1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

Mucosal Immune Responses to and Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Odilia L. C. Wijburg1, and Richard A. Strugnell2
  • Editor: Michael S. Donnenberg3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; 2: Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; 3: University of Maryland, School of Medicine, Baltimore, MD
  • Received 22 November 2005 Accepted 01 March 2006 Published 06 June 2006
  • Address correspondence to Odilia L. C. Wijburg odilia@unimelb.edu.au
image of Mucosal Immune Responses to <span class="jp-italic">Escherichia coli</span> and <span class="jp-italic">Salmonella</span> Infections
    Preview this reference work article:
    Zoom in
    Zoomout

    Mucosal Immune Responses to and Infections, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/1/8_8_12_module-1.gif /docserver/preview/fulltext/ecosalplus/2/1/8_8_12_module-2.gif
  • Abstract:

    The best-characterized mucosa-associated lymphoid tissue (MALT), and also the most relevant for this review, is the gastrointestinal-associated lymphoid tissue (GALT). The review reviews our understanding of the importance of mucosal immune responses in resisting infections caused by and spp. It focuses on the major human infections and discusses whether antigen-specific mucosal immune responses are important for resistance against primary infection or reinfection by pathogenic . It analyzes human data on mucosal immunity against , a growing body of data of mucosal responses in food production animals and other natural hosts of , and more recent experimental studies in mice carrying defined deletions in genes encoding specific immunological effectors, to show that there may be considerable conservation of the effective host mucosal immune response against this pathogen. The species contains a number of serovars that include pathogens of both humans and animals; these bacteria are frequently host specific and may cause different diseases in different hosts. Ingestion of various serovars, such as Typhimurium, results in localized infections of the small intestine leading to gastroenteritis in humans, whereas ingestion of serovar Typhi results in systemic infection and enteric fever. Serovar Typhi infects only humans, and the review discusses the mucosal immune responses against serovar Typhi, focusing on the responses in humans and in the mouse typhoid fever model.

  • Citation: Wijburg O, Strugnell R. 2006. Mucosal Immune Responses to and Infections, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.12

Key Concept Ranking

Major Histocompatibility Complex Class II
0.4084754
Immune Systems
0.37459165
Bacterial Vaccines
0.34673637
Tumor Necrosis Factor alpha
0.34528968
0.4084754

