1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

Invasive Salmonellosis in Humans

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Gemma C. Langridge1, John Wain2, and Satheesh Nair3
  • Editor: Michael S. Donnenberg4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; 2: The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; 3: The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; 4: University of Maryland, School of Medicine, Baltimore, MD
  • Received 11 January 2005 Accepted 21 April 2005 Published 19 August 2012
  • Address correspondence to John Wain jw5@sanger.ac.uk
image of Invasive Salmonellosis in Humans
    Preview this reference work article:
    Zoom in
    Zoomout

    Invasive Salmonellosis in Humans, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/5/1/8_6_2_2_module-1.gif /docserver/preview/fulltext/ecosalplus/5/1/8_6_2_2_module-2.gif
  • Abstract:

    Human salmonellosis is generally associated with from subspecies (subspecies I). Acute infections can present in one of four ways: enteric fever, gastroenteritis, bacteremia, or extraintestinal focal infection. As with other infectious diseases, the course and outcome of the infection depend on a variety of factors, including the infecting organism, the inoculating dose, and the immune status and genetic background of the host. For serovarsTyphi and Paratyphi A there is a clear association between the genetic background of the serovar and systemic infection in humans. For serovars Paratyphi B and Paratyphi C, a good clinical description of the host and detailed population genetics of the pathogen are necessary before more detailed genetic studies of novel virulence factors,or host factors,can be initiated. For the nontyphoidalserovars (NTS) the situation is less clear. Serovars Typhimurium and Enteritidis are the most common within the food chain, and so the large number of invasive infections associated with these serovars is most likely due to exposure rather than to increased virulence of the pathogen. In Africa, however, a closely related group of strains of serovar Typhimurium, associated with HIV infection, may have become host adapted tohumans, suggesting that not all isolates called "Typhimurium" should be considered as a single group. Here we review current knowledge of the salmonellae for which invasive disease in humans is an important aspect of their population biology.

  • Citation: Langridge G, Wain J, Nair S. 2012. Invasive Salmonellosis in Humans, EcoSal Plus 2012; doi:10.1128/ecosalplus.8.6.2.2

Key Concept Ranking

Type III Secretion System
0.45155627
Infectious Diseases
0.42182285
Outer Membrane Proteins
0.3768346
Type IV Pili
0.35316262
Multilocus Sequence Typing
0.33423123
0.45155627

