP. 1994. K1, K5 and O antigens of Escherichia coli in relation to serum killing via the classical and alternative complement pathways. J Med Microbiol 41:139–144. [PubMed][CrossRef]
32. Russo TA, Davidson BA, Topolnycky DM, Olson R, Morrill SA, Knight PR, 3rd, Murphy PM. 2003. Human neutrophil chemotaxis is modulated by capsule and O antigen from an extraintestinal pathogenic Escherichia coli strain. Infect Immun 71:6435–6445. [PubMed][CrossRef]
33. Elo J, Tallgren LG, Vaisanen V, Korhonen TK, Svenson SB, Makela PH. 1985. Association of P and other fimbriae with clinical pyelonephritis in children. Scand J Urol Nephrol 19:281–284.[PubMed]
34. Enerback S, Larsson AC, Leffler H, Lundell A, de Man P, Nilsson B, Svanborg-Eden C. 1987. Binding to galactose alpha 1—4galactose beta-containing receptors as potential diagnostic tool in urinary tract infection. J Clin Microbiol 25:407–411.[PubMed]
35. Jacobsen SH, Lins LE, Svenson SB, Kallenius G. 1985. P fimbriated Escherichia coli in adults with acute pyelonephritis. J Infect Dis 152:426–427.[PubMed]
36. Kallenius G, Mollby R. 1979. Adhesion of Escherichia coli to human periurethral cells correlated to mannose-resistant agglutination of human erythrocytes. FEMS Microbiol Lett 5:295–299. [CrossRef]
37. O’Hanley P, Low D, Romero I, Lark D, Vosti K, Falkow S, Schoolnik G. 1985. Gal-Gal binding and hemolysin phenotypes and genotypes associated with uropathogenic Escherichia coli. N Engl J Med 313:414–420.[PubMed]
38. Johnson JR, Owens KL, Clabots CR, Weissman SJ, Cannon SB. 2006. Phylogenetic relationships among clonal groups of extraintestinal pathogenic Escherichia coli as assessed by multi-locus sequence analysis. Microbes Infect 8:1702–1713. [PubMed][CrossRef]
39. Zhang L, Foxman B, Marrs C. 2002. Both urinary and rectal Escherichia coli isolates are dominated by strains of phylogenetic group B2. J Clin Microbiol 40:3951–3955. [PubMed][CrossRef]
40. Phillips I, Eykyn S, King A, Gransden WR, Rowe B, Frost JA, Gross RJ. 1988. Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet 1:1038–1041. [PubMed][CrossRef]
41. Manges AR, Johnson JR, Foxman B, O’Bryan TT, Fullerton KE, Riley LW. 2001. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med 345:1007–1013. [PubMed][CrossRef]
42. Tullus K, Horlin K, Svenson SB, Kallenius G. 1984. Epidemic outbreaks of acute pyelonephritis caused by nosocomial spread of P fimbriated Escherichia coli in children. J Infect Dis 150:728–736.[PubMed]
43. Kunin CM, Hua TH, Krishnan C, Van Arsdale White L, Hacker J. 1993. Isolation of a nicotinamide-requiring clone of Escherichia coli O18:K1:H7 from women with acute cystitis: resemblance to strains found in neonatal meningitis. Clin Infect Dis 16:412–416.[PubMed]
44. Zhang L, Foxman B, Tallman P, Cladera E, Le Bouguenec C, Marrs CF. 1997. Distribution of drb genes coding for Dr binding adhesins among uropathogenic and fecal Escherichia coli isolates and identification of new subtypes. Infect Immun 65:2011–2018.[PubMed]
45. Johnson JR, Russo TA, Scheutz F, Brown JJ, Zhang L, Palin K, Rode C, Bloch C, Marrs CF, Foxman B. 1997. Discovery of disseminated J96-like strains of uropathogenic Escherichia coli O4:H5 containing genes for both PapG(J96) (class I) and PrsG(J96) (class III) Gal(alpha1–4)Gal-binding adhesins. J Infect Dis 175:983–988. [PubMed][CrossRef]
46. Brzuszkiewicz E, Bruggemann H, Liesegang H, Emmerth M, Olschlager T, Nagy G, Albermann K, Wagner C, Buchrieser C, Emody L, Gottschalk G, Hacker J, Dobrindt U. 2006. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 103:12879–12884. [PubMed][CrossRef]
47. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, Sabo A, Blasiar D, Bieri T, Meyer RR, Ozersky P, Armstrong JR, Fulton RS, Latreille JP, Spieth J, Hooton TM, Mardis ER, Hultgren SJ, Gordon JI. 2006. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci USA 103:5977–5982. [PubMed][CrossRef]
48. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024. [PubMed][CrossRef]
49. Lloyd AL, Rasko DA, Mobley HL. 2007. Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J Bacteriol 189:3532–3546. [PubMed][CrossRef]
50. Hacker J, Knapp S, Goebel W. 1983. Spontaneous deletions and flanking regions of the chromosomally inherited hemolysin determinant of an Escherichia coli O6 strain. J Bacteriol 154:1145–1152.[PubMed]
51. Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, Jones BD, Warren JW. 1990. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58:1281–1289.[PubMed]
52. Stapleton A, Moseley S, Stamm WE. 1991. Urovirulence determinants in Escherichia coli isolates causing first-episode and recurrent cystitis in women. J Infect Dis 163:773–779.[PubMed]
53. Hull RA, Gill RE, Hsu P, Minshew BH, Falkow S. 1981. Construction and expression of recombinant plasmids encoding type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun 33:933–938.[PubMed]
54. Hultgren SJ, Schwan WR, Schaeffer AJ, Duncan JL. 1986. Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect Immun 54:613–620.[PubMed]
55. Silver RP, Aaronson W, Sutton A, Schneerson R. 1980. Comparative analysis of plasmids and some metabolic characteristics of Escherichia coli K1 from diseased and healthy individuals. Infect Immun 29:200–206.[PubMed]
56. Funfstuck R, Tschape H, Stein G, Kunath H, Bergner M, Wessel G. 1986. Virulence properties of Escherichia coli strains in patients with chronic pyelonephritis. Infection 14:145–150. [PubMed][CrossRef]
57. Johnson JR, Moseley SL, Roberts PL, Stamm WE. 1988. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect Immun 56:405–412.[PubMed]
58. Vaisanen-Rhen V, Elo J, Vaisanen E, Siitonen A, Svenson I Ørskov F Ørskov SB, Makela PH, Korhonen TK. 1984. P-fimbriated clones among uropathogenic Escherichia coli strains. Infect Immun 43:149–155.[PubMed]
59. Arthur M, Johnson CE, Rubin RH, Arbeit RD, Campanelli C, Kim C, Steinbach S, Agarwal M, Wilkinson R, Goldstein R. 1989. Molecular epidemiology of adhesin and hemolysin virulence factors among uropathogenic Escherichia coli. Infect Immun 57:303–313.[PubMed]
60. Latham RH, Stamm WE. 1984. Role of fimbriated Escherichia coli in urinary tract infections in adult women: correlation with localization studies. J Infect Dis 149:835–840.[PubMed]
61. Minshew BH, Jorgensen J, Counts GW, Falkow S. 1978. Association of hemolysin production, hemagglutination of human erythrocytes, and virulence for chicken embryos of extraintestinal Escherichia coli isolates. Infect Immun 20:50–54.[PubMed]
62. Hacker J, Bender L, Ott M, Wingender J, Lund B, Marre R, Goebel W. 1990. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog 8:213–225. [PubMed][CrossRef]
63. Middendorf B, Hochhut B, Leipold K, Dobrindt U, Blum-Oehler G, Hacker J. 2004. Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol 186:3086–3096. [PubMed][CrossRef]
64. Bidet P, Bonacorsi S, Clermont O, De Montille C, Brahimi N, Bingen E. 2005. Multiple insertional events, restricted by the genetic background, have led to acquisition of pathogenicity island IIJ96-like domains among Escherichia coli strains of different clinical origins. Infect Immun 73:4081–4087. [PubMed][CrossRef]
65. Dobrindt U, Agerer F, Michaelis K, Janka A, Buchrieser C, Samuelson M, Svanborg C, Gottschalk G, Karch H, Hacker J. 2003. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185:1831–1840. [PubMed][CrossRef]
66. Dobrindt U, Blum-Oehler G, Nagy G, Schneider G, Johann A, Gottschalk G, Hacker J. 2002. Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect Immun 70:6365–6372. [PubMed][CrossRef]
67. Guyer DM, Kao JS, Mobley HL. 1998. Genomic analysis of a pathogenicity island in uropathogenic Escherichia coli CFT073: distribution of homologous sequences among isolates from patients with pyelonephritis, cystitis, and catheter-associated bacteriuria and from fecal samples. Infect Immun 66:4411–4417.[PubMed]
68. Kao JS, Stucker DM, Warren JW, Mobley HL. 1997. Pathogenicity island sequences of pyelonephritogenic Escherichia coli CFT073 are associated with virulent uropathogenic strains. Infect Immun 65:2812–2820.[PubMed]
69. Knapp S, Hacker J, Jarchau T, Goebel W. 1986. Large, unstable inserts in the chromosome affect virulence properties of uropathogenic Escherichia coli O6 strain 536. J Bacteriol 168:22–30.[PubMed]
70. Oelschlaeger TA, Dobrindt U, Hacker J. 2002. Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int J Antimicrob Agents 19:517–521. [PubMed][CrossRef]
71. Schneider G, Dobrindt U, Bruggemann H, Nagy G, Janke B, Blum-Oehler G, Buchrieser C, Gottschalk G, Emody L, Hacker J. 2004. The pathogenicity island-associated K15 capsule determinant exhibits a novel genetic structure and correlates with virulence in uropathogenic Escherichia coli strain 536. Infect Immun 72:5993–6001. [PubMed][CrossRef]
72. Swenson DL, Bukanov NO, Berg DE, Welch RA. 1996. Two pathogenicity islands in uropathogenic Escherichia coli J96: cosmid cloning and sample sequencing. Infect Immun 64:3736–3743.[PubMed]
73. Parham NJ, Pollard SJ, Chaudhuri RR, Beatson SA, Desvaux M, Russell MA, Ruiz J, Fivian A, Vila J, Henderson IR. 2005. Prevalence of pathogenicity island IICFT073 genes among extraintestinal clinical isolates of Escherichia coli. J Clin Microbiol 43:2425–2434. [PubMed][CrossRef]
74. Rasko DA, Phillips JA, Li X, Mobley HL. 2001. Identification of DNA sequences from a second pathogenicity island of uropathogenic Escherichia coli CFT073: probes specific for uropathogenic populations. J Infect Dis 184:1041–1049.[PubMed]
75. Mobley HL, Jarvis KG, Elwood JP, Whittle DI, Lockatell CV, Russell RG, Johnson DE, Donnenberg MS, Warren JW. 1993. Isogenic P-fimbrial deletion mutants of pyelonephritogenic Escherichia coli: the role of alpha Gal(1–4) beta Gal binding in virulence of a wild-type strain. Mol Microbiol 10:143–155. [PubMed][CrossRef]
76. Hannan TJ, Mysorekar IU, Chen SL, Walker JN, Jones JM, Pinkner JS, Hultgren SJ, Seed PC. 2008. LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis. Mol Microbiol 67:116–128.[PubMed]
77. Finlay BB, Falkow S. 1989. Common themes in microbial pathogenicity. Microbiol Rev 53:210–230.[PubMed]
78. Johnson JR. 1991. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4:80–128.[PubMed]
79. Nowicki B, Rhen M, Vaisanen-Rhen V, Pere A, Korhonen TK. 1984. Immunofluorescence study of fimbrial phase variation in Escherichia coli KS71. J Bacteriol 160:691–695.[PubMed]
80. Nowicki B, Svanborg-Eden C, Hull R, Hull S. 1989. Molecular analysis and epidemiology of the Dr hemagglutinin of uropathogenic Escherichia coli. Infect Immun 57:446–451.[PubMed]
81. Pere A, Nowicki B, Saxen H, Siitonen A, Korhonen TK. 1987. Expression of P, type-1, and type-1C fimbriae of Escherichia coli in the urine of patients with acute urinary tract infection. J Infect Dis 156:567–574.[PubMed]
82. Virkola R, Westerlund B, Holthofer H, Parkkinen J, Kekomaki M, Korhonen TK. 1988. Binding characteristics of Escherichia coli adhesins in human urinary bladder. Infect Immun 56:2615–2622.[PubMed]
83. Brinton CC Jr. 1959. Non-flagellar appendages of bacteria. Nature 183:782–786. [PubMed][CrossRef]
84. Duguid JP, Clegg S, Wilson MI. 1979. The fimbrial and non-fimbrial haemagglutinins of Escherichia coli. J Med Microbiol 12:213–227. [PubMed][CrossRef]
85. Duguid JP, Smith IW, Dempster G, Edmunds PN. 1955. Non-flagellar filamentous appendages (fimbriae) and haemagglutinating activity in Bacterium coli. J Pathol Bacteriol 70:335–348. [PubMed][CrossRef]
86. Evans DJ Jr, Evans DG, Hohne C, Noble MA, Haldane EV, Lior H, Young LS. 1981. Hemolysin and K antigens in relation to serotype and hemagglutination type of Escherichia coli isolated from extraintestinal infections. J Clin Microbiol 13:171–178.[PubMed]
87. Green CP, Thomas VL. 1981. Hemagglutination of human type O erythrocytes, hemolysin production, and serogrouping of Escherichia coli isolates from patients with acute pyelonephritis, cystitis, and asymptomatic bacteriuria. Infect Immun 31:309–315.[PubMed]
88. Bahrani-Mougeot FK, Buckles EL, Lockatell CV, Hebel JR, Johnson DE, Tang CM, Donnenberg MS. 2002. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol Microbiol 45:1079–1093. [PubMed][CrossRef]
89. Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci USA 93:9827–9832. [PubMed][CrossRef]
90. Gunther IN, Snyder JA, Lockatell V, Blomfield I, Johnson DE, Mobley HL. 2002. Assessment of virulence of uropathogenic Escherichia coli type 1 fimbrial mutants in which the invertible element is phase-locked on or off. Infect Immun 70:3344–3354. [PubMed][CrossRef]
91. Snyder JA, Lloyd AL, Lockatell CV, Johnson DE, Mobley HL. 2006. Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection. Infect Immun 74:1387–1393. [PubMed][CrossRef]
92. Orndorff PE, Bloch CA. 1990. The role of type 1 pili in the pathogenesis of Escherichia coli infections: a short review and some new ideas. Microb Pathog 9:75–79. [PubMed][CrossRef]
93. Struve C, Krogfelt KA. 1999. In vivo detection of Escherichia coli type 1 fimbrial expression and phase variation during experimental urinary tract infection. Microbiology 145(Pt 10):2683–2690.[PubMed]
94. Nilsson LM, Yakovenko O, Tchesnokova V, Thomas WE, Schembri MA, Vogel V, Klemm P, Sokurenko EV. 2007. The cysteine bond in the Escherichia coli FimH adhesin is critical for adhesion under flow conditions. Mol Microbiol 65:1158–1169. [PubMed][CrossRef]
95. Thomas WE, Nilsson LM, Forero M, Sokurenko EV, Vogel V. 2004. Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli. Mol Microbiol 53:1545–1557. [PubMed][CrossRef]
96. Langermann S, Mollby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A, Strouse R, Schenerman MA, Hultgren SJ, Pinkner JS, Winberg J, Guldevall L, Soderhall M, Ishikawa K, Normark S, Koenig S. 2000. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181:774–778. [PubMed][CrossRef]
97. Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ. 1997. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276:607–611. [PubMed][CrossRef]
98. Brinton CC Jr. 1965. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci 27:1003–1054.[PubMed]
99. Hultgren SJ, Normark S, Abraham SN. 1991. Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45:383–415. [PubMed][CrossRef]
100. Schilling JD, Mulvey MA, Hultgren SJ. 2001. Structure and function of Escherichia coli type 1 pili: new insight into the pathogenesis of urinary tract infections. J Infect Dis 183(Suppl. 1):S36–S40. [PubMed][CrossRef]
101. Abraham SN, Beachey EH. 1987. Assembly of a chemically synthesized peptide of Escherichia coli type 1 fimbriae into fimbria-like antigenic structures. J Bacteriol 169:2460–2465.[PubMed]
102. Abraham SN, Goguen JD, Beachey EH. 1988. Hyperadhesive mutant of type 1-fimbriated Escherichia coli associated with formation of FimH organelles (fimbriosomes). Infect Immun 56:1023–1029.[PubMed]
103. Hung CS, Bouckaert J, Hung D, Pinkner J, Widberg C, DeFusco A, Auguste CG, Strouse R, Langermann S, Waksman G, Hultgren SJ. 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44:903–915. [PubMed][CrossRef]
104. Krogfelt KA, Bergmans H, Klemm P. 1990. Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infect Immun 58:1995–1998.[PubMed]
105. Wu XR, Sun TT, Medina JJ. 1996. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci USA 93:9630–9635. [PubMed][CrossRef]
106. Min G, Stolz M, Zhou G, Liang F, Sebbel P, Stoffler D, Glockshuber R, Sun TT, Aebi U, Kong XP. 2002. Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J Mol Biol 317:697–706. [PubMed][CrossRef]
107. Min G, Zhou G, Schapira M, Sun TT, Kong XP. 2003. Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116:4087–4094. [PubMed][CrossRef]
108. Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP. 2001. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103.[PubMed]
109. Bouckaert J, Berglund J, Schembri M, De Genst E, Cools L, Wuhrer M, Hung CS, Pinkner J, Slattegard R, Zavialov A, Choudhury D, Langermann S, Hultgren SJ, Wyns L, Klemm P, Oscarson S, Knight SD, De Greve H. 2005. Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol Microbiol 55:441–455. [PubMed][CrossRef]
110. Jones CH, Pinkner JS, Roth R, Heuser J, Nicholes AV, Abraham SN, Hultgren SJ. 1995. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA 92:2081–2085.[PubMed]
111. Jones CH, Pinkner JS, Nicholes AV, Slonim LN, Abraham SN, Hultgren SJ. 1993. FimC is a periplasmic PapD-like chaperone that directs assembly of type 1 pili in bacteria. Proc Natl Acad Sci USA 90:8397–8401.[PubMed]
112. Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066. [PubMed][CrossRef]
113. Klemm P. 1986. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5:1389–1393.[PubMed]
114. Abraham JM, Freitag CS, Clements JR, Eisenstein BI. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci USA 82:5724–5727. [PubMed][CrossRef]
115. Eisenstein BI. 1981. Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science 214:337–339. [PubMed][CrossRef]
116. Olsen PB, Klemm P. 1994. Localization of promoters in the fim gene cluster and the effect of H-NS on the transcription of fimB and fimE. FEMS Microbiol Lett 116:95–100. [PubMed][CrossRef]
117. McClain MS, Blomfield IC, Eberhardt KJ, Eisenstein BI. 1993. Inversion-independent phase variation of type 1 fimbriae in Escherichia coli. J Bacteriol 175:4335–4344.[PubMed]
118. Bryan A, Roesch P, Davis L, Moritz R, Pellett S, Welch RA. 2006. Regulation of type 1 fimbriae by unlinked FimB- and FimE-like recombinases in uropathogenic Escherichia coli strain CFT073. Infect Immun 74:1072–1083. [PubMed][CrossRef]
119. Schwan WR, Lee JL, Lenard FA, Matthews BT, Beck MT. 2002. Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect Immun 70:1391–1402. [PubMed][CrossRef]
120. El-Labany S, Sohanpal BK, Lahooti M, Akerman R, Blomfield IC. 2003. Distant cis-active sequences and sialic acid control the expression of fimB in Escherichia coli K-12. Mol Microbiol 49:1109–1118. [PubMed][CrossRef]
121. Gally DL, Bogan JA, Eisenstein BI, Blomfield IC. 1993. Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J Bacteriol 175:6186–6193.[PubMed]
122. Gally DL, Rucker TJ, Blomfield IC. 1994. The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J Bacteriol 176:5665–5672.[PubMed]
123. Klemm P. 1985. Fimbrial adhesions of Escherichia coli. Rev Infect Dis 7:321–340.[PubMed]
124. Gunther NWt, Lockatell V, Johnson DE, Mobley HL. 2001. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect Immun 69:2838–2846. [PubMed][CrossRef]
125. Lim JK, Zhao NWt, Gunther H, Johnson DE, Keay SK, Mobley HL. 1998. In vivo phase variation of Escherichia coli type 1 fimbrial genes in women with urinary tract infection. Infect Immun 66:3303–3310.[PubMed]
126. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497. [PubMed][CrossRef]
127. Schwan WR, Beck MT, Hultgren SJ, Pinkner J, Woolever NL, Larson T. 2005. Down-regulation of the kps region 1 capsular assembly operon following attachment of Escherichia coli type 1 fimbriae to D-mannose receptors. Infect Immun 73:1226–1231. [PubMed][CrossRef]
128. Sokurenko EV, Courtney HS, Maslow J, Siitonen A, Hasty DL. 1995. Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes. J Bacteriol 177:3680–3686.[PubMed]
129. Sokurenko EV, Courtney HS, Ohman DE, Klemm P, Hasty DL. 1994. FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes. J Bacteriol 176:748–755.[PubMed]
130. Sokurenko EV, Feldgarden M, Trintchina E, Weissman SJ, Avagyan S, Chattopadhyay S, Johnson JR, Dykhuizen DE. 2004. Selection footprint in the FimH adhesin shows pathoadaptive niche differentiation in Escherichia coli. Mol Biol Evol 21:1373–1383. [PubMed][CrossRef]
131. Eden CS, Hanson LA, Jodal U, Lindberg U, Akerlund AS. 1976. Variable adherence to normal human urinary-tract epithelial cells of Escherichia coli strains associated with various forms of urinary-tract infection. Lancet 1:490–492.[PubMed]
132. Eden CS, Hansson HA. 1978. Escherichia coli pili as possible mediators of attachment to human urinary tract epithelial cells. Infect Immun 21:229–237.[PubMed]
133. Korhonen TK, Virkola R, Holthofer H. 1986. Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney. Infect Immun 54:328–332.[PubMed]
134. Kallenius G, Mollby R, Svenson SB, Winberg J, Lundblad A, Svensson S, Cedergren B. 1980. The Pk antigen as a receptor for the haemagglutinin of pyelonephritic Escherichia coli. FEMS Microbiol Lett 7:297–302. [CrossRef]
135. Kallenius G, Mollby R, Svenson SB, Winberg J, Hultberg H. 1980. Identification of a carbohydrate receptor recognized by uropathogenic Escherichia coli. Infection 8(Suppl 3):288–293. [PubMed][CrossRef]
136. Kallenius G, Svenson S, Mollby R, Cedergren B, Hultberg H, Winberg J. 1981. Structure of carbohydrate part of receptor on human uroepithelial cells for pyelonephritogenic Escherichia coli. Lancet 2:604–606. [PubMed][CrossRef]
137. Dodson KW, Pinkner JS, Rose T, Magnusson G, Hultgren SJ, Waksman G. 2001. Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743. [PubMed][CrossRef]
138. Larsson A, Ohlsson J, Dodson KW, Hultgren SJ, Nilsson U, Kihlberg J. 2003. Quantitative studies of the binding of the class II PapG adhesin from uropathogenic Escherichia coli to oligosaccharides. Bioorg Med Chem 11:2255–2261. [PubMed][CrossRef]
139. Ohlsson J, Jass J, Uhlin BE, Kihlberg J, Nilsson UJ. 2002. Discovery of potent inhibitors of PapG adhesins from uropathogenic Escherichia coli through synthesis and evaluation of galabiose derivatives. Chembiochem 3:772–779. [PubMed][CrossRef]
140. Dodson KW, Jacob-Dubuisson F, Striker RT, Hultgren SJ. 1993. Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc Natl Acad Sci USA 90:3670–3674. [PubMed][CrossRef]
141. Hultgren SJ, Abraham S, Caparon M, Falk P, St Geme JW III, Normark S. 1993. Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73:887–901. [PubMed][CrossRef]
142. Kuehn MJ, Heuser J, Normark S, Hultgren SJ. 1992. P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356:252–255. [PubMed][CrossRef]
143. Kuehn MJ, Normark S, Hultgren SJ. 1991. Immunoglobulin-like PapD chaperone caps and uncaps interactive surfaces of nascently translocated pilus subunits. Proc Natl Acad Sci USA 88:10586–10590. [PubMed][CrossRef]
144. Lund B, Lindberg F, Marklund BI, Normark S. 1987. The PapG protein is the alpha-D-galactopyranosyl-(1—4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 84:5898–5902. [PubMed][CrossRef]
145. Norgren M, Normark S, Lark D, O’Hanley P, Schoolnik G, Falkow S, Svanborg-Eden C, Baga M, Uhlin BE. 1984. Mutations in E coli cistrons affecting adhesion to human cells do not abolish Pap pili fiber formation. EMBO J 3:1159–1165.[PubMed]
146. Normark S, Lark D, Hull R, Norgren M, Baga M, O’Hanley P, Schoolnik G, Falkow S. 1983. Genetics of digalactoside-binding adhesin from a uropathogenic Escherichia coli strain. Infect Immun 41:942–949.[PubMed]
147. Uhlin BE, Norgren M, Baga M, Normark S. 1985. Adhesion to human cells by Escherichia coli lacking the major subunit of a digalactoside-specific pilus-adhesin. Proc Natl Acad Sci USA 82:1800–1804. [PubMed][CrossRef]
148. Dowling KJ, Roberts JA, Kaack MB. 1987. P-fimbriated Escherichia coli urinary tract infection: a clinical correlation. South Med J 80:1533–1536.[PubMed]
149. Hagberg L, Jodal U, Korhonen TK, Lidin-Janson G, Lindberg U, Svanborg Eden C. 1981. Adhesion, hemagglutination, and virulence of Escherichia coli causing urinary tract infections. Infect Immun 31:564–570.[PubMed]
150. Johnson JR, Goullet P, Picard B, Moseley SL, Roberts PL, Stamm WE. 1991. Association of carboxylesterase B electrophoretic pattern with presence and expression of urovirulence factor determinants and antimicrobial resistance among strains of Escherichia coli that cause urosepsis. Infect Immun 59:2311–2315.[PubMed]
151. Johnson JR, Roberts PL, Stamm WE. 1987. P fimbriae and other virulence factors in Escherichia coli urosepsis: association with patients’ characteristics. J Infect Dis 156:225–229.[PubMed]
152. Kallenius G, Mollby R, Svenson SB, Helin I, Hultberg H, Cedergren B, Winberg J. 1981. Occurrence of P-fimbriated Escherichia coli in urinary tract infections. Lancet 2:1369–1372. [PubMed][CrossRef]