References

1. Besredka A. 1919. Ann Inst Pasteur 33:882.
2. Burrows, Elliott, Havens. 1948. Studies on immunity to Asiatic cholera. V. The absorption of immune globulin from the bowel and its excretion in the urine and feces of experimental animals and human volunteers. J Infect Dis 82:231.
3. Burrows, Havens. 1947. Studies on immunity to Asiatic cholera. IV. The excretion of coproantibody in experimental enteric cholera in the guinea pig. J Infect Dis 81:261.
4. Heremans JF, Heremans MT, Schultze HE. 1959. Isolation and description of a few properties of the beta 2A-globulin of human serum. Clin Chim Acta 4:96–102. [PubMed][CrossRef]
5. Chodirker WB, Tomasi TB Jr. 1963. Gamma-globulins: quantitative relationships in human serum and nonvascular fluids. Science 142:1080–1081. [PubMed][CrossRef]
6. Gugler E, Bokelmann G, Datwyler A, Von Muralt G. 1958. [Immunoelectrophoretic studies on human milk proteins]. Schweiz Med Wochenschr 88:1264–1267.[PubMed]
7. Crabbe P, Carbonara A, Heremans J. 1965. The normal human intestinal mucosa as a major source of plasma cells containing A-immunoglobulin. Lab Invest 14:235–248.[PubMed]
8. Brandtzaeg P, Prydz H. 1984. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311:71–73. [PubMed][CrossRef]
9. Johansen FE, Pekna M, Norderhaug IN, Haneberg B, Hietala MA, Krajci P, Betsholtz C, Brandtzaeg P. 1999. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 190:915–922. [PubMed][CrossRef]
10. Uren TK, Johansen FE, Wijburg OL, Koentgen F, Brandtzaeg P, Strugnell RA. 2003. Role of the polymeric Ig receptor in mucosal B cell homeostasis. J Immunol 170:2531–2539.[PubMed]
11. Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. 2002. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17:107–115. [PubMed][CrossRef]
12. Fagarasan S, Honjo T. 2003. Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3:63–72. [PubMed][CrossRef]
13. Burns JW, Siadat-Pajouh M, Krishnaney AA, Greenberg HB. 1996. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science 272:104–107. [PubMed][CrossRef]
14. Robinson JK, Blanchard TG, Levine AD, Emancipator SN, Lamm ME. 2001. A mucosal IgA-mediated excretory immune system in vivo. J Immunol 166:3688–3692.[PubMed]
15. Mowat AM. 2003. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341. [PubMed][CrossRef]
16. Nagler-Anderson C. 2001. Man the barrier! Strategic defences in the intestinal mucosa. Nat Rev Immunol 1:59–67. [PubMed][CrossRef]
17. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367. [PubMed][CrossRef]
18. Iwasaki A, Kelsall BL. 1999. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 190:229–239. [PubMed][CrossRef]
19. Iwasaki A, Kelsall BL. 2000. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J Exp Med 191:1381–1394. [PubMed][CrossRef]
20. Iwasaki A, Kelsall BL. 2001. Unique functions of CD11b+, CD8 alpha+, and double-negative Peyer's patch dendritic cells. J Immunol 166:4884–4890.[PubMed]
21. MacPherson GG, Liu LM. 1999. Dendritic cells and Langerhans cells in the uptake of mucosal antigens. Curr Top Microbiol Immunol 236:33–53.[PubMed]
22. Williamson E, Bilsborough JM, Viney JL. 2002. Regulation of mucosal dendritic cell function by receptor activator of NF-kappa B (RANK)/RANK ligand interactions: impact on tolerance induction. J Immunol 169:3606–3612.[PubMed]
23. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC. 1993. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74:185–195. [PubMed][CrossRef]
24. Bowman EP, Kuklin NA, Youngman KR, Lazarus NH, Kunkel EJ, Pan J, Greenberg HB, Butcher EC. 2002. The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells. J Exp Med 195:269–275. [PubMed][CrossRef]
25. Masopust D, Vezys V, Marzo AL, Lefrancois L. 2001. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291:2413–2417. [PubMed][CrossRef]
26. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. 2001. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410:101–105. [PubMed][CrossRef]
27. Kunkel EJ, Campbell JJ, Haraldsen G, Pan J, Boisvert J, Roberts AI, Ebert EC, Vierra MA, Goodman SB, Genovese MC, Wardlaw AJ, Greenberg HB, Parker CM, Butcher EC, Andrew DP, Agace WW. 2000. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med 192:761–768. [PubMed][CrossRef]
28. Papadakis KA, Prehn J, Nelson V, Cheng L, Binder SW, Ponath PD, Andrew DP, Targan SR. 2000. The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J Immunol 165:5069–5076.[PubMed]
29. Khoo UY, Proctor IE, Macpherson AJ. 1997. CD4+ T cell down-regulation in human intestinal mucosa: evidence for intestinal tolerance to luminal bacterial antigens. J Immunol 158:3626–3634.[PubMed]
30. Lefrancois L. 1991. Intraepithelial lymphocytes of the intestinal mucosa: curiouser and curiouser. Semin Immunol 3:99–108.[PubMed]
31. Guy-Grand D, Vassalli P. 2002. Gut intraepithelial lymphocyte development. Curr Opin Immunol 14:255–259. [PubMed][CrossRef]
32. Suzuki K, Oida T, Hamada H, Hitotsumatsu O, Watanabe M, Hibi T, Yamamoto H, Kubota E, Kaminogawa S, Ishikawa H. 2000. Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity 13:691–702. [PubMed][CrossRef]
33. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. [PubMed][CrossRef]
34. Robins-Browne RM, Hartland EL. 2002. Escherichia coli as a cause of diarrhea. J Gastroenterol Hepatol 17:467–475. [PubMed][CrossRef]
35. Hallman M, Ramet M, Ezekowitz RA. 2001. Toll-like receptors as sensors of pathogens. Pediatr Res 50:315–321. [PubMed][CrossRef]
36. Muzio M, Mantovani A. 2000. Toll-like receptors. Microbes Infect 2:251–255. [PubMed][CrossRef]
37. Plebani A, Mira E, Mevio E, Monafo V, Notarangelo LD, Avanzini A, Ugazio AG. 1983. IgM and IgD concentrations in the serum and secretions of children with selective IgA deficiency. Clin Exp Immunol 53:689–696.[PubMed]
38. Friman V, Nowrouzian F, Adlerberth I, Wold AE. 2002. Increased frequency of intestinal Escherichia coli carrying genes for S fimbriae and haemolysin in IgA-deficient individuals. Microb Pathog 32:35–42. [PubMed][CrossRef]
39. Johnson S, Hendson W, Crewe-Brown H, Dini L, Frean J, Perovic O, Vardas E. 2000. Effect of human immunodeficiency virus infection on episodes of diarrhea among children in South Africa. Pediatr Infect Dis J 19:972–979. [PubMed][CrossRef]
40. Morgan RL, Isaacson RE, Moon HW, Brinton CC, To CC. 1978. Immunization of suckling pigs against enterotoxigenic Escherichia coli-induced diarrheal disease by vaccinating dams with purified 987 or K99 pili: protection correlates with pilus homology of vaccine and challenge. Infect Immun 22:771–777.[PubMed]
41. Nagy B, Moon HW, Isaacson RE, To CC, Brinton CC. 1978. Immunization of suckling pigs against enteric enterotoxigenic Escherichia coli infection by vaccinating dams with purified pili. Infect Immun 21:269–274.[PubMed]
42. Hultgren SJ, Abraham S, Caparon M, Falk P, St Geme JW III, Normark S. 1993. Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73:887–901. [PubMed][CrossRef]
43. Hultgren SJ, Normark S, Abraham SN. 1991. Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45:383–415. [PubMed][CrossRef]
44. Lindberg F, Lund B, Johansson L, Normark S. 1987. Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature 328:84–87. [PubMed][CrossRef]
45. Beachey EH. 1981. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis 143:325–345.[PubMed]
46. Savarino SJ, Brown FM, Hall E, Bassily S, Youssef F, Wierzba T, Peruski L, El-Masry NA, Safwat M, Rao M, Jertborn M, Svennerholm AM, Lee YJ, Clemens JD. 1998. Safety and immunogenicity of an oral, killed enterotoxigenic Escherichia coli-cholera toxin B subunit vaccine in Egyptian adults. J Infect Dis 177:796–799. [PubMed][CrossRef]
47. Savarino SJ, Hall ER, Bassily S, Brown FM, Youssef F, Wierzba TF, Peruski L, El-Masry NA, Safwat M, Rao M, El Mohamady H, Abu-Elyazeed R, Naficy A, Svennerholm AM, Jertborn M, Lee YJ, Clemens JD. 1999. Oral, inactivated, whole cell enterotoxigenic Escherichia coli plus cholera toxin B subunit vaccine: results of the initial evaluation in children. PRIDE Study Group. J Infect Dis 179:107–114. [PubMed][CrossRef]