References

1. Selander RK, Beltran P, Smith NH, Helmuth R, Rubin FA, Kopecko DJ, Ferris K, Tall BD, Cravioto A, Musser JM. 1990. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun 58:2262–2275.[PubMed]
2. Crosa JH, Brenner DJ, Ewing WH, Falkow S. 1973. Molecular relationships among the Salmonellae. J Bacteriol 115:307.
3. Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ III. 1989. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 27:313–320.[PubMed]
4. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. 2000. Salmonella nomenclature. J Clin Microbiol 38:2465.
5. Helms M, Simonsen J, Molbak K. 2006. Foodborne bacterial infection and hospitalization: a registry-based study. Clin Infect Dis 42:498–506. [PubMed][CrossRef]
6. Chiu CH, Chuang CH, Chiu S, Su LH, Lin TY. 2006. Salmonella enterica serotype Choleraesuis infections in pediatric patients. Pediatrics 117:e1193–e1196. [PubMed][CrossRef]
7. Lauderdale TL, Aarestrup FM, Chen PC, Lai JF, Wang HY, Shiau YR, Huang IW, Hung CL. 2006. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan. Diagn Microbiol Infect Dis 55:149–155. [PubMed][CrossRef]
8. Threlfall EJ, Hall ML, Rowe B. 1992. Salmonella bacteraemia in England and Wales, 1981–1990. J Clin Pathol 45:34–36. [PubMed][CrossRef]
9. Vugia DJ, Samuel M, Farley MM, Marcus R, Shiferaw B, Shallow S, Smith K, Angulo FJ. 2004. Invasive Salmonella infections in the United States, FoodNet, 1996–1999: incidence, serotype distribution, and outcome. Clin Infect Dis 38(Suppl 3):S149–S156. [CrossRef]
10. Fernandes SA, Tavechio AT, Ghilardi ÃCR, Dias ÃMG, de Almeida IAZC, de Melo LCV. 2006. Salmonella serovars isolated from humans in São Paulo State, Brazil, 1996c#x2013;2003. Rev Inst Med Trop S Paulo 48:179–184. [CrossRef]
11. Galanakis E, Bitsori M, Maraki S, Giannakopoulou C, Samonis G, Tselentis Y. 2007. Invasive non-typhoidal salmonellosis in immunocompetent infants and children. International journal of infectious diseases. Int J Infect Dis 11:36–39. [PubMed][CrossRef]
12. Rotger R, Casadesus J. 1999. The virulence plasmids of Salmonella. Int Microbiol 2:177–184.[PubMed]
13. Ben-Barak Z, Streckel W, Yaron S, Cohen S, Prager R, Tschape H. 2006. The expression of the virulence-associated effector protein gene avrA is dependent on a Salmonella enterica-specific regulatory function. Int J Med Microbiol 296:25–38. [PubMed][CrossRef]
14. Rahman H. 2006. Prevalence & phenotypic expression of sopB gene among clinical isolates of Salmonella enterica. Indian J Med Res 123:83–88.[PubMed]
15. Daigle F, Graham JE, Curtiss R. 2001. Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences(SCOTS). Mol Microbiol 41:1211–1222. [PubMed][CrossRef]
16. Faucher SP, Porwollik S, Dozois CM, McClelland M, Daigle F. 2006. Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci USA 103:1906–1911. [PubMed][CrossRef]
17. Faucher SP, Curtiss R III, Daigle F. 2005. Selective capture of Salmonella enterica serovar typhi genes expressed in macrophages that are absent from the Salmonella enterica serovar Typhimurium genome. Infect Immun 73:5217–5221. [PubMed][CrossRef]
18. Porwollik S, Boyd EF, Choy C, Cheng P, Florea L, Proctor E, McClelland M. 2004. Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol 186:5883–5898. [PubMed][CrossRef]
19. Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, Mottaz HM, Norbeck AD, Purvine SO, Manes NP, Smallwood HS. 2006. Proteomic analysis of Salmonella enterica serovar Typhimurium isolated from raw 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. J Biol Chem 281:29131. [CrossRef]
20. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC. 2003. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47:103–118. [PubMed][CrossRef]
21. Harris JB, Baresch-Bernal A, Rollins SM, Alam A, LaRocque RC, Bikowski M, Peppercorn AF, Handfield M, Hillman JD, Qadri F, Calderwood SB, Hohmann E, Breiman RF, Brooks WA, Ryan ET. 2006. Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect Immun 74:5161–5168. [PubMed][CrossRef]