153. Sandberg T, Kaijser B, Lidin-Janson G, Lincoln K, Stokland F Ørskov I Ørskov E, Svanborg-Eden C. 1988. Virulence of Escherichia coli in relation to host factors in women with symptomatic urinary tract infection. J Clin Microbiol 26:1471–1476.[PubMed]
154. Ulleryd P, Lincoln K, Scheutz F, Sandberg T. 1994. Virulence characteristics of Escherichia coli in relation to host response in men with symptomatic urinary tract infection. Clin Infect Dis 18:579–584.[PubMed]
155. Vaisanen V, Elo J, Tallgren LG, Siitonen A, Makela PH, Svanborg-Eden C, Kallenius G, Svenson SB, Hultberg H, Korhonen T. 1981. Mannose-resistant haemagglutination and P antigen recognition are characteristic of Escherichia coli causing primary pyelonephritis. Lancet 2:1366–1369. [PubMed][CrossRef]
156. Westerlund B, Siitonen A, Elo J, Williams PH, Korhonen TK, Makela PH. 1988. Properties of Escherichia coli isolates from urinary tract infections in boys. J Infect Dis 158:996–1002.[PubMed]
157. Kisielius PV, Schwan WR, Amundsen SK, Duncan JL, Schaeffer AJ. 1989. In vivo expression and variation of Escherichia coli type 1 and P pili in the urine of adults with acute urinary tract infections. Infect Immun 57:1656–1662.[PubMed]
158. de Ree JM, van den Bosch JF. 1987. Serological response to the P fimbriae of uropathogenic Escherichia coli in pyelonephritis. Infect Immun 55:2204–2207.[PubMed]
159. Roberts JA, Marklund BI, Ilver D, Haslam D, Kaack MB, Baskin G, Louis M, Mollby R, Winberg J, Normark S. 1994. The Gal(alpha 1–4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 91:11889–11893.[PubMed]
160. Stromberg N, Nyholm PG, Pascher I, Normark S. 1991. Saccharide orientation at the cell surface affects glycolipid receptor function. Proc Natl Acad Sci USA 88:9340–9344. [PubMed][CrossRef]
161. Lugering A, Benz I, Knochenhauer S, Ruffing M, Schmidt MA. 2003. The Pix pilus adhesin of the uropathogenic Escherichia coli strain X2194 [O2:K(-):H6] is related to Pap pili but exhibits a truncated regulatory region. Microbiology 149:1387–1397. [PubMed][CrossRef]
162. Wullt B, Bergsten G, Connell H, Rollano P, Gebratsedik N, Hang L, Svanborg C. 2001. P-fimbriae trigger mucosal responses to Escherichia coli in the human urinary tract. Cell Microbiol 3:255–264. [PubMed][CrossRef]
163. Bergsten G, Samuelsson M, Wullt B, Leijonhufvud I, Fischer H, Svanborg C. 2004. PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 189:1734–1742. [PubMed][CrossRef]
164. Nowicki B, Labigne A, Moseley S, Hull R, Hull S, Moulds J. 1990. The Dr hemagglutinin, afimbrial adhesins AFA-I and AFA-III, and F1845 fimbriae of uropathogenic and diarrhea-associated Escherichia coli belong to a family of hemagglutinins with Dr receptor recognition. Infect Immun 58:279–281.[PubMed]
165. Nowicki B, Hart A, Coyne KE, Lublin DM, Nowicki S. 1993. Short consensus repeat-3 domain of recombinant decay-accelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cell-cell interaction. J Exp Med 178:2115–2121. [PubMed][CrossRef]
166. Nowicki B, Moulds J, Hull R, Hull S. 1988. A hemagglutinin of uropathogenic Escherichia coli recognizes the Dr blood group antigen. Infect Immun 56:1057–1060.[PubMed]
167. Westerlund B, Kuusela P, Risteli J, Risteli L, Vartio T, Rauvala H, Virkola R, Korhonen TK. 1989. The O75X adhesin of uropathogenic Escherichia coli is a type IV collagen-binding protein. Mol Microbiol 3:329–337. [PubMed][CrossRef]
168. Das M, Hart-Van Tassell A, Urvil PT, Lea S, Pettigrew D, Anderson KL, Samet A, Kur J, Matthews S, Nowicki S, Popov V, Goluszko P, Nowicki BJ. 2005. Hydrophilic domain II of Escherichia coli Dr fimbriae facilitates cell invasion. Infect Immun 73:6119–6126. [PubMed][CrossRef]
169. Zalewska B, Piatek R, Bury K, Samet A, Nowicki B, Nowicki S, Kur J. 2005. A surface-exposed DraD protein of uropathogenic Escherichia coli bearing Dr fimbriae may be expressed and secreted independently from DraC usher and DraE adhesin. Microbiology 151:2477–2486. [PubMed][CrossRef]
170. Zalewska B, Piatek R, Cieslinski H, Nowicki B, Kur J. 2001. Cloning, expression, and purification of the uropathogenic Escherichia coli invasin DraD. Protein Expr Purif 23:476–482. [PubMed][CrossRef]
171. Piatek R, Zalewska B, Kolaj O, Ferens M, Nowicki B, Kur J. 2005. Molecular aspects of biogenesis of Escherichia coli Dr Fimbriae: characterization of DraB-DraE complexes. Infect Immun 73:135–145. [PubMed][CrossRef]
172. Miettinen A, Westerlund B, Tarkkanen AM, Tornroth T, Ljungberg P, Renkonen OV, Korhonen TK. 1993. Binding of bacterial adhesins to rat glomerular mesangium in vivo. Kidney Int 43:592–600. [PubMed][CrossRef]
173. Goluszko P, Moseley SL, Truong LD, Kaul A, Williford JR, Selvarangan R, Nowicki S, Nowicki B. 1997. Development of experimental model of chronic pyelonephritis with Escherichia coli O75:K5:H-bearing Dr fimbriae: mutation in the dra region prevented tubulointerstitial nephritis. J Clin Invest 99:1662–1672. [PubMed][CrossRef]
174. Pere A, Leinonen M, Vaisanen-Rhen V, Rhen M, Korhonen TK. 1985. Occurrence of type-1C fimbriae on Escherichia coli strains isolated from human extraintestinal infections. J Gen Microbiol 131:1705–1711.[PubMed]
175. Zingler G, Blum G, Falkenhagen U, Ørskov I, Ørskov F, Hacker J, Ott M. 1993. Clonal differentiation of uropathogenic Escherichia coli isolates of serotype O6:K5 by fimbrial antigen typing and DNA long-range mapping techniques. Med Microbiol Immunol 182:13–24. [PubMed][CrossRef]
176. Zingler G, Ott M, Blum G, Falkenhagen U, Naumann G, Sokolowska-Kohler W, Hacker J. 1992. Clonal analysis of Escherichia coli serotype O6 strains from urinary tract infections. Microb Pathog 12:299–310. [PubMed][CrossRef]
177. Korhonen TK, Virkola R, Westurlund B, Holthofer H, Parkkinen J. 1990. Tissue tropism of Escherichia coli adhesins in human extraintestinal infections. Curr Top Microbiol Immunol 151:115–127.[PubMed]
178. Backhed F, Alsen B, Roche N, Angstrom J, von Euler A, Breimer ME, Westerlund-Wikstrom B, Teneberg S, Richter-Dahlfors A. 2002. Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation. J Biol Chem 277:18198–18205. [PubMed][CrossRef]
179. Autar R, Khan AS, Schad M, Hacker J, Liskamp RM, Pieters RJ. 2003. Adhesion inhibition of F1C-fimbriated Escherichia coli and Pseudomonas aeruginosa PAK and PAO by multivalent carbohydrate ligands. Chembiochem 4:1317–1325. [PubMed][CrossRef]
180. Snyder JA, Haugen BJ, Lockatell CV, Maroncle N, Hagan EC, Johnson DE, Welch RA, Mobley HL. 2005. Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 73:7588–7596. [PubMed][CrossRef]
181. Buckles EL, Bahrani-Mougeot FK, Molina A, Lockatell CV, Johnson DE, Drachenberg CB, Burland V, Blattner FR, Donnenberg MS. 2004. Identification and characterization of a novel uropathogenic Escherichia coli-associated fimbrial gene cluster. Infect Immun 72:3890–3901. [PubMed][CrossRef]
182. Kerneis S, Gabastou JM, Bernet-Camard MF, Coconnier MH, Nowicki BJ, Servin AL. 1994. Human cultured intestinal cells express attachment sites for uropathogenic Escherichia coli bearing adhesins of the Dr adhesin family. FEMS Microbiol Lett 119:27–32. [PubMed][CrossRef]
183. Labigne-Roussel AF, Lark D, Schoolnik G, Falkow S. 1984. Cloning and expression of an afimbrial adhesin (AFA-I) responsible for P blood group-independent, mannose-resistant hemagglutination from a pyelonephritic Escherichia coli strain. Infect Immun 46:251–259.[PubMed]
184. Johnson JR, Jelacic S, Schoening LM, Clabots C, Shaikh N, Mobley HL, Tarr PI. 2005. The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect Immun 73:965–971. [PubMed][CrossRef]
185. Leveille S, Caza M, Johnson JR, Clabots C, Sabri M, Dozois CM. 2006. Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor. Infect Immun 74:3427–3436. [PubMed][CrossRef]
186. Dudgeon L, Worldley E, Bawtree F. 1921. On Bacillus coli infections of the urinary tract, especially in relation to hemolytic organisms. J Hygiene 10:137–164. [CrossRef]
187. Welch RA. 1991. Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol 5:521–528. [PubMed][CrossRef]
188. Welch RA, Hull R, Falkow S. 1983. Molecular cloning and physical characterization of a chromosomal hemolysin from Escherichia coli. Infect Immun 42:178–186.[PubMed]
189. Blum G, Falbo V, Caprioli A, Hacker J. 1995. Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and alpha-hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol Lett 126:189–195. [PubMed][CrossRef]
190. High NJ, Hales BA, Jann K, Boulnois GJ. 1988. A block of urovirulence genes encoding multiple fimbriae and hemolysin in Escherichia coli O4:K12:H. Infect Immun 56:513–517.[PubMed]
191. Felmlee T, Pellett S, Welch RA. 1985. Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 163:94–105.[PubMed]
192. Issartel JP, Koronakis V, Hughes C. 1991. Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 351:759–761. [PubMed][CrossRef]
193. Lim KB, Walker CR, Guo L, Pellett S, Shabanowitz J, Hunt DF, Hewlett EL, Ludwig A, Goebel W, Welch RA, Hackett M. 2000. Escherichia coli alpha-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J Biol Chem 275:36698–36702. [PubMed][CrossRef]
194. Koronakis V, Hughes C. 1996. Synthesis, maturation and export of the E. coli hemolysin. Med Microbiol Immunol 185:65–71. [PubMed][CrossRef]
195. Thanabalu T, Koronakis E, Hughes C, Koronakis V. 1998. Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17:6487–6496. [PubMed][CrossRef]
196. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. 2000. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919. [PubMed][CrossRef]
197. Bailey MJ, Koronakis V, Schmoll T, Hughes C. 1992. Escherichia coli HlyT protein, a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) locus required for expression of sex factor and lipopolysaccharide genes. Mol Microbiol 6:1003–1012. [PubMed][CrossRef]
198. Nagy G, Dobrindt U, Schneider G, Khan AS, Hacker J, Emody L. 2002. Loss of regulatory protein RfaH attenuates virulence of uropathogenic Escherichia coli. Infect Immun 70:4406–4413. [PubMed][CrossRef]
199. Dobrindt U, Janke B, Piechaczek K, Nagy G, Ziebuhr W, Fischer G, Schierhorn A, Hecker M, Blum-Oehler G, Hacker J. 2000. Toxin genes on pathogenicity islands: impact for microbial evolution. Int J Med Microbiol 290:307–311.[PubMed]
200. Boehm DF, Welch RA, Snyder IS. 1990. Calcium is required for binding of Escherichia coli hemolysin (HlyA) to erythrocyte membranes. Infect Immun 58:1951–1958.[PubMed]
201. Boehm DF, Welch RA, Snyder IS. 1990. Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes. Infect Immun 58:1959–1964.[PubMed]
202. Ludwig A, Jarchau T, Benz R, Goebel W. 1988. The repeat domain of Escherichia coli haemolysin (HlyA) is responsible for its Ca2+-dependent binding to erythrocytes. Mol Gen Genet 214:553–561. [PubMed][CrossRef]
203. Soloaga A, Veiga MP, Garcia-Segura LM, Ostolaza H, Brasseur R, Goni FM. 1999. Insertion of Escherichia coli alpha-haemolysin in lipid bilayers as a non-transmembrane integral protein: prediction and experiment. Mol Microbiol 31:1013–1024. [PubMed][CrossRef]
204. Cavalieri SJ, Snyder IS. 1982. Effect of Escherichia coli alpha-hemolysin on human peripheral leukocyte viability in vitro. Infect Immun 36:455–461.[PubMed]
205. Cavalieri SJ, Snyder IS. 1982. Cytotoxic activity of partially purified Escherichia coli alpha haemolysin. J Med Microbiol 15:11–21. [PubMed][CrossRef]
206. Island MD, Cui X, Foxman B, Marrs CF, Stamm WE, Stapleton AE, Warren JW. 1998. Cytotoxicity of hemolytic, cytotoxic necrotizing factor 1-positive and -negative Escherichia coli to human T24 bladder cells. Infect Immun 66:3384–3389.[PubMed]
207. Trifillis AL, Donnenberg MS, Cui X, Russell RG, Utsalo SJ, Mobley HL, Warren JW. 1994. Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int 46:1083–1091. [PubMed][CrossRef]
208. Laestadius A, Richter-Dahlfors A, Aperia A. 2002. Dual effects of Escherichia coli alpha-hemolysin on rat renal proximal tubule cells. Kidney Int 62:2035–2042. [PubMed][CrossRef]
209. Oxhamre C, Richter-Dahlfors A, Zhdanov VP, Kasemo B. 2005. A minimal generic model of bacteria-induced intracellular Ca2+ oscillations in epithelial cells. Biophys J 88:2976–2981. [PubMed][CrossRef]