48. Savarino SJ, Hall ER, Bassily S, Wierzba TF, Youssef FG, Peruski LF Jr, Abu-Elyazeed R, Rao M, Francis WM, El Mohamady H, Safwat M, Naficy AB, Svennerholm AM, Jertborn M, Lee YJ, Clemens JD. 2002. Introductory evaluation of an oral, killed whole cell enterotoxigenic Escherichia coli plus cholera toxin B subunit vaccine in Egyptian infants. Pediatr Infect Dis J 21:322–330. [PubMed][CrossRef]
49. Eckmann L, Rudolf MT, Ptasznik A, Schultz C, Jiang T, Wolfson N, Tsien R, Fierer J, Shears SB, Kagnoff MF, Traynor-Kaplan AE. 1997. D-myo-Inositol 1,4,5,6-tetrakisphosphate produced in human intestinal epithelial cells in response to Salmonella invasion inhibits phosphoinositide 3-kinase signaling pathways. Proc Natl Acad Sci USA 94:14456–14460. [PubMed][CrossRef]
50. Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW. 1998. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA 95:14057–14059. [PubMed][CrossRef]
51. Wolf MK. 1997. Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxins of enterotoxigenic Escherichia coli. Clin Microbiol Rev 10:569–584.[PubMed]
52. Stoll BJ, Svennerholm AM, Gothefors L, Barua D, Huda S, Holmgren J. 1986. Local and systemic antibody responses to naturally acquired enterotoxigenic Escherichia coli diarrhea in an endemic area. J Infect Dis 153:527–534.[PubMed]
53. Ahren CM, Svennerholm AM. 1982. Synergistic protective effect of antibodies against Escherichia coli enterotoxin and colonization factor antigens. Infect Immun 38:74–79.[PubMed]
54. Evans DG, Graham DY, Evans DJ Jr. 1984. Administration of purified colonization factor antigens (CFA/I, CFA/II) of enterotoxigenic Escherichia coli to volunteers. Response to challenge with virulent enterotoxigenic Escherichia coli. Gastroenterology 87:934–940.[PubMed]
55. Qadri F, Ahmed T, Ahmed F, Bradley Sack R, Sack DA, Svennerholm AM. 2003. Safety and immunogenicity of an oral, inactivated enterotoxigenic Escherichia coli plus cholera toxin B subunit vaccine in Bangladeshi children 18–36 months of age. Vaccine 21:2394–2403. [PubMed][CrossRef]
56. Langermann S, Mollby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A, Strouse R, Schenerman MA, Hultgren SJ, Pinkner JS, Winberg J, Guldevall L, Soderhall M, Ishikawa K, Normark S, Koenig S. 2000. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181:774–778. [PubMed][CrossRef]
57. Dickinson BL, Badizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE, Blumberg RS, Lencer WI. 1999. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 104:903–911. [PubMed][CrossRef]
58. Spangler BD. 1992. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647.[PubMed]
59. de Aizpurua HJ, Russell-Jones GJ. 1988. Oral vaccination. Identification of classes of proteins that provoke an immune response upon oral feeding. J Exp Med 167:440–451. [PubMed][CrossRef]
60. Lycke N, Erlandsson L, Ekman L, Schon K, Leanderson T. 1999. Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J Immunol 163:913–919.[PubMed]
61. Tauschek M, Gorrell RJ, Strugnell RA, Robins-Browne RM. 2002. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci USA 99:7066–7071. [PubMed][CrossRef]
62. Scerpella EG, Sanchez JL, Mathewson IJ, Torres-Cordero JV, Sadoff JC, Svennerholm AM, DuPont HL, Taylor DN, Ericsson CD. 1995. Safety, immunogenicity, and protective efficacy of the whole-cell/recombinant B subunit (WC/rBS) oral cholera vaccine against travelers' diarrhea. J Travel Med 2:22–27. [PubMed][CrossRef]
63. Nair GB, Takeda Y. 1998. The heat-stable enterotoxins. Microb Pathog 24:123–31. [PubMed][CrossRef]
64. Frantz JC, Bhatnagar PK, Brown AL, Garrett LK, Hughes JL. 1987. Investigation of synthetic Escherichia coli heat-stable enterotoxin as an immunogen for swine and cattle. Infect Immun 55:1077–1084.[PubMed]
65. Klipstein FA, Engert RF, Clements JD. 1982. Development of a vaccine of cross-linked heat-stable and heat-labile enterotoxins that protects against Escherichia coli producing either enterotoxin. Infect Immun 37:550–557.[PubMed]
66. Pereira CM, Guth BE, Sbrogio-Almeida ME, Castilho BA. 2001. Antibody response against Escherichia coli heat-stable enterotoxin expressed as fusions to flagellin. Microbiology 147:861–867.[PubMed]
67. Perez-Schael I, Garcia D, Gonzalez M, Gonzalez R, Daoud N, Perez M, Cunto W, Kapikian AZ, Flores J. 1990. Prospective study of diarrheal diseases in Venezuelan children to evaluate the efficacy of rhesus rotavirus vaccine. J Med Virol 30:219–229. [PubMed][CrossRef]
68. Smith WE, Kane AV, Campbell ST, Acheson DW, Cochran BH, Thorpe CM. 2003. Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infect Immun 71:1497–1504. [PubMed][CrossRef]
69. Thorpe CM. 2004. Shiga toxin-producing Escherichia coli infection. Clin Infect Dis 38:1298–12303. [PubMed][CrossRef]
70. Bast DJ, Sandhu J, Hozumi N, Barber B, Brunton J. 1997. Murine antibody responses to the verotoxin 1 B subunit: demonstration of major histocompatibility complex dependence and an immunodominant epitope involving phenylalanine 30. Infect Immun 65:2978–2982.[PubMed]
71. Ishikawa S, Kawahara K, Kagami Y, Isshiki Y, Kaneko A, Matsui H, Okada N, Danbara H. 2003. Protection against Shiga toxin 1 challenge by immunization of mice with purified mutant Shiga toxin 1. Infect Immun 71:3235–3239. [PubMed][CrossRef]
72. Ludwig K, Karmali MA, Smith CR, Petric M. 2002. Cross-protection against challenge by intravenous Escherichia coli verocytotoxin 1 (VT1) in rabbits immunized with VT2 toxoid. Can J Microbiol 48:99–103. [PubMed][CrossRef]
73. Marcato P, Griener TP, Mulvey GL, Armstrong GD. 2005. Recombinant Shiga toxin B-subunit-keyhole limpet hemocyanin conjugate vaccine protects mice from Shigatoxemia. Infect Immun 73:6523–6529. [PubMed][CrossRef]
74. Wen SX, Teel LD, Judge NA, O'Brien AD. 2006. Genetic toxoids of Shiga toxin types 1 and 2 protect mice against homologous but not heterologous toxin challenge. Vaccine 24:1142–1148. [CrossRef]
75. Moxley RA. 2000. Edema disease. Vet Clin North Am Food Anim Pract 16:175–185.[PubMed]
76. Bosworth BT, Samuel JE, Moon HW, O'Brien AD, Gordon VM, Whipp SC. 1996. Vaccination with genetically modified Shiga-like toxin IIe prevents edema disease in swine. Infect Immun 64:55–60.[PubMed]
77. Makino S, Watarai M, Tabuchi H, Shirahata T, Furuoka H, Kobayashi Y, Takeda Y. 2001. Genetically modified Shiga toxin 2e (Stx2e) producing Escherichia coli is a vaccine candidate for porcine edema disease. Microb Pathog 31:1–8. [PubMed][CrossRef]
78. Ogushi K, Wada A, Niidome T, Mori N, Oishi K, Nagatake T, Takahashi A, Asakura H, Makino S, Hojo H, Nakahara Y, Ohsaki M, Hatakeyama T, Aoyagi H, Kurazono H, Moss J, Hirayama T. 2001. Salmonella enteritidis FliC (flagella filament protein) induces human beta-defensin-2 mRNA production by Caco-2 cells. J Biol Chem 276:30521–30526. [PubMed][CrossRef]
79. Bertschinger HU, Nief V, Tschape H. 2000. Active oral immunization of suckling piglets to prevent colonization after weaning by enterotoxigenic Escherichia coli with fimbriae F18. Vet Microbiol 71:255–267. [PubMed][CrossRef]
80. Bauer ME, Welch RA. 1996. Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7. Infect Immun 64:167–175.[PubMed]
81. Seetharama S, Cavalieri SJ, Snyder IS. 1988. Immune response to Escherichia coli alpha-hemolysin in patients. J Clin Microbiol 26:850–856.[PubMed]
82. O'Hanley P, Marcus R, Baek KH, Denich K, Ji GE. 1993. Genetic conservation of hlyA determinants and serological conservation of HlyA: basis for developing a broadly cross-reactive subunit Escherichia coli alpha-hemolysin vaccine. Infect Immun 61:1091–1097.[PubMed]
83. Donnenberg MS, Tacket CO, Losonsky G, Frankel G, Nataro JP, Dougan G, Levine MM. 1998. Effect of prior experimental human enteropathogenic Escherichia coli infection on illness following homologous and heterologous rechallenge. Infect Immun 66:52–58.[PubMed]