22. Miller SI, Kukral AM, Mekalanos JJ. 1989. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 86:5054–5058. [PubMed][CrossRef]
23. Pulkkinen WS, Miller SI. 1991. A Salmonella typhimurium virulence protein is similar to a Yersinia enterocolitica invasion protein and a bacteriophage lambda outer membrane protein. J Bacteriol 173:86.
24. Winslow CE, Kligler IJ, Rothberg W. 1919. Studies on the classification of the colon-typhoid with special reference to their fermentative reactions. J Bacteriol 4:429–503.[PubMed]
25. Barker RM. 1985. Utilization of D-tartaric acid by Salmonella paratyphi B and Salmonella java: comparison of anaerobic plate test, lead acetate test and turbidity test. J Hyg (Lond.) 95:107–114.[PubMed]
26. Malorny B, Bunge C, Helmuth R. 2003. Discrimination of D-tartrate-fermenting and -nonfermenting Salmonella enterica subsp. enterica isolates by genotypic and phenotypic methods. J Clin Microbiol 41:4292–4297. [PubMed][CrossRef]
27. Parry CM. 2004. Typhoid fever. Curr Infect Dis Rep 6:27–33. [PubMed][CrossRef]
28. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. 2002. Typhoid fever. N Engl J Med 347:1770–1782. [PubMed][CrossRef]
29. Chanh NQ, Everest P, Tan Khoa T, House D, Murch S, Parry C, Connerton P, Bay PV, Diep TS, Mastroeni P, White NJ, Hien TT, Van Ho V, Dougan G, Farrar JJ, Wain J. 2004. A clinical, microbiological, and pathological study of intestinal perforation associated with typhoid fever. Clin Infect Dis 39:61–67. [PubMed][CrossRef]
30. Everest P, Wain J, Roberts M, Rook G, Dougan G. 2001. The molecular mechanisms of severe typhoid fever. Trends Microbiol 9:316–320. [PubMed][CrossRef]
31. Butler T, Knight J, Nath SK, Speelman P, Roy SK, Azad MA. 1985. Typhoid fever complicated by intestinal perforation: a persisting fatal disease requiring surgical management. Rev Infect Dis 7:244–256.[PubMed]
32. Kidgell C, Reichard U, Wain J, Linz B, Torpdahl M, Dougan G, Achtman M. 2002. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol 2:39–45. [PubMed][CrossRef]
33. Deng W, Liou SR, Plunkett G III, Mayhew GF, Rose DJ, Burland V, Kodoyianni V, Schwartz DC, Blattner FR. 2003. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 185:2330–2337. [PubMed][CrossRef]
34. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Holroyd S, Jagels K, Krogh A, Larsen TS, Leather S, Moule S, O'Gaora P, Parry C, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852. [PubMed][CrossRef]
35. Kingsley RA, Baumler AJ. 2000. Host adaptation and the emergence of infectious disease: the Salmonella paradigm. Mol Microbiol 36:1006–1014. [PubMed][CrossRef]
36. Wain J, House D, Parkhill J, Parry C, Dougan G. 2002. Unlocking the genome of the human typhoid bacillus. Lancet Infect Dis 2:163–170. [PubMed][CrossRef]
37. Hashimoto Y, Li N, Yokoyama H, Ezaki T. 1993. Complete nucleotide sequence and molecular characterization of ViaB region encoding Vi antigen in Salmonella typhi. J Bacteriol 175:4456–4465.[PubMed]
38. Hardt WD, Urlaub H, Galan JE. 1998. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc Natl Acad Sci USA 95:2574–2579. [CrossRef]
39. Morris C, Yip CM, Tsui IS, Wong DK, Hackett J. 2003. The shufflon of Salmonella enterica serovar Typhi regulates type IVB pilus-mediated bacterial self-association. Infect Immun 71:1141–1146. [PubMed][CrossRef]
40. Tsui IS, Yip CM, Hackett J, Morris C. 2003. The type IVB pili of Salmonella enterica serovar Typhi bind to the cystic fibrosis transmembrane conductance regulator. Infect Immun 71:6049–6050. [PubMed][CrossRef]
41. Zhang XL, Tsui IS, Yip CM, Fung AW, Wong DK, Dai X, Yang Y, Hackett J, Morris C. 2000. Salmonella enterica serovar typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun 68:3067–3073. [PubMed][CrossRef]
42. Pickard D, Wain J, Baker S, Line A, Chohan S, Fookes M, Barron A, Gaora PO, Chabalgoity JA, Thanky N, Scholes C, Thomson N, Quail M, Parkhill J, Dougan G. 2003. Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J Bacteriol 185:5055–5065. [PubMed][CrossRef]