210. Uhlen P, Laestadius A, Jahnukainen T, Soderblom T, Backhed F, Celsi G, Brismar H, Normark S, Aperia A, Richter-Dahlfors A. 2000. Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405:694–697. [PubMed][CrossRef]
211. Mansson LE, Kjall P, Pellett S, Nagy G, Welch RA, Backhed F, Frisan T, Richter-Dahlfors A. 2007. Role of the lipopolysaccharide-CD14 complex for the activity of hemolysin from uropathogenic Escherichia coli. Infect Immun 75:997–1004.[PubMed]
212. Seetharama S, Cavalieri SJ, Snyder IS. 1988. Immune response to Escherichia coli alpha-hemolysin in patients. J Clin Microbiol 26:850–856.[PubMed]
213. Mansson LE, Melican K, Boekel J, Sandoval RM, Hautefort I, Tanner GA, Molitoris BA, Richter-Dahlfors A. 2007. Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell Microbiol 9:413–424. [PubMed][CrossRef]
214. Welch RA, Dellinger EP, Minshew B, Falkow S. 1981. Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 294:665–667. [PubMed][CrossRef]
215. O’Hanley P, Lark D, Falkow S, Schoolnik G. 1985. Molecular basis of Escherichia coli colonization of the upper urinary tract in BALB/c mice. Gal-Gal pili immunization prevents Escherichia coli pyelonephritis in the BALB/c mouse model of human pyelonephritis. J Clin Investig 75:347–360. [PubMed][CrossRef]
216. Marre R, Hacker J, Henkel W, Goebel W. 1986. Contribution of cloned virulence factors from uropathogenic Escherichia coli strains to nephropathogenicity in an experimental rat pyelonephritis model. Infect Immun 54:761–767.[PubMed]
217. Falbo V, Famiglietti M, Caprioli A. 1992. Gene block encoding production of cytotoxic necrotizing factor 1 and hemolysin in Escherichia coli isolates from extraintestinal infections. Infect Immun 60:2182–2187.[PubMed]
218. Smith YC, Rasmussen SB, Grande KK, Conran RM, O’Brien AD. 2008. Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect Immun 76:2978–2990. [PubMed][CrossRef]
219. Boquet P. 2001. The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. Toxicon 39:1673–1680. [PubMed][CrossRef]
220. Landraud L, Gibert M, Popoff MR, Boquet P, Gauthier M. 2003. Expression of cnf1 by Escherichia coli J96 involves a large upstream DNA region including the hlyCABD operon, and is regulated by the RfaH protein. Mol Microbiol 47:1653–1667. [PubMed][CrossRef]
221. Falbo V, Pace T, Picci L, Pizzi E, Caprioli A. 1993. Isolation and nucleotide sequence of the gene encoding cytotoxic necrotizing factor 1 of Escherichia coli. Infect Immun 61:4909–4914.[PubMed]
222. Fiorentini C, Arancia G, Caprioli A, Falbo V, Ruggeri FM, Donelli G. 1988. Cytoskeletal changes induced in HEp-2 cells by the cytotoxic necrotizing factor of Escherichia coli. Toxicon 26:1047–1056. [PubMed][CrossRef]
223. Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P. 1997. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733. [PubMed][CrossRef]
224. Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K. 1997. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387:725–729. [PubMed][CrossRef]
225. Falzano L, Fiorentini C, Donelli G, Michel E, Kocks C, Cossart P, Cabanie L, Oswald E, Boquet P. 1993. Induction of phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol Microbiol 9:1247–1254. [PubMed][CrossRef]
226. Hofman P, Flatau G, Selva E, Gauthier M, Le Negrate G, Fiorentini C, Rossi B, Boquet P. 1998. Escherichia coli cytotoxic necrotizing factor 1 effaces microvilli and decreases transmigration of polymorphonuclear leukocytes in intestinal T84 epithelial cell monolayers. Infect Immun 66:2494–2500.[PubMed]
227. Gerhard R, Schmidt G, Hofmann F, Aktories K. 1998. Activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor 1 increases intestinal permeability in Caco-2 cells. Infect Immun 66:5125–5131.[PubMed]
228. Hofman P, Le Negrate G, Mograbi B, Hofman V, Brest P, Alliana-Schmid A, Flatau G, Boquet P, Rossi B. 2000. Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J Leukoc Biol 68:522–528.[PubMed]
229. Mills M, Meysick KC, O’Brien AD. 2000. Cytotoxic necrotizing factor type 1 of uropathogenic Escherichia coli kills cultured human uroepithelial 5637 cells by an apoptotic mechanism. Infect Immun 68:5869–5880. [PubMed][CrossRef]
230. Johnson DE, Drachenberg C, Lockatell CV, Island MD, Warren JW, Donnenberg MS. 2000. The role of cytotoxic necrotizing factor-1 in colonization and tissue injury in a murine model of urinary tract infection. FEMS Immunol Med Microbiol 28:37–41. [PubMed][CrossRef]
231. Rippere-Lampe KE, O’Brien AD, Conran R, Lockman HA. 2001. Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf1) attenuates the virulence of uropathogenic Escherichia coli. Infect Immun 69:3954–3964. [PubMed][CrossRef]
232. Davis JM, Rasmussen SB, O’Brien AD. 2005. Cytotoxic necrotizing factor type 1 production by uropathogenic Escherichia coli modulates polymorphonuclear leukocyte function. Infect Immun 73:5301–5310. [PubMed][CrossRef]
233. Henderson IR, Navarro-Garcia F, Nataro JP. 1998. The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6:370–378. [PubMed][CrossRef]
234. Guyer DM, Mobley NWt, Gunther HL. 2001. Secreted proteins and other features specific to uropathogenic Escherichia coli. J Infect Dis 183(Suppl. 1):S32–S35. [PubMed][CrossRef]
235. Guyer DM, Radulovic S, Jones FE, Mobley HL. 2002. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun 70:4539–4546. [PubMed][CrossRef]
236. Maroncle NM, Sivick KE, Brady R, Stokes FE, Mobley HL. 2006. Protease activity, secretion, cell entry, cytotoxicity, and cellular targets of secreted autotransporter toxin of uropathogenic Escherichia coli. Infect Immun 74:6124–6134. [PubMed][CrossRef]
237. Parham NJ, Srinivasan U, Desvaux M, Foxman B, Marrs CF, Henderson IR. 2004. PicU, a second serine protease autotransporter of uropathogenic Escherichia coli. FEMS Microbiol Lett 230:73–83. [PubMed][CrossRef]
238. Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E. 2006. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851. [PubMed][CrossRef]
239. Chen M, Jahnukainen T, Bao W, Dare E, Ceccatelli S, Celsi G. 2003. Uropathogenic Escherichia coli toxins induce caspase-independent apoptosis in renal proximal tubular cells via ERK signaling. Am J Nephrol 23:140–151. [PubMed][CrossRef]
240. Russo T, Brown JJ, Jodush ST, Johnson JR. 1996. The O4 specific antigen moiety of lipopolysaccharide but not the K54 group 2 capsule is important for urovirulence of an extraintestinal isolate of Escherichia coli. Infect Immun 64:2343–2348.[PubMed]
241. Russo TA, Sharma G, Weiss J, Brown C. 1995. The construction and characterization of colanic acid deficient mutants in an extraintestinal isolate of Escherichia coli (O4/K54/H 5). Microb Pathog 18:269–278. [PubMed][CrossRef]
242. Schilling JD, Mulvey MA, Vincent CD, Lorenz RG, Hultgren SJ. 2001. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J Immunol 166:1148–1155.[PubMed]
243. Cross AS, Kim KS, Wright DC, Sadoff JC, Gemski P. 1986. Role of lipopolysaccharide and capsule in the serum resistance of bacteremic strains of Escherichia coli. J Infect Dis 154:497–503.[PubMed]
244. Horwitz MA, Silverstein SC. 1980. Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes. J Clin Investig 65:82–94. [PubMed][CrossRef]
245. Burns SM, Hull SI. 1999. Loss of resistance to ingestion and phagocytic killing by O(−) and K(−) mutants of a uropathogenic Escherichia coli O75:K5 strain. Infect Immun 67:3757–3762.[PubMed]
246. Snyder JA, Haugen BJ, Buckles EL, Lockatell CV, Johnson DE, Donnenberg MS, Welch RA, Mobley HL. 2004. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72:6373–6381. [PubMed][CrossRef]
247. Carbonetti NH, Boonchai S, Parry SH, Vaisanen-Rhen V, Korhonen TK, Williams PH. 1986. Aerobactin-mediated iron uptake by Escherichia coli isolates from human extraintestinal infections. Infect Immun 51:966–968.[PubMed]
248. Torres AG, Redford P, Welch RA, Payne SM. 2001. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69:6179–6185. [PubMed][CrossRef]
249. Hagan EC, Mobley HL. 2009. Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol Microbiol 7:79–91. [CrossRef]
250. Russo TA, Carlino UB, Johnson JR. 2001. Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 69:6209–6216. [PubMed][CrossRef]
251. Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Barnard TJ, Johnson JR. 2002. IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 70:7156–7160. [PubMed][CrossRef]
252. Hagan EC, Mobley HL. 2007. Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect Immun 75:3941–3949. [PubMed][CrossRef]
253. Johnson JR, Kuskowski MA, Gajewski A, Soto S, Horcajada JP, Jimenez de Anta MT, Vila J. 2005. Extended virulence genotypes and phylogenetic background of Escherichia coli isolates from patients with cystitis, pyelonephritis, or prostatitis. J Infect Dis 191:46–50. [PubMed][CrossRef]
254. Johnson JR, Owens K, Gajewski A, Kuskowski MA. 2005. Bacterial characteristics in relation to clinical source of Escherichia coli isolates from women with acute cystitis or pyelonephritis and uninfected women. J Clin Microbiol 43:6064–6072.[PubMed]
255. Donnelly MA, Steiner TS. 2002. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J Biol Chem 277:40456–40461. [PubMed][CrossRef]
256. Giron JA, Torres AG, Freer E, Kaper JB. 2002. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379. [PubMed][CrossRef]
257. Mobley HL, Belas R, Lockatell V, Chippendale G, Trifillis AL, Johnson DE, Warren JW. 1996. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun 64:5332–5340.[PubMed]
258. Harshey RM, Toguchi A. 1996. Spinning tails: homologies among bacterial flagellar systems. Trends Microbiol 4:226–231. [PubMed][CrossRef]
259. Chilcott GS, Hughes KT. 2000. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694–708.[PubMed]
260. Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M, Leibler S, Surette MG, Alon U. 2001. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292:2080–2083. [PubMed][CrossRef]
261. Komeda Y. 1982. Fusions of flagellar operons to lactose genes on a mu lac bacteriophage. J Bacteriol 150:16–26.[PubMed]
262. Komeda Y. 1986. Transcriptional control of flagellar genes in Escherichia coli K-12. J Bacteriol 168:1315–1318.[PubMed]
263. Kutsukake K, Ohya Y, Iino T. 1990. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172:741–747.[PubMed]
264. Macnab RM. 1996. Flagella and motility, p 123–145. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
265. Kutsukake K, Iino T. 1994. Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J Bacteriol 176:3598–3605.[PubMed]
266. Ohnishi K, Kutsukake K, Suzuki H, Iino T. 1990. Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol Gen Genet 221:139–147.[PubMed]
267. Hughes KT, Gillen KL, Semon MJ, Karlinsey JE. 1993. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:1277–1280. [PubMed][CrossRef]
268. Lane MC, Lockatell V, Monterosso G, Lamphier D, Weinert J, Hebel JR, Johnson DE, Mobley HL. 2005. Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73:7644–7656. [PubMed][CrossRef]
269. Wright KJ, Seed PC, Hultgren SJ. 2005. Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73:7657–7668. [PubMed][CrossRef]
270. Lane MC, Alteri CJ, Smith SN, Mobley HL. 2007. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci USA 104:16669–16674. [PubMed][CrossRef]
271. Hedblom ML, Adler J. 1980. Genetic and biochemical properties of Escherichia coli mutants with defects in serine chemotaxis. J Bacteriol 144:1048–1060.[PubMed]
272. Kondoh H, Ball CB, Adler J. 1979. Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proc Natl Acad Sci USA 76:260–264. [PubMed][CrossRef]
273. Manson MD, Blank V, Brade G, Higgins CF. 1986. Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature 321:253–256. [PubMed][CrossRef]
274. Silverman M, Simon M. 1977. Chemotaxis in Escherichia coli: methylation of che gene products. Proc Natl Acad Sci USA 74:3317–3321. [PubMed][CrossRef]
275. Lane MC, Lloyd AL, Markyvech TA, Hagan EC, Mobley HL. 2006. Uropathogenic Escherichia coli strains generally lack functional Trg and Tap chemoreceptors found in the majority of E. coli strains strictly residing in the gut. J Bacteriol 188:5618–5625. [PubMed][CrossRef]