84. Carbonare CB, Carbonare SB, Carneiro-Sampaio MM. 2003. Early acquisition of serum and saliva antibodies reactive to enteropathogenic Escherichia coli virulence-associated proteins by infants living in an endemic area. Pediatr Allergy Immunol 14:222–228. [PubMed][CrossRef]
85. de Souza Campos Fernandes RC, Quintana Flores VM, Medina-Acosta E. 2002. Prevalent transfer of human colostral IgA antibody activity for the enteropathogenic Escherichia coli bundle-forming pilus structural repeating subunit A in neonates. Diagn Microbiol Infect Dis 44:331–336. [PubMed][CrossRef]
86. Delneri MT, Carbonare SB, Silva ML, Palmeira P, Carneiro-Sampaio MM. 1997. Inhibition of enteropathogenic Escherichia coli adhesion to HEp-2 cells by colostrum and milk from mothers delivering low-birth-weight neonates. Eur J Pediatr 156:493–498. [PubMed][CrossRef]
87. Luperchio SA, Schauer DB. 2001. Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect 3:333–340. [PubMed][CrossRef]
88. Bry L, Brenner MB. 2004. Critical role of T cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen. J Immunol 172:433–441.[PubMed]
89. Maaser C, Housley MP, Iimura M, Smith JR, Vallance BA, Finlay BB, Schreiber JR, Varki NM, Kagnoff MF, Eckmann L. 2004. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect Immun 72:3315–3324. [PubMed][CrossRef]
90. Simmons CP, Clare S, Ghaem-Maghami M, Uren TK, Rankin J, Huett A, Goldin R, Lewis DJ, MacDonald TT, Strugnell RA, Frankel G, Dougan G. 2003. Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun 71:5077–5086. [PubMed][CrossRef]
91. Bessesen MT, Wang E, Echeverria P, Blaser MJ. 1991. Enteroinvasive Escherichia coli: a cause of bacteremia in patients with AIDS. J Clin Microbiol 29:2675–2677.[PubMed]
92. Adams LM, Simmons CP, Rezmann L, Strugnell RA, Robins-Browne RM. 1997. Identification and characterization of a K88- and CS31A-like operon of a rabbit enteropathogenic Escherichia coli strain which encodes fimbriae involved in the colonization of rabbit intestine. Infect Immun 65:5222–5230.[PubMed]
93. Potter AA, Klashinsky S, Li Y, Frey E, Townsend H, Rogan D, Erickson G, Hinkley S, Klopfenstein T, Moxley RA, Smith DR, Finlay BB. 2004. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22:362–369. [PubMed][CrossRef]
94. Kotloff KL, Pasetti MF, Barry EM, Nataro JP, Wasserman SS, Sztein MB, Picking WD, Levine MM. 2004. Deletion in the Shigella Enterotoxin Genes Further Attenuates Shigella flexneri 2a Bearing Guanine Auxotrophy in a Phase 1 Trial of CVD 1204 and CVD 1208. J Infect Dis 190:1745–1754. [PubMed][CrossRef]
95. Passwell JH, Ashkenazi S, Harlev E, Miron D, Ramon R, Farzam N, Lerner-Geva L, Levi Y, Chu C, Shiloach J, Robbins JB, Schneerson R. 2003. Safety and immunogenicity of Shigella sonnei-CRM9 and Shigella flexneri type 2a-rEPAsucc conjugate vaccines in one- to four-year-old children. Pediatr Infect Dis J 22:701–706.[PubMed]
96. Hornick RB, Greisman SE, Woodward TE, DuPont HL, Dawkins AT, Snyder MJ. 1970. Typhoid fever: pathogenesis and immunologic control. N Engl J Med 283:686–691.[PubMed]
97. Blaser MJ, Newman LS. 1982. A review of human salmonellosis: I. Infective dose. Rev Infect Dis 4:1096–1106.[PubMed]
98. Hennessy TW, Hedberg CW, Slutsker L, White KE, Besser-Wiek JM, Moen ME, Feldman J, Coleman WW, Edmonson LM, MacDonald KL, Osterholm MT. 1996. A national outbreak of Salmonella enteritidis infections from ice cream. The Investigation Team. N Engl J Med 334:1281–1286. [PubMed][CrossRef]
99. Hohmann EL. 2001. Nontyphoidal salmonellosis. Clin Infect Dis 32:263–269. [PubMed][CrossRef]
100. Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M, Hogardt M, Pfeffer K, Russmann H, Hardt WD. 2003. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 71:2839–2858. [PubMed][CrossRef]
101. Bitar R, Tarpley J. 1985. Intestinal perforation in typhoid fever: a historical and state-of-the-art review. Rev Infect Dis 7:257–271.[PubMed]
102. Sprinz H, Gangarosa EJ, Williams M, Hornick RB, Woodward TE. 1966. Histopathology of the upper small intestines in typhoid fever. Biopsy study of experimental disease in man. Am J Dig Dis 11:615–624. [PubMed][CrossRef]
103. Eckmann L, Kagnoff MF. 2001. Cytokines in host defense against Salmonella. Microbes Infect 3:1191–1200. [PubMed][CrossRef]
104. Sharma A, Qadri A. 2004. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci USA 101:17492–17497. [PubMed][CrossRef]
105. Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A, Falkow S. 2000. Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J Exp Med 192:249–258. [PubMed][CrossRef]
106. Mastroeni P, Chabalgoity JA, Dunstan SJ, Maskell DJ, Dougan G. 2001. Salmonella: immune responses and vaccines. Vet J 161:132–164. [PubMed][CrossRef]
107. Dupont HL, Hornick RB, Snyder MJ, Dawkins AT, Heiner GG, Woodward TE. 1971. Studies of immunity in typhoid fever. Protection induced by killed oral antigens or by primary infection. Bull W H O 44:667–672.[PubMed]
108. Marmion DE, Naylor GR, Stewart IO. 1953. Second attacks of typhoid fever. J Hyg (Lond) 51:260–267. [PubMed][CrossRef]
109. House D, Wain J, Ho VA, Diep TS, Chinh NT, Bay PV, Vinh H, Duc M, Parry CM, Dougan G, White NJ, Hien TT, Farrar JJ. 2001. Serology of typhoid fever in an area of endemicity and its relevance to diagnosis. J Clin Microbiol 39:1002–1007. [PubMed][CrossRef]
110. Ortiz V, Isibasi A, Garcia-Ortigoza E, Kumate J. 1989. Immunoblot detection of class-specific humoral immune response to outer membrane proteins isolated from Salmonella typhi in humans with typhoid fever. J Clin Microbiol 27:1640–1645.[PubMed]
111. Sarasombath S, Banchuin N, Sukosol T, Rungpitarangsi B, Manasatit S. 1987. Systemic and intestinal immunities after natural typhoid infection. J Clin Microbiol 25:1088–1093.[PubMed]
112. Warren JW, Hornick RB. 1979. Immunization against typhoid fever. Annu Rev Med 30:457–472. [PubMed][CrossRef]
113. Levine MM, Ferreccio C, Black RE, Tacket CO, Germanier R. 1989. Progress in vaccines against typhoid fever. Rev Infect Dis 11(Suppl. 3):S552–S567.
114. Viret JF, Cryz S. 1995. Protective immunity iduced by typhoid fever and vaccination. Southeast Asian J Trop Med Public Health 26:150–159.
115. Dunstan SJ, Stephens HA, Blackwell JM, Duc CM, Lanh MN, Dudbridge F, Phuong CX, Luxemburger C, Wain J, Ho VA, Hien TT, Farrar J, Dougan G. 2001. Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam. J Infect Dis 183:261–268. [PubMed][CrossRef]
116. Crewe-Brown HH, Kartaedt AS, Saunders GL, Khoosal M, McCarthy K. 1998. Proceedings of 12th World AIDS Conference, June 28–July 3, 1998, Geneva, p 284.
117. Manfredi R, Chiodo F. 1999. Salmonella typhi disease in HIV-infected patients: case reports and literature review. Infez Med 7:49–53.[PubMed]
118. Altare F, Durandy A, Lammas D, Emile JF, Lamhamedi S, Le Deist F, Drysdale P, Jouanguy E, Doffinger R, Bernaudin F, Jeppsson O, Gollob JA, Meinl E, Segal AW, Fischer A, Kumararatne D, Casanova JL. 1998. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280:1432–1435. [PubMed][CrossRef]
119. de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, Kabel PJ, Draaisma JM, van Dissel JT, Kroon FP, Casanova JL, Ottenhoff TH. 1998. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280:1435–1438. [PubMed][CrossRef]
120. Galofre J, Moreno A, Mensa J, Miro JM, Gatell JM, et al. 1994. Analysis of factors influencing the outcome and development of septic metastasis or relapse in Salmonella bacteremia. Clin Infect Dis 18:873–878.[PubMed]
121. Gordon MA, Banda HT, Gondwe M, Gordon SB, Boeree MJ, Walsh AL, Corkill JE, Hart CA, Gilks CF, Molyneux ME. 2002. Non-typhoidal Salmonella bacteraemia among HIV-infected Malawian adults: high mortality and frequent recrudescence. AIDS 16:1633–1641. [PubMed][CrossRef]
122. Graham SM, Walsh AL, Molyneux EM, Phiri AJ, Molyneux ME. 2000. Clinical presentation of non-typhoidal Salmonella bacteraemia in Malawian children. Trans R Soc Trop Med Hyg 94:310–314. [PubMed][CrossRef]