43. Tam CKP, Hackett J, Morris C. 2004. Salmonella enterica serovar Paratyphi C carries an inactive shufflon. Infect Immun 72:22–28. [PubMed][CrossRef]
44. Townsend SM, Kramer NE, Edwards R, Baker S, Hamlin N, Simmonds M, Stevens K, Maloy S, Parkhill J, Dougan G, Baumler AJ. 2001. Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69:2894–2901. [PubMed][CrossRef]
45. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856. [PubMed][CrossRef]
46. van der Woude MW, Baumler AJ. 2004. Phase and antigenic variation in bacteria. Clin Microbiol Rev 17:581–611. [PubMed][CrossRef]
47. Nair S, Alokam S, Kothapalli S, Porwollik S, Proctor E, Choy C, McClelland M, Liu SL, Sanderson KE. 2004. Salmonella enterica serovar Typhi strains from which SPI7, a 134-kilobase island with genes for Vi exopolysaccharide and other functions, has been deleted. J Bacteriol 186:3214–3223. [PubMed][CrossRef]
48. Wain J, House D, Zafar A, Baker S, Nair S, Kidgell C, Bhutta Z, Dougan G, Hasan R. 2005. Vi antigen expression in Salmonella enterica serovar Typhi clinical isolates from Pakistan. J Clin Microbiol 43:1158–1165. [PubMed][CrossRef]
49. Oscarsson J, Westermark M, Lofdahl S, Olsen B, Palmgren H, Mizunoe Y, Wai SN, Uhlin BE. 2002. Characterization of a pore-forming cytotoxin expressed by Salmonella enterica serovars typhi and paratyphi A. Infect Immun 70:5759–5769. [PubMed][CrossRef]
50. Vollaard AM, Ali S, van Asten HA, Widjaja S, Visser LG, Surjadi C, van Dissel JT. 2004. Risk factors for typhoid and paratyphoid fever in Jakarta, Indonesia. J Am Med Assoc 291:2607–2615. [CrossRef]
51. Selander RK, Beltran P, Smith NH, Barker RM, Crichton PB, Old DC, Musser JM, Whittam TS. 1990. Genetic population structure, clonal phylogeny, and pathogenicity of Salmonella paratyphi B. Infect Immun 58:1891–1901.[PubMed]
52. Boyd EF, Wang FS, Beltran P, Plock SA, Nelson K, Selander RK. 1993. Salmonella reference collection B (SARB): strains of 37 serovars of subspecies I. J Gen Microbiol 139(Pt 6):1125–1132.
53. McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, Meyer R, Bieri T, Ozersky P, McLellan M, Harkins CR, Wang C, Nguyen C, Berghoff A, Elliott G, Kohlberg S, Strong C, Du F, Carter J, Kremizki C, Layman D, Leonard S, Sun H, Fulton L, Nash W, Miner T, Minx P, Delehaunty K, Fronick C, Magrini V, Nhan M, Warren W, Florea L, Spieth J, Wilson RK. 2004. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36:1268–1274. [PubMed][CrossRef]
54. Kingsley RA, Keestra AM, de Zoete MR, Baumler AJ. 2004. The ShdA adhesin binds to the cationic cradle of the fibronectin 13FnIII repeat module: evidence for molecular mimicry of heparin binding. Mol Microbiol 52:345–355. [PubMed][CrossRef]
55. Kingsley RA, Humphries AD, Weening EH, De Zoete MR, Winter S, Papaconstantinopoulou A, Dougan G, Baumler AJ. 2003. Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype typhimurium: identification of intestinal colonization and persistence determinants. Infect Immun 71:629–640. [PubMed][CrossRef]
56. House D, Bishop A, Parry C, Dougan G, Wain J. 2001. Typhoid fever: pathogenesis and disease. Curr Opin Infect Dis 14:573–578.[PubMed]
57. Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W, Hardt WD. 2001. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem 276:34035–34040. [PubMed][CrossRef]
58. Kauffmann F. 1955. [Differential diagnosis and pathogenicity of Salmonella java and Salmonella paratyphi B.] Z. Hyg Infektionskr 141:546–550. [PubMed][CrossRef]
59. Chart H. 2003. The pathogenicity of strains of Salmonella paratyphi B and Salmonella java. J Appl Microbiol 94:340–348. [PubMed][CrossRef]
60. Goh YL, Yasin R, Puthucheary SD, Koh YT, Lim VK, Taib Z, Thong KL. 2003. DNA fingerprinting of human isolates of Salmonella enterica serotype Paratyphi B in Malaysia. J Appl Microbiol 95:1134–1142. [PubMed][CrossRef]
61. Prager R, Rabsch W, Streckel W, Voigt W, Tietze E, Tschape H. 2003. Molecular properties of Salmonella enterica serotype paratyphi B distinguish between its systemic and its enteric pathovars. J Clin Microbiol 41:4270–4278. [PubMed][CrossRef]