276. Kaye D. 1968. Antibacterial activity of human urine. J Clin Investig 47:2374–2390.[PubMed]
277. Gordon DM, Riley MA. 1992. A theoretical and experimental analysis of bacterial growth in the bladder. Mol Microbiol 6:555–562. [PubMed][CrossRef]
278. Culham DE, Dalgado C, Gyles CL, Mamelak D, MacLellan S, Wood JM. 1998. Osmoregulatory transporter ProP influences colonization of the urinary tract by Escherichia coli. Microbiology 144(Pt 1):91–102. [PubMed][CrossRef]
279. Culham DE, Lu A, Jishage M, Krogfelt KA, Ishihama A, Wood JM. 2001. The osmotic stress response and virulence in pyelonephritis isolates of Escherichia coli: contributions of RpoS, ProP, ProU and other systems. Microbiology 147:1657–1670.[PubMed]
280. Hull RA, Hull SI. 1997. Nutritional requirements for growth of uropathogenic Escherichia coli in human urine. Infect Immun 65:1960–1961.[PubMed]
281. Russo TA, Jodush ST, Brown JJ, Johnson JR. 1996. Identification of two previously unrecognized genes (guaA and argC) important for uropathogenesis. Mol Microbiol 22:217–229. [PubMed][CrossRef]
282. Roesch PL, Redford P, Batchelet S, Moritz RL, Pellett S, Haugen BJ, Blattner FR, Welch RA. 2003. Uropathogenic Escherichia coli use D-serine deaminase to modulate infection of the murine urinary tract. Mol Microbiol 49:55–67. [PubMed][CrossRef]
283. Anfora AT, Haugen BJ, Roesch P, Redford P, Welch RA. 2007. Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073. Infect Immun 75:5298–5304. [PubMed][CrossRef]
284. Haugen BJ, Pellett S, Redford P, Hamilton HL, Roesch PL, Welch RA. 2007. In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA. Infect Immun 75:278–289. [PubMed][CrossRef]
285. Surin BP, Rosenberg H, Cox GB. 1985. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J Bacteriol 161:189–198.[PubMed]
286. Buckles EL, Wang X, Lockatell CV, Johnson DE, Donnenberg MS. 2006. PhoU enhances the ability of extraintestinal pathogenic Escherichia coli strain CFT073 to colonize the murine urinary tract. Microbiology 152:153–160. [PubMed][CrossRef]
287. Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA. 2005. Contact-dependent inhibition of growth in Escherichia coli. Science 309:1245–1248. [PubMed][CrossRef]
288. Redford P, Roesch PL, Welch RA. 2003. DegS is necessary for virulence and is among extraintestinal Escherichia coli genes induced in murine peritonitis. Infect Immun 71:3088–3096. [PubMed][CrossRef]
289. Redford P, Welch RA. 2006. Role of sigma E-regulated genes in Escherichia coli uropathogenesis. Infect Immun 74:4030–4038. [PubMed][CrossRef]
290. Bauer RJ, Zhang L, Foxman B, Siitonen A, Jantunen ME, Saxen H, Marrs CF. 2002. Molecular epidemiology of 3 putative virulence genes for Escherichia coli urinary tract infection-usp, iha, and iroN(E. coli). J Infect Dis 185:1521–1524. [PubMed][CrossRef]
291. Kanamaru S, Kurazono H, Ishitoya S, Terai A, Habuchi T, Nakano M, Ogawa O, Yamamoto S. 2003. Distribution and genetic association of putative uropathogenic virulence factors iroN, iha, kpsMT, ompT and usp in Escherichia coli isolated from urinary tract infections in Japan. J Urol 170:2490–2493. [PubMed][CrossRef]
292. Nakano M, Yamamoto S, Terai A, Ogawa O, Makino SI, Hayashi H, Nair GB, Kurazono H. 2001. Structural and sequence diversity of the pathogenicity island of uropathogenic Escherichia coli which encodes the USP protein. FEMS Microbiol Lett 205:71–76. [PubMed][CrossRef]
293. Kurazono H, Nakano M, Yamamoto S, Ogawa O, Yuri K, Nakata K, Kimura M, Makino S, Nair GB. 2003. Distribution of the usp gene in uropathogenic Escherichia coli isolated from companion animals and correlation with serotypes and size-variations of the pathogenicity island. Microbiol Immunol 47:797–802.[PubMed]
294. Yamamoto S, Nakano M, Terai A, Yuri K, Nakata K, Nair GB, Kurazono H, Ogawa O. 2001. The presence of the virulence island containing the usp gene in uropathogenic Escherichia coli is associated with urinary tract infection in an experimental mouse model. J Urol 165:1347–1351. [PubMed][CrossRef]
295. Parret AH, De Mot R. 2002. Escherichia coli’s uropathogenic-specific protein: a bacteriocin promoting infectivity? Microbiology 148:1604–1606.[PubMed]
296. Sharma S, Waterfield N, Bowen D, Rocheleau T, Holland L, James R, French-Constant R. 2002. The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol Lett 214:241–249. [PubMed][CrossRef]
297. Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K. 2003. The colicin G, Hand X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149:2557–2570. [PubMed][CrossRef]
298. Bahrani-Mougeot FK, Pancholi S, Daoust M, Donnenberg MS. 2001. Identification of putative urovirulence genes by subtractive cloning. J Infect Dis 183(Suppl. 1):S21–S23. [PubMed][CrossRef]
299. Janke B, Dobrindt U, Hacker J, Blum-Oehler G. 2001. A subtractive hybridisation analysis of genomic differences between the uropathogenic E. coli strain 536 and the E coli K-12 strain MG1655. FEMS Microbiol Lett 199:61–66. [PubMed][CrossRef]
300. Sorsa LJ, Dufke S, Schubert S. 2004. Identification of novel virulence-associated loci in uropathogenic Escherichia coli by suppression subtractive hybridization. FEMS Microbiol Lett 230:203–208. [PubMed][CrossRef]
301. Falkow S. 1988. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10(Suppl 2):S274–S276.[PubMed]
302. Roos V, Klemm P. 2006. Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infect Immun 74:3565–3575. [PubMed][CrossRef]
303. Klemm P, Roos V, Ulett GC, Svanborg C, Schembri MA. 2006. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972: the taming of a pathogen. Infect Immun 74:781–785. [PubMed][CrossRef]
304. Miyazaki J, Ba-Thein W, Kumao T, Akaza H, Hayashi H. 2002. Identification of a type III secretion system in uropathogenic Escherichia coli. FEMS Microbiol Lett 212:221–228. [PubMed][CrossRef]
305. Johnson DE, Russell RG. 1996. Animal models of urinary tract infection, p 377–403. In Mobley HL and Warren JW (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management. ASM Press, Washington, DC.
306. Andersson P, Engberg I, Lidin-Janson G, Lincoln K, Hull R, Hull S, Svanborg C. 1991. Persistence of Escherichia coli bacteriuria is not determined by bacterial adherence. Infect Immun 59:2915–2921.[PubMed]
307. Hedges S, Anderson P, Lidin-Janson G, de Man P, Svanborg C. 1991. Interleukin-6 response to deliberate colonization of the human urinary tract with gram-negative bacteria. Infect Immun 59:421–427.[PubMed]
308. Roberts JA, Kaack B, Kallenius G, Mollby R, Winberg J, Svenson SB. 1984. Receptors for pyelonephritogenic Escherichia coli in primates. J Urol 131:163–168.[PubMed]
309. Hagberg L, Engberg I, Freter R, Lam J, Olling S, Svanborg Eden C. 1983. Ascending, unobstructed urinary tract infection in mice caused by pyelonephritogenic Escherichia coli of human origin. Infect Immun 40:273–283.[PubMed]
310. Johnson DE, Lockatell CV, Russell RG, Hebel JR, Island MD, Stapleton A, Stamm WE, Warren JW. 1998. Comparison of Escherichia coli strains recovered from human cystitis and pyelonephritis infections in transurethrally challenged mice. Infect Immun 66:3059–3065.[PubMed]
311. Apodaca G. 2004. The uroepithelium: not just a passive barrier. Traffic 5:117–128. [PubMed][CrossRef]
312. Yu J, Lin JH, Wu XR, Sun TT. 1994. Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. J Cell Biol 125:171–182. [PubMed][CrossRef]
313. Yu J, Manabe M, Wu XR, Xu C, Surya B, Sun TT. 1990. Uroplakin I: a 27-kD protein associated with the asymmetric unit membrane of mammalian urothelium. J Cell Biol 111:1207–1216. [PubMed][CrossRef]
314. Sikri KL, Foster CL, Bloomfield FJ, Marshall RD. 1979. Localization by immunofluorescence and by light- and electron-microscopic immunoperoxidase techniques of Tamm-Horsfall glycoprotein in adult hamster kidney. Biochem J 181:525–532.[PubMed]
315. Serafini-Cessi F, Dall’Olio F, Malagolini N. 1984. High-mannose oligosaccharides from human Tamm-Horsfall glycoprotein. Biosci Rep 4:269–274. [PubMed][CrossRef]
316. Mobley HL, Chippendale GR, Tenney JH, Hull RA, Warren JW. 1987. Expression of type 1 fimbriae may be required for persistence of Escherichia coli in the catheterized urinary tract. J Clin Microbiol 25:2253–2257.[PubMed]
317. Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR. 2001. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276:9924–9930. [PubMed][CrossRef]
318. Bates JM, Raffi HM, Prasadan K, Mascarenhas R, Laszik Z, Maeda N, Hultgren SJ, Kumar S. 2004. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 65:791–797. [PubMed][CrossRef]
319. Mo L, Zhu XH, Huang HY, Shapiro E, Hasty DL, Wu XR. 2004. Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am J Physiol Renal Physiol 286:F795–F802. [PubMed][CrossRef]
320. Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I, Hokfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A. 2006. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641. [PubMed][CrossRef]
321. Reigstad CS, Hultgren SJ, Gordon JI. 2007. Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J Biol Chem 282:21259–21267. [PubMed][CrossRef]
322. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921. [PubMed][CrossRef]
323. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. 2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043. [PubMed][CrossRef]
324. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR, Raymond KN, Wanner BL, Strong RK, Walsh CT, Aderem A, Smith KD. 2006. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 103:16502–16507. [PubMed][CrossRef]
325. Fukushi Y, Orikasa S, Kagayama M. 1979. An electron microscopic study of the interaction between vesical epithelium and E. coli. Investig Urol 17:61–68.[PubMed]
326. Mysorekar IU, Mulvey MA, Hultgren SJ, Gordon JI. 2002. Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli. J Biol Chem 277:7412–7419. [PubMed][CrossRef]
327. Klumpp DJ, Weiser AC, Sengupta S, Forrestal SG, Batler RA, Schaeffer AJ. 2001. Uropathogenic Escherichia coli potentiates type 1 pilus-induced apoptosis by suppressing NF-κB. Infect Immun 69:6689–6695. [PubMed][CrossRef]
328. Klumpp DJ, Rycyk MT, Chen MC, Thumbikat P, Sengupta S, Schaeffer AJ. 2006. Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to initiate urothelial apoptosis. Infect Immun 74:5106–5113. [PubMed][CrossRef]
329. Samuelsson P, Hang L, Wullt B, Irjala H, Svanborg C. 2004. Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect Immun 72:3179–3186. [PubMed][CrossRef]
330. Schilling JD, Martin SM, Hunstad DA, Patel KP, Mulvey MA, Justice SS, Lorenz RG, Hultgren SJ. 2003. CD14- and Toll-like receptor-dependent activation of bladder epithelial cells by lipopolysaccharide and type 1 piliated Escherichia coli. Infect Immun 71:1470–1480. [PubMed][CrossRef]
331. Haraoka M, Hang L, Frendeus B, Godaly G, Burdick M, Strieter R, Svanborg C. 1999. Neutrophil recruitment and resistance to urinary tract infection. J Infect Dis 180:1220–1229. [PubMed][CrossRef]
332. Andersen-Nissen E, Hawn TR, Smith KD, Nachman A, Lampano AE, Uematsu S, Akira S, Aderem A. 2007. Cutting edge: Tlr5–/– mice are more susceptible to Escherichia coli urinary tract infection. J Immunol 178:4717–4720.[PubMed]
333. Song J, Bishop BL, Li G, Duncan MJ, Abraham SN. 2007. TLR4-initiated and cAMP-mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1:287–298. [PubMed][CrossRef]
334. Schilling JD, Martin SM, Hung CS, Lorenz RG, Hultgren SJ. 2003. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc Natl Acad Sci USA 100:4203–4208. [PubMed][CrossRef]
335. Song J, Duncan MJ, Li G, Chan C, Grady R, Stapleton A, Abraham SN. 2007. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog 3:e60. [PubMed][CrossRef]
336. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S. 2004. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526. [PubMed][CrossRef]
337. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A. 2005. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629. [PubMed][CrossRef]
338. Frendeus B, Wachtler C, Hedlund M, Fischer H, Samuelsson P, Svensson M, Svanborg C. 2001. Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol Microbiol 40:37–51. [PubMed][CrossRef]