123. Picard C, Fieschi C, Altare F, Al-Jumaah S, Al-Hajjar S, Feinberg J, Dupuis S, Soudais C, Al-Mohsen IZ, Genin E, Lammas D, Kumararatne DS, Leclerc T, Rafii A, Frayha H, Murugasu B, Wah LB, Sinniah R, Loubser M, Okamoto E, Al-Ghonaium A, Tufenkeji H, Abel L, Casanova JL. 2002. Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet 70:336–348. [PubMed][CrossRef]
124. Levine MM, Ferreccio C, Black RE, Germanier R. 1987. Large-scale field trial of Ty21a live oral typhoid vaccine in enteric-coated capsule formulation. Lancet 1:1049–1052. [PubMed][CrossRef]
125. Levine MM, Ferreccio C, Cryz S, Ortiz E. 1990. Comparison of enteric-coated capsules and liquid formulation of Ty21a typhoid vaccine in randomised controlled field trial. Lancet 336:891–884. [PubMed][CrossRef]
126. Wahdan MH, Serie C, Cerisier Y, Sallam S, Germanier R. 1982. A controlled field trial of live Salmonella typhi strain Ty 21a oral vaccine against typhoid: three-year results. J Infect Dis 145:292–295.[PubMed]
127. Simanjuntak CH, Paleologo FP, Punjabi NH, Darmowigoto R, Soeprawoto, Totosudirjo H, Haryanto P, Suprijanto E, Witham ND, Hoffman SL. 1991. Oral immunisation against typhoid fever in Indonesia with Ty21a vaccine. Lancet 338:1055–1059. [PubMed][CrossRef]
128. Viret JF, Favre D, Wegmuller B, Herzog C, Que JU, Cryz SJ Jr, Lang AB. 1999. Mucosal and systemic immune responses in humans after primary and booster immunizations with orally administered invasive and noninvasive live attenuated bacteria. Infect Immun 67:3680–3685.[PubMed]
129. Nisini R, Biselli R, Matricardi PM, Fattorossi A, D'Amelio R. 1993. Clinical and immunological response to typhoid vaccination with parenteral or oral vaccines in two groups of 30 recruits. Vaccine 11:582–586. [PubMed][CrossRef]
130. Forrest BD, LaBrooy JT, Beyer L, Dearlove CE, Shearman DJ. 1991. The human humoral immune response to Salmonella typhi Ty21a. J Infect Dis 163:336–345.[PubMed]
131. Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Nataro JP, Edelman R, Pickard D, Dougan G, Chatfield SN, Levine MM. 1997. Safety of live oral Salmonella typhi vaccine strains with deletions in htrA and aroC aroD and immune response in humans. Infect Immun 65:452–456.[PubMed]
132. Tacket CO, Sztein MB, Wasserman SS, Losonsky G, Kotloff KL, Wyant TL, Nataro JP, Edelman R, Perry J, Bedford P, Brown D, Chatfield S, Dougan G, Levine MM. 2000. Phase 2 clinical trial of attenuated Salmonella enterica serovar typhi oral live vector vaccine CVD 908-htrA in U.S. volunteers. Infect Immun 68:1196–1201. [PubMed][CrossRef]
133. Nardelli-Haefliger D, Kraehenbuhl JP, Curtiss R III, Schodel F, Potts A, Kelly S, De Grandi P. 1996. Oral and rectal immunization of adult female volunteers with a recombinant attenuated Salmonella typhi vaccine strain. Infect Immun 64:5219–5224.[PubMed]
134. Forrest BD. 1992. Impairment of immunogenicity of Salmonella typhi Ty21a due to preexisting cross-reacting intestinal antibodies. J Infect Dis 166:210–212.[PubMed]
135. Forrest BD, LaBrooy JT. 1993. Effect of parenteral immunization on the intestinal immune response to Salmonella typhi Ty21a as measured using peripheral blood lymphocytes. Vaccine 11:136–139. [PubMed][CrossRef]
136. Dietrich G, Griot-Wenk M, Metcalfe IC, Lang AB, Viret JF. 2003. Experience with registered mucosal vaccines. Vaccine 21:678–683. [PubMed][CrossRef]
137. Kollaritsch H, Cryz SJ Jr, Lang AB, Herzog C, Que JU, Wiedermann G. 2000. Local and systemic immune responses to combined vibrio cholerae CVD103-HgR and Salmonella typhi Ty21a live oral vaccines after primary immunization and reimmunization. Vaccine 18:3031–3039. [PubMed][CrossRef]
138. Fu G, Wijburg O, Cameron PU, Price JD, Strugnell R. 2005. Salmonella enterica serovar Typhimurium infection of dendritic cells leads to functionally increased expression of the macrophage-derived chemokine. Infect Immun 73:1714–1722. [PubMed][CrossRef]
139. Kantele A, Hakkinen M, Moldoveanu Z, Lu A, Savilahti E, Alvarez RD, Michalek S, Mestecky J. 1998. Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: evidence for compartmentalization within the common mucosal immune system in humans. Infect Immun 66:5630–5635.[PubMed]
140. Kantele A, Westerholm M, Kantele JM, Makela PH, Savilahti E. 1999. Homing potentials of circulating antibody-secreting cells after administration of oral or parenteral protein or polysaccharide vaccine in humans. Vaccine 17:229–236. [PubMed][CrossRef]
141. Lundin BS, Johansson C, Svennerholm AM. 2002. Oral immunization with a Salmonella enterica serovar Typhi vaccine induces specific circulating mucosa-homing CD4(+) and CD8(+) T cells in humans. Infect Immun 70:5622–5627. [PubMed][CrossRef]
142. Salerno-Goncalves R, Pasetti MF, Sztein MB. 2002. Characterization of CD8(+) effector T cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J Immunol 169:2196–2203.[PubMed]
143. Salerno-Goncalves R, Wyant TL, Pasetti MF, Fernandez-Vina M, Tacket CO, Levine MM, Sztein MB. 2003. Concomitant induction of CD4+ and CD8+ T cell responses in volunteers immunized with Salmonella enterica serovar typhi strain CVD 908-htrA. J Immunol 170:2734–2741.[PubMed]
144. Sztein MB, Wasserman SS, Tacket CO, Edelman R, Hone D, Lindberg AA, Levine MM. 1994. Cytokine production patterns and lymphoproliferative responses in volunteers orally immunized with attenuated vaccine strains of Salmonella typhi. J Infect Dis 170:1508–1517.[PubMed]
145. Tagliabue A, Villa L, Boraschi D, Peri G, de Gori V, Nencioni L. 1985. Natural anti-bacterial activity against Salmonella typhi by human T4+ lymphocytes armed with IgA antibodies. J Immunol 135:4178–4182.[PubMed]
146. Butler T, Knight J, Nath SK, Speelman P, Roy SK, Azad MA. 1985. Typhoid fever complicated by intestinal perforation: a persisting fatal disease requiring surgical management. Rev Infect Dis 7:244–256.[PubMed]
147. Everest P, Wain J, Roberts M, Rook G, Dougan G. 2001. The molecular mechanisms of severe typhoid fever. Trends Microbiol 9:316–320. [PubMed][CrossRef]
148. Nguyen QC, Everest P, Tran TK, House D, Murch S, Parry C, Connerton P, Phan VB, To SD, Mastroeni P, White NJ, Tran TH, Vo VH, Dougan G, Farrar JJ, Wain J. 2004. A clinical, microbiological, and pathological study of intestinal perforation associated with typhoid fever. Clin Infect Dis 39:61–67. [PubMed][CrossRef]
149. Plant J, Glynn AA. 1974. Natural resistance to Salmonella infection, delayed hypersensitivity and Ir genes in different strains of mice. Nature 248:345–347. [PubMed][CrossRef]
150. Vidal SM, Malo D, Vogan K, Skamene E, Gros P. 1993. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73:469–85. [CrossRef]
151. Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, Skamene E, Olivier M, Jothy S, Gros P. 1995. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182:655–666. [PubMed][CrossRef]
152. Dunstan SJ, Ho VA, Duc CM, Lanh MN, Phuong CX, Luxemburger C, Wain J, Dudbridge F, Peacock CS, House D, Parry C, Hien TT, Dougan G, Farrar J, Blackwell JM. 2001. Typhoid fever and genetic polymorphisms at the natural resistance-associated macrophage protein 1. J Infect Dis 183:1156–1160. [PubMed][CrossRef]
153. Galan JE, Curtiss R III. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86:6383–6387. [PubMed][CrossRef]
154. Jones BD, Falkow S. 1994. Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun 62:3745–3752.[PubMed]
155. Jones BD, Ghori N, Falkow S. 1994. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 180:15–23. [PubMed][CrossRef]
156. Takeuchi A. 1967. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50:109–136.[PubMed]
157. Vazquez-Torres A, Jones-Carson J, Baumler AJ, Falkow S, Valdivia R, Brown W, Le M, Berggren R, Parks WT, Fang FC. 1999. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401:804–808. [PubMed][CrossRef]
158. Hopkins SA, Kraehenbuhl JP. 1997. Dendritic cells of the murine Peyer's patches colocalize with Salmonella typhimurium avirulent mutants in the subepithelial dome. Adv Exp Med Biol 417:105–109.[PubMed]
159. Hopkins SA, Niedergang F, Corthesy-Theulaz IE, Kraehenbuhl JP. 2000. A recombinant Salmonella typhimurium vaccine strain is taken up and survives within murine Peyer's patch dendritic cells. Cell Microbiol 2:59–68. [PubMed][CrossRef]