62. Reaney SK, Begg C, Bungard SJ, Guest JR. 1993. Identification of the L-tartrate dehydratase genes (ttdA and ttdB) of Escherichia coli and evolutionary relationship with the class I fumarase genes. J Gen Microbiol 139:1523–1530.[PubMed]
63. Van Immerseel F, Meulemans L, De Buck J, Pasmans F, Velge P, Bottreau E, Haesebrouck F, Ducatelle R. 2004. Bacteria-host interactions of Salmonella Paratyphi B dT+ in poultry. Epidemiol Infect 132:239–243. [PubMed][CrossRef]
64. Uzzau S, Hovi M, Stocker BA. 1999. Application of ribotyping and IS200 fingerprinting to distinguish the five Salmonella serotype O6,7:c:1,5 groups: Choleraesuis sensu stricto, Choleraesuis var. Kunzendorf, Choleraesuis var Decatur, Paratyphi C, and Typhisuis. Epidemiol Infect 123:37–46. [PubMed][CrossRef]
65. Rodriguez-Buenfil JC, Alvarez-Fleites M, Villarreal-Morales ZY, Segura-Correa JC. 2004. Incidence and identification of Salmonella species in pigs on two farm systems in Mexico. Vet Rec 154:150–152.[PubMed]
66. Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesus J, Platt DJ, Olsen JE. 2000. Host adapted serotypes of Salmonella enterica. Epidemiol Infect 125:229–255. [PubMed][CrossRef]
67. Kariuki S, Cheesbrough J, Mavridis AK, Hart CA. 1999. Typing of Salmonella enterica serotype paratyphi C isolates from various countries by plasmid profiles and pulsed-field gel electrophoresis. J Clin Microbiol 37:2058–2060.[PubMed]
68. Chiu CH, Su LH, Chu C. 2004. Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment. Clin Microbiol Rev 17:311–322. [PubMed][CrossRef]
69. Cohen JI, Bartlett JA, Corey GR. 1987. Extra-intestinal manifestations of salmonella infections. Medicine (Baltimore) 66:349–388.[PubMed]
70. Chiu S, Chiu CH, Lin TY. 2004. Salmonella enterica serotype Choleraesuis infection in a medical center in northern Taiwan. J Microbiol Immunol Infect 37:99–102.[PubMed]
71. Wang JY, Hwang JJ, Hsu CN, Lin LC, Hsueh PR. 2006. Bacteraemia due to ciprofloxacin-resistant Salmonella enterica serotype Choleraesuis in adult patients at a university hospital in Taiwan, 1996–2004. Epidemiol Infect 134:977–984. [PubMed][CrossRef]
72. Chiu CH, Tang P, Chu C, Hu S, Bao Q, Yu J, Chou YY, Wang HS, Lee YS. 2005. The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 33:1690–1698. [PubMed][CrossRef]
73. Cheesbrough JS, Taxman BC, Green SD, Mewa FI, Numbi A. 1997. Clinical definition for invasive Salmonella infection in African children. Pediatr Infect Dis J 16:277–283. [PubMed][CrossRef]
74. Chierakul W, Rajanuwong A, Wuthiekanun V, Teerawattanasook N, Gasiprong M, Simpson A, Chaowagul W, White NJ. 2004. The changing pattern of bloodstream infections associated with the rise in HIV prevalence in northeastern Thailand. Trans R Soc Trop Med Hyg 98:678–686.[PubMed]
75. Gordon MA, Banda HT, Gondwe M, Gordon SB, Boeree MJ, Walsh AL, Corkill JE, Hart CA, Gilks CF, Molyneux ME. 2002. Non-typhoidal salmonella bacteraemia among HIV-infected Malawian adults: high mortality and frequent recrudescence. AIDS 16:1633–1641. [PubMed][CrossRef]
76. Graham SM, Molyneux EM, Walsh AL, Cheesbrough JS, Molyneux ME, Hart CA. 2000. Nontyphoidal Salmonella infections of children in tropical Africa. Pediatr Infect Dis J 19:1189–1196. [PubMed][CrossRef]
77. Shimoni Z, Pitlik S, Leibovici L, Samra Z, Konigsberger H, Drucker M, Agmon V, Ashkenazi S, Weinberger M. 1999. Nontyphoid Salmonella bacteremia: age-related differences in clinical presentation, bacteriology, and outcome. Clin Infect Dis 28:822–827. [PubMed][CrossRef]
78. Kains JP, Dereume JP, Jacobs F, Legrand JC, Wautrecht JC, Thys JP. 1987. Salmonella endarteritis, about two cases and their management. J Cardiovasc Surg (Torino) 28:538–541.[PubMed]
79. Weinberger M, Andorn N, Agmon V, Cohen D, Shohat T, Pitlik SD. 2004. Blood invasiveness of Salmonella enterica as a function of age and serotype. Epidemiol Infect 132:1023–1028. [PubMed][CrossRef]