339. Hedlund M, Frendeus B, Wachtler C, Hang L, Fischer H, Svanborg C. 2001. Type 1 fimbriae deliver an LPS- and TLR4-dependent activation signal to CD14-negative cells. Mol Microbiol 39:542–552. [PubMed][CrossRef]
340. Mossman KL, Mian MF, Lauzon NM, Gyles CL, Lichty B, Mackenzie R, Gill N, Ashkar AA. 2008. Cutting edge: FimH adhesin of type 1 fimbriae is a novel TLR4 ligand. J Immunol 181:6702–6706.[PubMed]
341. Ashkar AA, Mossman KL, Coombes BK, Gyles CL, Mackenzie R. 2008. FimH adhesin of type 1 fimbriae is a potent inducer of innate antimicrobial responses which requires TLR4 and type 1 interferon signalling. PLoS Pathog 4:e1000233. [PubMed][CrossRef]
342. Hedges S, Agace W, Svensson M, Sjogren AC, Ceska M, Svanborg C. 1994. Uroepithelial cells are part of a mucosal cytokine network. Infect Immun 62:2315–2321.[PubMed]
343. Hedges S, Svensson M, Svanborg C. 1992. Interleukin-6 response of epithelial cell lines to bacterial stimulation in vitro. Infect Immun 60:1295–1301.[PubMed]
344. Hedges S, Stenqvist K, Lidin-Janson G, Martinell J, Sandberg T, Svanborg C. 1992. Comparison of urine and serum concentrations of interleukin-6 in women with acute pyelonephritis or asymptomatic bacteriuria. J Infect Dis 166:653–656.[PubMed]
345. Ko YC, Mukaida N, Ishiyama S, Tokue A, Kawai T, Matsushima K, Kasahara T. 1993. Elevated interleukin-8 levels in the urine of patients with urinary tract infections. Infect Immun 61:1307–1314.[PubMed]
346. Jones-Carson J, Balish E, Uehling DT. 1999. Susceptibility of immunodeficient gene-knockout mice to urinary tract infection. J Urol 161:338–341. [PubMed][CrossRef]
347. Ingersoll MA, Kline KA, Nielsen HV, Hultgren SJ. 2008. G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity. Cell Microbiol 10:2568–2578. [PubMed][CrossRef]
348. Hang L, Haraoka M, Agace WW, Leffler H, Burdick M, Strieter R, Svanborg C. 1999. Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract. J Immunol 162:3037–3044.[PubMed]
349. Godaly G, Hang L, Frendeus B, Svanborg C. 2000. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol 165:5287–5294.[PubMed]
350. Poljakovic M, Svensson L, Persson K. 2005. The influence of uropathogenic Escherichia coli and proinflammatory cytokines on the inducible nitric oxide synthase response in human kidney epithelial cells. J Urol 173:1000–1003. [PubMed][CrossRef]
351. Poljakovic M, Svensson ML, Svanborg C, Johansson K, Larsson B, Persson K. 2001. Escherichia coli-induced inducible nitric oxide synthase and cyclooxygenase expression in the mouse bladder and kidney. Kidney Int 59:893–904. [PubMed][CrossRef]
352. Svensson L, Marklund BI, Poljakovic M, Persson K. 2006. Uropathogenic Escherichia coli and tolerance to nitric oxide: the role of flavohemoglobin. J Urol 175:749–753. [PubMed][CrossRef]
353. Poljakovic M, Persson K. 2003. Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide. Am J Physiol Renal Physiol 284:F22–F31.[PubMed]
354. Engel D, Dobrindt U, Tittel A, Peters P, Maurer J, Gutgemann I, Kaissling B, Kuziel W, Jung S, Kurts C. 2006. Tumor necrosis factor alpha- and inducible nitric oxide synthase-producing dendritic cells are rapidly recruited to the bladder in urinary tract infection but are dispensable for bacterial clearance. Infect Immun 74:6100–6107. [PubMed][CrossRef]
355. Svanborg-Eden C, Svennerholm AM. 1978. Secretory immunoglobulin A and G antibodies prevent adhesion of Escherichia coli to human urinary tract epithelial cells. Infect Immun 22:790–797.[PubMed]
356. Trinchieri A, Braceschi L, Tiranti D, Dell’Acqua S, Mandressi A, Pisani E. 1990. Secretory immunoglobulin A and inhibitory activity of bacterial adherence to epithelial cells in urine from patients with urinary tract infections. Urol Res 18:305–308. [PubMed][CrossRef]
357. Hopkins WJ, James LJ, Balish E, Uehling DT. 1993. Congenital immunodeficiencies in mice increase susceptibility to urinary tract infection. J Urol 149:922–925.[PubMed]
358. Thumbikat P, Waltenbaugh C, Schaeffer AJ, Klumpp DJ. 2006. Antigen-specific responses accelerate bacterial clearance in the bladder. J Immunol 176:3080–3086.[PubMed]
359. Schilling JD, Hultgren SJ, Lorenz RG. 2002. Recent advances in the molecular basis of pathogen recognition and host responses in the urinary tract. Int Rev Immunol 21:291–304. [PubMed][CrossRef]
360. Mulvey MA, Schilling JD, Hultgren SJ. 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572–4579. [PubMed][CrossRef]
361. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107. [PubMed][CrossRef]
362. Bower JM, Eto DS, Mulvey MA. 2005. Covert operations of uropathogenic Escherichia coli within the urinary tract. Traffic 6:18–31. [PubMed][CrossRef]
363. Martinez JJ, Hultgren SJ. 2002. Requirement of Rho-family GTPases in the invasion of Type 1-piliated uropathogenic Escherichia coli. Cell Microbiol 4:19–28. [PubMed][CrossRef]
364. Mulvey MA. 2002. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4:257–271. [PubMed][CrossRef]
365. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ. 2004. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101:1333–1338. [PubMed][CrossRef]
366. Anderson GG, Dodson KW, Hooton TM, Hultgren SJ. 2004. Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol 12:424–430. [PubMed][CrossRef]
367. Anderson GG, Martin SM, Hultgren SJ. 2004. Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect 6:1094–1101. [PubMed][CrossRef]
368. Anderson M, Bollinger D, Hagler A, Hartwell H, Rivers B, Ward K, Steck TR. 2004. Viable but nonculturable bacteria are present in mouse and human urine specimens. J Clin Microbiol 42:753–758. [PubMed][CrossRef]
369. Kau AL, Hunstad DA, Hultgren SJ. 2005. Interaction of uropathogenic Escherichia coli with host uroepithelium. Curr Opin Microbiol 8:54–59. [PubMed][CrossRef]
370. Rivers B, Steck TR. 2001. Viable but nonculturable uropathogenic bacteria are present in the mouse urinary tract following urinary tract infection and antibiotic therapy. Urol Res 29:60–66. [PubMed][CrossRef]
371. Schilling JD, Lorenz RG, Hultgren SJ. 2002. Effect of trimethoprim-sulfamethoxazole on recurrent bacteriuria and bacterial persistence in mice infected with uropathogenic Escherichia coli. Infect Immun 70:7042–7049. [PubMed][CrossRef]
372. Kaijser B, Larsson P, Olling S. 1978. Protection against ascending Escherichia coli pyelonephritis in rats and significance of local immunity. Infect Immun 20:78–81.[PubMed]
373. Kaijser B, Larsson P, Olling S, Schneerson R. 1983. Protection against acute, ascending pyelonephritis caused by Escherichia coli in rats, using isolated capsular antigen conjugated to bovine serum albumin. Infect Immun 39:142–146.[PubMed]
374. Straube E, Nimmich W, Broschewitz U, Naumann G. 1986. Effect of immunization with K1-antigen of Escherichia coli on the course of experimental urinary tract infection in the rat. Z Urol Nephrol 79:335–346.[PubMed]
375. Mattsby-Baltzer I, Hanson LA, Olling S, Kaijser B. 1982. Experimental Escherichia coli ascending pyelonephritis in rats: active peroral immunization with live Escherichia coli. Infect Immun 35:647–653.[PubMed]
376. Kumar V, Ganguly N, Joshi K, Mittal R, Harjai K, Chhibber S, Sharma S. 2005. Protective efficacy and immunogenicity of Escherichia coli K13 diphtheria toxoid conjugate against experimental ascending pyelonephritis. Med Microbiol Immunol (Berl.) 194:211–217. [PubMed][CrossRef]
377. Russo TA, Beanan JM, Olson R, Genagon SA, MacDonald U, Cope JJ, Davidson BA, Johnston B, Johnson JR. 2007. A killed, genetically engineered derivative of a wild-type extraintestinal pathogenic E. coli strain is a vaccine candidate. Vaccine 25:3859–3870. [PubMed][CrossRef]
378. Hopkins WJ, Elkahwaji J, Beierle LM, Leverson GE, Uehling DT. 2007. Vaginal mucosal vaccine for recurrent urinary tract infections in women: results of a phase 2 clinical trial. J Urol 177:1349–1353; quiz 1591. [PubMed][CrossRef]
379. Uehling DT, Hopkins WJ, Balish E, Xing Y, Heisey DM. 1997. Vaginal mucosal immunization for recurrent urinary tract infection: phase II clinical trial. J Urol 157:2049–2052.[PubMed]
380. Uehling DT, Hopkins WJ, Beierle LM, Kryger JV, Heisey DM. 2001. Vaginal mucosal immunization for recurrent urinary tract infection: extended phase II clinical trial. J Infect Dis 183(Suppl. 1):S81–S83. [PubMed][CrossRef]
381. Uehling DT, Hopkins WJ, Elkahwaji JE, Schmidt DM, Leverson GE. 2003. Phase 2 clinical trial of a vaginal mucosal vaccine for urinary tract infections. J Urol 170:867–869. [PubMed][CrossRef]
382. Kruze D, Biro K, Holzbecher K, Andrial M, Bossart W. 1992. Protection by a polyvalent vaccine against challenge infection and pyelonephritis. Urol Res 20:177–181. [PubMed][CrossRef]
383. Kruze D, Holzbecher K, Andrial M, Bossart W. 1989. Urinary antibody response after immunisation with a vaccine against urinary tract infection. Urol Res 17:361–366. [PubMed][CrossRef]
384. Uehling DT, James LJ, Hopkins WJ, Balish E. 1991. Immunization against urinary tract infection with a multi-valent vaginal vaccine. J Urol 146:223–226.[PubMed]
385. Goluszko P, Goluszko E, Nowicki B, Nowicki S, Popov V, Wang HQ. 2005. Vaccination with purified Dr Fimbriae reduces mortality associated with chronic urinary tract infection due to Escherichia coli bearing Dr adhesin. Infect Immun 73:627–631. [PubMed][CrossRef]
386. Thankavel K, Madison B, Ikeda T, Malaviya R, Shah AH, Arumugam PM, Abraham SN. 1997. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J Clin Investig 100:1123–1136. [PubMed][CrossRef]
387. Langermann S, Ballou WR Jr. 2001. Vaccination utilizing the FimCH complex as a strategy to prevent Escherichia coli urinary tract infections. J Infect Dis 183(Suppl. 1):S84–S86. [PubMed][CrossRef]
388. Meiland R, Geerlings SE, Langermann S, Brouwer EC, Coenjaerts FE, Hoepelman AI. 2004. FimCH antiserum inhibits the adherence of Escherichia coli to cells collected by voided urine specimens of diabetic women. J Urol 171:1589–1593. [PubMed][CrossRef]
389. Roberts JA, Kaack MB, Baskin G, Chapman MR, Hunstad DA, Pinkner JS, Hultgren SJ. 2004. Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J Urol 171:1682–1685. [PubMed][CrossRef]
390. Kantele A, Mottonen T, Ala-Kaila K, Arvilommi HS. 2003. P fimbria-specific B cell responses in patients with urinary tract infection. J Infect Dis 188:1885–1891. [PubMed][CrossRef]
391. Hull RA, Donovan WH, Del Terzo M, Stewart C, Rogers M, Darouiche RO. 2002. Role of type 1 fimbria- and P fimbria-specific adherence in colonization of the neurogenic human bladder by Escherichia coli. Infect Immun 70:6481–6484. [PubMed][CrossRef]
392. O’Hanley P, Lalonde G, Ji G. 1991. Alpha-hemolysin contributes to the pathogenicity of piliated digalactoside-binding Escherichia coli in the kidney: efficacy of an alpha-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of pyelonephritis. Infect Immun 59:1153–1161.[PubMed]
393. O’Hanley P, Marcus R, Baek KH, Denich K, Ji GE. 1993. Genetic conservation of hlyA determinants and serological conservation of HlyA: basis for developing a broadly cross-reactive subunit Escherichia coli alpha-hemolysin vaccine. Infect Immun 61:1091–1097.[PubMed]
394. Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Olson R, Wilding GE. 2003. The siderophore receptor IroN of extraintestinal pathogenic Escherichia coli is a potential vaccine candidate. Infect Immun 71:7164–7169. [PubMed][CrossRef]
395. Kass EH. 1959. Afterthought to the symposium on pyelonephritis, p 694–695. In Quinn KL and Kass EH (ed), Biology of Pyelonephritis. Little, Brown, Boston, MA.
396. Zhang L, Foxman B. 2003. Molecular epidemiology of Escherichia coli mediated urinary tract infections. Front Biosci 8:e235–e244. [PubMed][CrossRef]
397. Marrs CF, Zhang L, Foxman B. 2005. Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol Lett 252:183–190. [PubMed][CrossRef]
ecosalplus.8.6.1.3.citations
ecosalplus/3/2
content/journal/ecosalplus/10.1128/ecosalplus.8.6.1.3
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.6.1.3
2009-12-21
2017-03-30