160. Marriott I, Hammond TG, Thomas EK, Bost KL. 1999. Salmonella efficiently enter and survive within cultured CD11c+ dendritic cells initiating cytokine expression. Eur J Immunol 29:1107–1115. [PubMed][CrossRef]
161. Yrlid U, Svensson M, Kirby A, Wick MJ. 2001. Antigen-presenting cells and anti-Salmonella immunity. Microbes Infect 3:1239–1248. [PubMed][CrossRef]
162. Sierro F, Dubois B, Coste A, Kaiserlian D, Kraehenbuhl JP, Sirard JC. 2001. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci USA 98:13722–13727. [PubMed][CrossRef]
163. Cheminay C, Mohlenbrink A, Hensel M. 2005. Intracellular Salmonella inhibit antigen presentation by dendritic cells. J Immunol 174:2892–2899.[PubMed]
164. Tobar JA, Gonzalez PA, Kalergis AM. 2004. Salmonella escape from antigen presentation can be overcome by targeting bacteria to Fc gamma receptors on dendritic cells. J Immunol 173:4058–4065.[PubMed]
165. Hess J, Ladel C, Miko D, Kaufmann SH. 1996. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 156:3321–3326.[PubMed]
166. Mastroeni P, Menager N. 2003. Development of acquired immunity to Salmonella. J Med Microbiol 52:453–459. [PubMed][CrossRef]
167. Sinha K, Mastroeni P, Harrison J, de Hormaeche RD, Hormaeche CE. 1997. Salmonella typhimurium aroA, htrA, and aroD htrA mutants cause progressive infections in athymic (nu/nu) BALB/c mice. Infect Immun 65:1566–1569.[PubMed]
168. Weintraub BC, Eckmann L, Okamoto S, Hense M, Hedrick SM, Fierer J. 1997. Role of alphabeta and gammadelta T cells in the host response to Salmonella infection as demonstrated in T-cell-receptor-deficient mice of defined Ity genotypes. Infect Immun 65:2306–2312.[PubMed]
169. Bumann D. 2001. In vivo visualization of bacterial colonization, antigen expression, and specific T-cell induction following oral administration of live recombinant Salmonella enterica serovar Typhimurium. Infect Immun 69:4618–4626. [PubMed][CrossRef]
170. McSorley SJ, Asch S, Costalonga M, Reinhardt RL, Jenkins MK. 2002. Tracking Salmonella-specific CD4 T cells in vivo reveals a local mucosal response to a disseminated infection. Immunity 16:365–377. [PubMed][CrossRef]
171. George A. 1996. Generation of gamma interferon responses in murine Peyer's patches following oral immunization. Infect Immun 64:4606–4611.[PubMed]
172. Karem KL, Kanangat S, Rouse BT. 1996. Cytokine expression in the gut associated lymphoid tissue after oral administration of attenuated Salmonella vaccine strains. Vaccine 14:1495–1502. [PubMed][CrossRef]
173. VanCott JL, Staats HF, Pascual DW, Roberts M, Chatfield SN, Yamamoto M, Coste M, Carter PB, Kiyono H, McGhee JR. 1996. Regulation of mucosal and systemic antibody responses by T helper cell subsets, macrophages, and derived cytokines following oral immunization with live recombinant Salmonella. J Immunol 156:1504–1514.[PubMed]
174. Pascual DW, Hone DM, Hall S, van Ginkel FW, Yamamoto M, Walters N, Fujihashi K, Powell RJ, Wu S, Vancott JL, Kiyono H, McGhee JR. 1999. Expression of recombinant enterotoxigenic Escherichia coli colonization factor antigen I by Salmonella typhimurium elicits a biphasic T helper cell response. Infect Immun 67:6249–6256.[PubMed]
175. Dunstan SJ, Simmons CP, Strugnell RA. 1998. Comparison of the abilities of different attenuated Salmonella typhimurium strains to elicit humoral immune responses against a heterologous antigen. Infect Immun 66:732–740.[PubMed]
176. Medina E, Paglia P, Nikolaus T, Muller A, Hensel M, Guzman CA. 1999. Pathogenicity island 2 mutants of Salmonella typhimurium are efficient carriers for heterologous antigens and enable modulation of immune responses. Infect Immun 67:1093–1099.[PubMed]
177. VanCott JL, Chatfield SN, Roberts M, Hone DM, Hohmann EL, Pascual DW, Yamamoto M, Kiyono H, McGhee JR. 1998. Regulation of host immune responses by modification of Salmonella virulence genes. Nat Med 4:1247–1252. [PubMed][CrossRef]
178. Mittrucker HW, Kohler A, Kaufmann SH. 2002. Characterization of the murine T-lymphocyte response to Salmonella enterica serovar Typhimurium infection. Infect Immun 70:199–203. [PubMed][CrossRef]
179. Lillard JW Jr, Boyaka PN, Singh S, McGhee JR. 2001. Salmonella-mediated mucosal cell-mediated immunity. Cell Mol Biol (Noisy-le-Grand) 47:1115–1120.[PubMed]
180. Turner SJ, Carbone FR, Strugnell RA. 1993. Salmonella typhimurium delta aroA delta aroD mutants expressing a foreign recombinant protein induce specific major histocompatibility complex class I-restricted cytotoxic T lymphocytes in mice. Infect Immun 61:5374–5380.[PubMed]
181. Wijburg OL, Van Rooijen N, Strugnell RA. 2002. Induction of CD8+ T lymphocytes by Salmonella typhimurium is independent of Salmonella pathogenicity island 1-mediated host cell death. J Immunol 169:3275–3283.[PubMed]
182. Lo WF, Ong H, Metcalf ES, Soloski MJ. 1999. T cell responses to Gram-negative intracellular bacterial pathogens: a role for CD8+ T cells in immunity to Salmonella infection and the involvement of MHC class Ib molecules. J Immunol 162:5398–5406.[PubMed]
183. Pascual DW, White MD, Larson T, Walters N. 2001. Impaired mucosal immunity in L-selectin-deficient mice orally immunized with a Salmonella vaccine vector. J Immunol 167:407–415.[PubMed]
184. Allen JS, Dougan G, Strugnell RA. 2000. Kinetics of the mucosal antibody secreting cell response and evidence of specific lymphocyte migration to the lung after oral immunisation with attenuated S. enterica var typhimurium. FEMS Immunol Med Microbiol 27:275–281. [PubMed][CrossRef]
185. Uren TK, Wijburg OL, Simmons C, Johansen FE, Brandtzaeg P, Strugnell RA. 2005. Vaccine-induced protection against gastrointestinal bacterial infections in the absence of secretory antibodies. Eur J Immunol 35:180–188. [PubMed][CrossRef]
186. Michetti P, Porta N, Mahan MJ, Slauch JM, Mekalanos JJ, Blum AL, Kraehenbuhl JP, Neutra MR. 1994. Monoclonal immunoglobulin A prevents adherence and invasion of polarized epithelial cell monolayers by Salmonella typhimurium. Gastroenterology 107:915–923.[PubMed]
187. Michetti P, Mahan MJ, Slauch JM, Mekalanos JJ, Neutra MR. 1992. Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect Immun 60:1786–1792.[PubMed]
188. Wijburg OL, Uren TK, Simpfendorfer K, Johansen FE, Brandtzaeg P, Strugnell RA. 2006. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J Exp Med 203:21–26. [PubMed][CrossRef]
189. Kaul MN, Misra RC, Agarwal SK, Saha K. 1980. Decreased gut-associated IgA levels in patients with typhoid fever. Scand J Immunol 11:623–628. [PubMed][CrossRef]
190. Hurley BP, McCormick BA. 2003. Translating tissue culture results into animal models: the case of Salmonella typhimurium. Trends Microbiol 11:562–569. [PubMed][CrossRef]
191. Ohl ME, Miller SI. 2001. Salmonella: a model for bacterial pathogenesis. Annu Rev Med 52:259–274. [PubMed][CrossRef]
192. Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Baumler AJ. 2001. Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 3:1335–1344. [PubMed][CrossRef]
193. Wallis TS, Galyov EE. 2000. Molecular basis of Salmonella-induced enteritis. Mol Microbiol 36:997–1005. [PubMed][CrossRef]
194. Galyov EE, Wood MW, Rosqvist R, Mullan PB, Watson PR, Hedges S, Wallis TS. 1997. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol 25:903–912. [PubMed][CrossRef]
195. McCormick BA, Parkos CA, Colgan SP, Carnes DK, Madara JL. 1998. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol 160:455–466.[PubMed]
196. Hindle Z, Chatfield SN, Phillimore J, Bentley M, Johnson J, Cosgrove CA, Ghaem-Maghami M, Sexton A, Khan M, Brennan FR, Everest P, Wu T, Pickard D, Holden DW, Dougan G, Griffin GE, House D, Santangelo JD, Khan SA, Shea JE, Feldman RG, Lewis DJ. 2002. Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun 70:3457–3467. [PubMed][CrossRef]
ecosalplus.8.8.12.citations
ecosalplus/2/1
content/journal/ecosalplus/10.1128/ecosalplus.8.8.12
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.8.12
2006-06-06
2017-03-30