80. Benenson S, Raveh D, Schlesinger Y, Alberton J, Rudensky B, Hadas-Halpern I, Yinnon AM. 2001. The risk of vascular infection in adult patients with nontyphi Salmonella bacteremia. Am J Med 110:60–63. [PubMed][CrossRef]
81. Ispahani P, Slack RC. 2000. Enteric fever and other extraintestinal salmonellosis in University Hospital, Nottingham, UK, between 1980 and 1997. Eur J Clin Microbiol Infect Dis 19:679–687. [PubMed][CrossRef]
82. Brown M, Eykyn SJ. 2000. Non-typhoidal Salmonella bacteraemia without gastroenteritis: a marker of underlying immunosuppression. Review of cases at St Thomas’ Hospital 1970–1999. J Infect 41:256–259. [PubMed][CrossRef]
83. Hsu RB, Tsay YG, Chen RJ, Chu SH. 2003. Risk factors for primary bacteremia and endovascular infection in patients without acquired immunodeficiency syndrome who have nontyphoid salmonellosis. Clin Infect Dis 36:829–834. [PubMed][CrossRef]
84. Yang YJ, Huang MC, Wang SM, Wu JJ, Cheng CP, Liu CC. 2002. Analysis of risk factors for bacteremia in children with nontyphoidal Salmonella gastroenteritis. Eur J Clin Microbiol Infect Dis 21:290–293. [PubMed][CrossRef]
85. Graham SM, Hart CA, Molyneux EM, Walsh AL, Molyneux ME. 2000. Malaria and Salmonella infections: cause or coincidence? Trans. R Soc Trop Med Hyg 94:227. [CrossRef]
86. Graham SM, Walsh AL, Molyneux EM, Phiri AJ, Molyneux ME. 2000. Clinical presentation of non-typhoidal Salmonella bacteraemia in Malawian children. Trans R Soc Trop Med Hyg 94:310–314. [PubMed][CrossRef]
87. Dowling JJ, Whitty CJ, Chaponda M, Munthali C, Zijlstra EE, Gilks CF, Squire SB, Gordon MA. 2002. Are intestinal helminths a risk factor for non-typhoidal Salmonella bacteraemia in adults in Africa who are seropositive for HIV? A case-control study. Ann Trop Med Parasitol 96:203–208. [PubMed][CrossRef]
88. Gordon MA, Walsh AL, Chaponda M, Soko D, Mbvwinji M, Molyneux ME, Gordon SB. 2001. Bacteraemia and mortality among adult medical admissions in Malawi—predominance of non-typhi salmonellae and Streptococcus pneumoniae. J Infect 42:44–49. [PubMed][CrossRef]
89. Gotuzzo E, Frisancho O, Sanchez J, Liendo G, Carrillo C, Black RE, Morris JG Jr. 1991. Association between the acquired immunodeficiency syndrome and infection with Salmonella typhi or Salmonella paratyphi in an endemic typhoid area. Arch Intern Med 151:381–382. [PubMed][CrossRef]
90. Manfredi R, Donzelli C, Talo S, Guzman SM, Chiodo F. 1998. Typhoid fever and HIV infection: a rare disease association in industrialized countries. Int J Infect Dis 3:105–108. [PubMed][CrossRef]
91. Kariuki S, Revathi G, Kariuki N, Muyodi J, Mwituria J, Munyalo A, Kagendo D, Murungi L, Anthony Hart C. 2005. Increasing prevalence of multidrug-resistant non-typhoidal salmonellae, Kenya, 1994–2003. Int J Antimicrob Agents 25:38–43. [PubMed][CrossRef]
92. Communicable Disease Report Centre (CDSC). 2000. Trends in selected gastrointestinal infections; 1999. Commun Dis Rep (CDR) Weekly 10:9–12.
93. Rodriguez RE, Valero V, Watanakunakorn C. 1986. Salmonella focal intracranial infections: review of the world literature (1884–1984) and report of an unusual case. Rev Infect Dis 8:31–41.[PubMed]
94. Walsh AL, Molyneux EM, Kabudula M, Phiri AJ, Molyneux ME, Graham SM. 2002. Bacteraemia following blood transfusion in Malawian children: predominance of Salmonella. Trans R Soc Trop Med Hyg 96:276–277. [PubMed][CrossRef]
95. Helms M, Simonsen J, Molbak K. 2004. Quinolone resistance is associated with increased risk of invasive illness or death during infection with Salmonella serotype Typhimurium. J Infect Dis 190:1652–1654. [PubMed][CrossRef]
96. Fierer J. 2001. Extra-intestinal Salmonella infections: the significance of spv genes. Clin Infect Dis 32:519–520. [PubMed][CrossRef]
97. Bukholm G, Figenschau KJ. 1988. Invasiveness of enterobacteria related to the presence of high molecular weight plasmids. APMIS 96:30–36.[PubMed]