Abstract:

The urinary tract is among the most common sites of bacterial infection, and is by far the most common species infecting this site. Individuals at high risk for symptomatic urinary tract infection (UTI) include neonates, preschool girls, sexually active women, and elderly women and men. that cause the majority of UTIs are thought to represent only a subset of the strains that colonize the colon. strains that cause UTIs are termed uropathogenic (UPEC). In general, UPEC strains differ from commensal strains in that the former possess extragenetic material, often on pathogenicity-associated islands (PAIs), which code for gene products that may contribute to bacterial pathogenesis. Some of these genes allow UPEC to express determinants that are proposed to play roles in disease. These factors include hemolysins, secreted proteins, specific lipopolysaccharide and capsule types, iron acquisition systems, and fimbrial adhesions. The current dogma of bacterial pathogenesis identifies adherence, colonization, avoidance of host defenses, and damage to host tissues as events vital for achieving bacterial virulence. These considerations, along with analysis of the CFT073, UTI89, and 536 genomes and efforts to identify novel virulence genes should advance the field significantly and allow for the development of a comprehensive model of pathogenesis for uropathogenic .Further study of the adaptive immune response to UTI will be especially critical to refine our understanding and treatment of recurrent infections and to develop vaccines.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Genome maps of pyelonephritis strains 536 and CFT073 and cystitis strain UTI89, indicating the relative locations of PAIs and genomic islands (all islands shown are >20 kb). Colors indicate islands homologous between strains, while gray represents strain-specific PAIs. An island was considered conserved between strains if the majority of PAI-associated genes were present and syntenic at the same chromosomal location; often small insertions and deletions are present. tRNA genes associated with each island (if applicable) are shown in the center and virulence factors encoded in each PAI are noted (virulence genes for homologous PAIs are shown only once). In addition to these large PAIs, numerous phage elements and small insertions are found in each genome and are not shown. Note: GI-CFT073- and PAI-CFT073- are annotated as a single island, PAI VI (), in 536 and UTI89 and the 22-kb PAI VII () is present, but unnamed in CFT073. PAIs were annotated according to previous studies ( 46 , 47 , 49 , 66 , 76 ) and BASE genome alignments. Brackets denote previous CFT073 PAI nomenclature.