Abstract:

The best-characterized mucosa-associated lymphoid tissue (MALT), and also the most relevant for this review, is the gastrointestinal-associated lymphoid tissue (GALT). The review reviews our understanding of the importance of mucosal immune responses in resisting infections caused by and spp. It focuses on the major human infections and discusses whether antigen-specific mucosal immune responses are important for resistance against primary infection or reinfection by pathogenic . It analyzes human data on mucosal immunity against , a growing body of data of mucosal responses in food production animals and other natural hosts of , and more recent experimental studies in mice carrying defined deletions in genes encoding specific immunological effectors, to show that there may be considerable conservation of the effective host mucosal immune response against this pathogen. The species contains a number of serovars that include pathogens of both humans and animals; these bacteria are frequently host specific and may cause different diseases in different hosts. Ingestion of various serovars, such as Typhimurium, results in localized infections of the small intestine leading to gastroenteritis in humans, whereas ingestion of serovar Typhi results in systemic infection and enteric fever. Serovar Typhi infects only humans, and the review discusses the mucosal immune responses against serovar Typhi, focusing on the responses in humans and in the mouse typhoid fever model.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Dimeric IgA produced by plasma cells in the lamina propria binds to the pIgR receptor on the basolateral side of epithelial cells (). Following endocytosis and transcytosis of the IgA/pIgR complex to the luminal side of the epithelial cell (), the receptor is cleaved, releasing SIgA (). SIgA may protect the mucosal surfaces by several mechanisms: inhibition of adhesion and/or invasion by pathogens (), neutralization of pathogens intracellularly following fusion of endosomes (), and elimination of antigens from the lamina propria ().

