1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

as an Inducer of Autoimmunity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Mark J. Soloski1, and Eleanor S. Metcalf2
  • Editor: Michael S. Donnenberg3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Rheumatology, Department of Medicine, and The Graduate Program in Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, and Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; 2: Division of Rheumatology, Department of Medicine, and The Graduate Program in Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, and Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; 3: University of Maryland, School of Medicine, Baltimore, MD
  • Received 20 September 2006 Accepted 12 December 2006 Published 19 April 2007
  • Address correspondence to Mark J. Soloski mski@jhmi.edu.
image of <span class="jp-italic">Salmonella</span> as an Inducer of Autoimmunity
    Preview this reference work article:
    Zoom in
    Zoomout

    as an Inducer of Autoimmunity, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/2/8_8_13_module-1.gif /docserver/preview/fulltext/ecosalplus/2/2/8_8_13_module-2.gif
  • Abstract:

    A clear etiological link has been established between infection with several gram-negative enteric pathogens, including spp., and the incidence of reactive arthritis (ReA), an autoimmune disease that largely affects the joints. ReA is sometimes referred to as Reiter's syndrome, particularly when accompanied by uveitis and urethritis. This review reviews the evidence etiologically linking infection with autoimmune disease and addresses the roles that bacterial and host elements play in controlling disease outcome. ReA is an autoimmune disease that largely consists of painful joint inflammation but also can include inflammation of the eye, gastrointestinal tract, and skin. ReA is a member of a broad spectrum of chronic inflammatory disorders termed the seronegative spondyloarthropathies (SNSpAs) that includes ankylosing spondylitis (AS), psoriatic arthritis, and enteropathic arthritis. species, as well as other enteric pathogens associated with postgastroenteritis ReA, are facultative intracellular gram-negative bacteria. Many studies have analyzed the association of the HLA class I molecule, HLA-B27, with SNSpAs. Whereas B27 has been shown to be present in 90 to 95% of cases of AS, the association of the B27 haplotype with other SNSpAs is more tenuous. The clear association between ReA and infection with or other gram-negative enteric pathogens has led to the suggestion that the adaptive immune response to infection has an autoimmune component. In addition to various species, other gram-negative enteric pathogens have been linked to the development of ReA. Given their close relationship to , this review considers the involvement of species in ReA.

  • Citation: Soloski M, Metcalf E. 2007. as an Inducer of Autoimmunity, EcoSal Plus 2007; doi:10.1128/ecosalplus.8.8.13

Key Concept Ranking

Tumor Necrosis Factor alpha
0.46330473
Leukocyte IG-Like Receptors
0.36073333
Salmonella enterica
0.34747857
0.46330473