Citation: Mobley H, Donnenberg M, Hagan E. 2009. Uropathogenic , EcoSal Plus 2009; doi:10.1128/ecosalplus.8.6.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Arrows represent ORFs and are shaded according to gene product, as indicated. Inset shows the 314-bp invertible element (shown with promoter [P] in the ON orientation), responsible for phase variation of the operon. White, inverted repeats (IR) that flank the promoter region. Yellow, binding sites of FimB and FimE recombinases.

Citation: Mobley H, Donnenberg M, Hagan E. 2009. Uropathogenic , EcoSal Plus 2009; doi:10.1128/ecosalplus.8.6.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

FimB, FimE, IpuA, and IpbA (FimX) recombinases are shown in yellow with annotation below indicating the activity of each enzyme on invertible element orientation. Regulatory proteins IHF, Lrp, and H-NS mediate many of these effects by binding to sequences within the invertible element and either positively (arrow) or negatively (blocked arrow) affecting FimB and FimE function. Signals influencing IpuA and IpbA function are unknown. GlcNAc, -acetylglucosamine.

Citation: Mobley H, Donnenberg M, Hagan E. 2009. Uropathogenic , EcoSal Plus 2009; doi:10.1128/ecosalplus.8.6.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Infection proceeds in an ascending manner, beginning with periurethral colonization and progressing from bladder to kidney colonization. Attachment of UPEC to superficial umbrella cells and kidney epithelium is mediated by type 1 (inset, shown in blue) and P fimbriae (inset, shown in green), respectively. Bladder tissue damage is a result of UPEC binding, invasion, and possibly toxin secretion (i.e., CNF-1, hemolysin). Upregulation of flagella facilitate progression to the kidney, where P fimbriae binding, LPS shedding, and toxin secretion may induce inflammation, recruit neutrophils (PMNs), and cause renal damage. Bacteremia can occur if bacteria cross the two cell layers separating the kidney from the bloodstream.

Citation: Mobley H, Donnenberg M, Hagan E. 2009. Uropathogenic , EcoSal Plus 2009; doi:10.1128/ecosalplus.8.6.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Prevalence of virulence determinants among UTI and fecal isolates

Citation: Mobley H, Donnenberg M, Hagan E. 2009. Uropathogenic , EcoSal Plus 2009; doi:10.1128/ecosalplus.8.6.1.3
Generic image for table
Table 2

Prototypic strains used in UTI research

Citation: Mobley H, Donnenberg M, Hagan E. 2009. Uropathogenic , EcoSal Plus 2009; doi:10.1128/ecosalplus.8.6.1.3
Generic image for table
Table 3

Ferric iron acquisition systems of UPEC

Citation: Mobley H, Donnenberg M, Hagan E. 2009. Uropathogenic , EcoSal Plus 2009; doi:10.1128/ecosalplus.8.6.1.3
Generic image for table
Table 4

Virulence determinants of UPEC

Citation: Mobley H, Donnenberg M, Hagan E. 2009. Uropathogenic , EcoSal Plus 2009; doi:10.1128/ecosalplus.8.6.1.3

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error