O. Wijburg and R. Strugnell.

Citation: Wijburg O, Strugnell R. 2006. Mucosal Immune Responses to and Infections, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The mucosal tissues of the gastrointestinal tract can be divided into inductive sites (Peyer’s patches [PP], mesenteric lymph nodes [MLN], and isolated lymphoid follicles [ILF]) and effector sites (lamina propria). Among the follicle-associated epithelium (FAE) overlying the PP are the M cells, which are responsible for the uptake of antigens. In the subepithelial dome (SED), macrophages (MΦ), several subpopulations of dendritic cells (DC) and T and B lymphocytes can be found. The dendritic cells may take up antigens passed on by M cells, epithelial cells, or sampled directly from the intestinal lumen, and may present these antigens to lymphocytes in the follicles and/or the mesenteric lymph nodes. Activated lymphocytes migrate via the lymphatics and the bloodstream back to the lamina propria, where activated B cells will further mature into antibody-secreting plasma cells (P). In addition, dendritic cells, macrophages, eosinophils (E), and T lymphocytes can be found in the lamina propria, and intraepithelial lymphocytes (IEL) are found between the columnar epithelial cells.

O. Wijburg and R. Strugnell.

Citation: Wijburg O, Strugnell R. 2006. Mucosal Immune Responses to and Infections, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The absorptive epithelium of the intestine is polarized whereby the cells differentiate apical and basolateral surfaces. The apical surface is covered by a brush border of microvilli that increase the surface area of the cell available for nutrient uptake. Three basic pathogenic processes lead to pathology in infections: (i) apical adherence by bacteria and release of exotoxins (mediated by type II secretion), (ii) attaching/effacing lesions mediated by type III secretion system effectors, and (iii) bacterial invasion into the epithelium.

O. Wijburg and R. Strugnell.

Citation: Wijburg O, Strugnell R. 2006. Mucosal Immune Responses to and Infections, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Groups of five C57BL/6 (?) and pIgR (○ mice were orally immunized with 10 μg of CT on days 0, 10, and 20. On day 27, serum and fecal samples were collected and analyzed for CT-specific IgA (A), IgG (B), and IgM (C) antibodies. The detection limit of the ELISA is indicated by the dotted line. The response of individual mice as well as the mean response from each group (horizontal bar) is presented. (D) Level of protection after oral challenge of immunized mice with 30 μg of CT on day 27 after immunization. In these experiments, mice were euthanized and weighed 6 h after challenge. The entire intestine was removed and also weighed. The degree of protection was determined by the level of fluid accumulation in the intestine, reflected by the weight of the intestine including contents. A ratio was assigned to express the level of protection, calculated as follows: ratio = intestine weight / (total body weight − intestine weight). The black line indicates the intestinal ratio in normal mice. Presented are means ± SD. *, < 0.05; **, < 0.001. These experiments were performed by Dr. T. Uren (Ph.D. thesis, The University of Melbourne, 2002).

T. K. Uren, Ph.D. thesis, The University of Melbourne, 2002.

Citation: Wijburg O, Strugnell R. 2006. Mucosal Immune Responses to and Infections, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.12
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

pathotypes and typical lesions

Citation: Wijburg O, Strugnell R. 2006. Mucosal Immune Responses to and Infections, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.12
Generic image for table
Table 2

Ligands for toll-like receptor ligands in

Citation: Wijburg O, Strugnell R. 2006. Mucosal Immune Responses to and Infections, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.12
Generic image for table
Table 3

Efficacy of a live oral vaccine (Ty21a) against typhoid fever

Citation: Wijburg O, Strugnell R. 2006. Mucosal Immune Responses to and Infections, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.12

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error