98. Rodriguez M, de Diego I, Mendoza MC. 1998. Extraintestinal salmonellosis in a general hospital (1991 to 1996): relationships between Salmonella genomic groups and clinical presentations. J Clin Microbiol 36:3291–3296.[PubMed]
99. Selander RK, Smith NH, Li J, Beltran P, Ferris KE, Kopecko DJ, Rubin FA. 1992. Molecular evolutionary genetics of the cattle-adapted serovar Salmonella dublin. J Bacteriol 174:3587–3592.[PubMed]
100. Chowdry N, Threlfall EJ, Rowe B, Stanley J. 1993. Genotype analysis of faecal and blood isolates of Salmonella dublin from humans in England and Wales. Epidemiol Infect 110:217–225.[PubMed]
101. Liebana E, Garcia-Migura L, Clouting C, Cassar CA, Clifton-Hadley FA, Lindsay EA, Threlfall EJ, Chappell SA, Davies RH. 2002. Investigation of the genetic diversity among isolates of Salmonella enterica serovar Dublin from animals and humans from England, Wales and Ireland. J Appl Microbiol 93:732–744. [PubMed][CrossRef]
102. Morris C, Tam CK, Wallis TS, Jones PW, Hackett J. 2003. Salmonella enterica serovar Dublin strains which are Vi antigen-positive use type IVB pili for bacterial self-association and human intestinal cell entry. Microb Pathog 35:279–284. [PubMed][CrossRef]
103. Libby SJ, Adams LG, Ficht TA, Allen C, Whitford HA, Buchmeier NA, Bossie S, Guiney DG. 1997. The spv genes on the Salmonella dublin virulence plasmid are required for severe enteritis and systemic infection in the natural host. Infect Immun 65:1786–1792.[PubMed]
104. Olsen JE, Baggesen DL, Nielsen BB, Larsen HE. 1990. The prevalence of plasmids in Danish bovine and human isolates of Salmonella dublin. APMIS 98:735–740. [PubMed][CrossRef]
105. Billingham JD, Slack MP. 1981. Cholecystitis and subphrenic abscess caused by Salmonella virchow. Postgrad Med J 57:308–309. [CrossRef]
106. Bitsori M, Galanakis E, Maraki S, Raissaki M, Velivassakis E, Sbyrakis S. 2001. Invasive Salmonella virchow infection in childhood. Scand J Infect Dis 33:862–865. [PubMed][CrossRef]
107. Todd WT, Murdoch JM. 1983. Salmonella virchow: a cause of significant bloodstream invasion. Scott Med J 28:176–178.[PubMed]
108. Ashdown LR, Ryan PJ. 1990. Invasive disease due to Salmonella virchow: a north Queensland problem. Med J Aust 153:330–332, 334–335.[PubMed]
109. Bennett CM, Dalton C, Beers-Deeble M, Milazzo A, Kraa E, Davos D, Puech M, Tan A, Heuzenroeder MW. 2003. Fresh garlic: a possible vehicle for Salmonella Virchow. Epidemiol Infect 131:1041–1048. [PubMed][CrossRef]
110. Wilkins EG, Roberts C. 1988. Extraintestinal salmonellosis. Epidemiol Infect 100:361–368.[PubMed]
111. Sullivan AM, Ward LR, Rowe B, Woolcock JB, Cox JM. 1998. Phage types of Australian isolates of Salmonella enterica subsp. enterica serovar Virchow. Lett Appl Microbiol 27:216–218. [PubMed][CrossRef]
112. Willocks LJ, Morgan D, Sufi F, Ward LR, Patrick HE. 1996. Salmonella virchow PT 26 infection in England and Wales: a case control study investigating an increase in cases during 1994. Epidemiol Infect 117:35–41. [PubMed][CrossRef]
113. Khakhria R, Woodward D, Johnson WM, Poppe C. 1997. Salmonella isolated from humans, animals and other sources in Canada, 1983–92. Epidemiol Infect 119:15–23. [PubMed][CrossRef]
114. Hennessy TW, Cheng LH, Kassenborg H, Ahuja SD, Mohle-Boetani J, Marcus R, Shiferaw B, Angulo FJ. 2004. Egg consumption is the principal risk factor for sporadic Salmonella serotype Heidelberg infections: a case-control study in FoodNet sites. Clin Infect Dis 38(Suppl. 3):S237–S243. [CrossRef]
115. Boyd EF, Porwollik S, Blackmer F, McClelland M. 2003. Differences in gene content among Salmonella enterica serovar typhi isolates. J Clin Microbiol 41:3823–3828. [PubMed][CrossRef]
116. Mills SD, Finlay BB. 1994. Comparison of Salmonella typhi and Salmonella typhimurium invasion, intracellular growth and localization in cultured human epithelial cells. Microb Pathog 17:409–423. [PubMed][CrossRef]
ecosalplus.8.6.2.2.citations
ecosalplus/5/1
content/journal/ecosalplus/10.1128/ecosalplus.8.6.2.2
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.6.2.2
2012-08-19
2017-04-26

Abstract:

Human salmonellosis is generally associated with from subspecies (subspecies I). Acute infections can present in one of four ways: enteric fever, gastroenteritis, bacteremia, or extraintestinal focal infection. As with other infectious diseases, the course and outcome of the infection depend on a variety of factors, including the infecting organism, the inoculating dose, and the immune status and genetic background of the host. For serovarsTyphi and Paratyphi A there is a clear association between the genetic background of the serovar and systemic infection in humans. For serovars Paratyphi B and Paratyphi C, a good clinical description of the host and detailed population genetics of the pathogen are necessary before more detailed genetic studies of novel virulence factors,or host factors,can be initiated. For the nontyphoidalserovars (NTS) the situation is less clear. Serovars Typhimurium and Enteritidis are the most common within the food chain, and so the large number of invasive infections associated with these serovars is most likely due to exposure rather than to increased virulence of the pathogen. In Africa, however, a closely related group of strains of serovar Typhimurium, associated with HIV infection, may have become host adapted tohumans, suggesting that not all isolates called "Typhimurium" should be considered as a single group. Here we review current knowledge of the salmonellae for which invasive disease in humans is an important aspect of their population biology.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

species and subspecies have been defined by biotyping, DNA-DNA hybridization ( 2 ), 16S RNA analysis, and multilocus enzyme electrophoresis (MLEE) ( 3 ). Serotyping is used for differentiation beyond the level of subspecies. Numbers in brackets indicate the total number of serotypes included in each subspecies ( 4 ). *Common serotypes are listed, but other serotypes may cause bacteremia or focal infection; subsp., subspecies.

Citation: Langridge G, Wain J, Nair S. 2012. Invasive Salmonellosis in Humans, EcoSal Plus 2012; doi:10.1128/ecosalplus.8.6.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Invasive index of nontyphoidal salmonellae

Citation: Langridge G, Wain J, Nair S. 2012. Invasive Salmonellosis in Humans, EcoSal Plus 2012; doi:10.1128/ecosalplus.8.6.2.2
Generic image for table
Table 2

Specific genetic traits of serovars

Citation: Langridge G, Wain J, Nair S. 2012. Invasive Salmonellosis in Humans, EcoSal Plus 2012; doi:10.1128/ecosalplus.8.6.2.2
Generic image for table
Table 3

Serotypes implicated in human invasive disease: antigenic formulas and indicators of variation

Citation: Langridge G, Wain J, Nair S. 2012. Invasive Salmonellosis in Humans, EcoSal Plus 2012; doi:10.1128/ecosalplus.8.6.2.2

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error