References

1. El-Gabalawy H, Lipsky PE. 2003. Reactive arthritis: etiology and pathogenesis, p 1225–1232. In Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, and Weisman MH (ed), Rheumatology, 3rd ed., vol. 2. Mosby, New York, NY.
2. Sieper J. 2004. Disease mechanisms in reactive arthritis. Curr Rheumatol Rep 6:110–116. [PubMed][CrossRef]
3. Ebringer A. 1989. The relationship between Klebsiella infection and ankylosing spondylitis. Baillieres Clin Rheumatol 3:321–338. [PubMed][CrossRef]
4. Sibilia J, Limbach FX. 2002. Reactive arthritis or chronic infectious arthritis? Ann. Rheum Dis 61:580–587. [PubMed][CrossRef]
5. Laasila K, Leirisalo-Repo M. 1999. Recurrent reactive arthritis associated with urinary tract infection by Escherichia coli. J Rheumatol 26:2277–2279.[PubMed]
6. Locht H, Krogfelt KA. 2002. Comparison of rheumatological and gastrointestinal symptoms after infection with Campylobacter jejuni/coli and enterotoxigenic Escherichia coli. Ann Rheum Dis 61:448–452. [PubMed][CrossRef]
7. Bengtsson E, Hedlund P, Nisell A, Nordenstam H. 1955. An epidemic due to Salmonella typhimurium (Breslau) occurring in Sweden in 1953. Acta Med Scand 53:1–20.
8. Dworkin MS, Shoemaker PC, Goldoft MJ, Kobayashi JM. 2001. Reactive arthritis and Reiter's syndrome following an outbreak of gastroenteritis caused by Salmonella Enteritidis. Clin Infect Dis 33:1010–1014. [PubMed][CrossRef]
9. Hannu T, Mattila L, Siitonen A, Leirisalo-Repo M. 2002. Reactive arthritis following an outbreak of Salmonella Typhimurium phage type 193 infection. Ann Rheum Dis 61:264–266. [PubMed][CrossRef]
10. Hill Gaston JS, Lillicrap MS. 2003. Arthritis associated with enteric infection. Best Pract Res Clin Rheumatol 17:219–239. [PubMed][CrossRef]
11. Leirisalo-Repo M, Hannu T, Mattila L. 2003. Microbial factors in spondyloarthropathies: insights from population studies. Curr Opin Rheumatol 15:408–412. [PubMed][CrossRef]
12. Locht H, Kihlstrom E, Lindstrom FD. 1993. Reactive arthritis after Salmonella among medical doctors—study of an outbreak. J Rheumatol 20:845–848.[PubMed]
13. Locht H, Molbak K, Krogfelt KA. 2002. High frequency of reactive joint symptoms after an outbreak of Salmonella enteritis. J Rheumatol 29:767–771.[PubMed]
14. Thomson GT, DeRubeis DA, Hodge MA, Rajanayagam C, Inman RD. 1995. Post-Salmonella reactive arthritis: late clinical sequelae in a point source cohort. Am J Med 98:13–21. [PubMed][CrossRef]
15. Inman RD, Johnston ME, Hodge M, Falk J, Helewa A. 1988. Postdysenteric reactive arthritis. A clinical and immunogenetic study following an outbreak of salmonellosis. Arthritis Rheum 31:1377–1383. [PubMed][CrossRef]
16. Flores D, Marquez J, Garza M, Espinoza LR. 2003. Reactive arthritis: newer developments. Rheum Dis Clin North Am 29:37–59, vi. [PubMed][CrossRef]
17. Miller SI, Hohmann EL, Pegues DA. 1995. Salmonella: including Salmonella typhi. In G. L. Mandell, H. E. Bennett, and R. Dolin (ed), Principles and Practice of Infectious Diseases. Raven Press, New York, NY.
18. Hornick R. 1995. Enteric Fever. Raven Press, New York, NY.
19. Carter PB, Collins FM. 1974. The route of enteric infection in normal mice. J Exp Med 139:1189–1203. [PubMed][CrossRef]
20. Ohl ME, Miller SI. 2001. Salmonella: a model for bacterial pathogenesis. Annu Rev Med 52:259–274. [PubMed][CrossRef]
21. Rescigno M. 2002. Dendritic cells and the complexity of microbial infection. Trends Microbiol 10:425–461. [PubMed][CrossRef]
22. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367. [PubMed][CrossRef]
23. Vazquez-Torres A, Jones-Carson J, Baumler AJ, Falkow S, Valdivia R, Brown W, Le M, Berggren R, Parks WT, Fang FC. 1999. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401:804–808. [PubMed][CrossRef]
24. Monack DM, Bouley DM, Falkow S. 2004. Salmonella Typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 199:231–241. [PubMed][CrossRef]
25. Monack DM, Mueller A, Falkow S. 2004. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2:747–765. [PubMed][CrossRef]
26. Anderson G. 1936. Typhoid carriers. A study of their disease-producing potentialities over a series of years as indicated by a study of cases. Am J Public Health 26:396–405. [CrossRef]
27. Macpherson AJ, Uhr T. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665. [PubMed][CrossRef]
28. O'Callaghan D, Maskell D, Liew FY, Easmon CS, Dougan G. 1988. Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect Immun 56:419–423.[PubMed]
29. Stocker BA. 2000. Aromatic-dependent Salmonella as anti-bacterial vaccines and as presenters of heterologous antigens or of DNA encoding them. J Biotechnol 83:45–50. [PubMed][CrossRef]
30. Yamamoto T, Sashinami H, Takaya A, Tomoyasu T, Matsui H, Kikuchi Y, Hanawa T, Kamiya S, Nakane A. 2001. Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect Immun 69:3164–3174. [PubMed][CrossRef]
31. Clements MO, Eriksson S, Thompson A, Lucchini S, Hinton JC, Normark S, Rhen M. 2002. Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica. Proc Natl Acad Sci USA 99:8784–8789. [PubMed][CrossRef]
32. Sukupolvi S, Edelstein A, Rhen M, Normark SJ, Pfeifer JD. 1997. Development of a murine model of chronic Salmonella infection. Infect Immun 65:838–842.[PubMed]
33. Barza M. 2002. Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals. Clin Infect Dis 34(Suppl. 3):S123–S125. [CrossRef]
34. Blake DP, Hillman K, Fenlon DR, Low JC. 2003. Transfer of antibiotic resistance between commensal and pathogenic members of the Enterobacteriaceae under ileal conditions. J Appl Microbiol 95:428–436. [PubMed][CrossRef]
35. Travers K, Barza M. 2002. Morbidity of infections caused by antimicrobial-resistant bacteria. Clin Infect Dis 34(Suppl 3.):S131–S134. [CrossRef]
36. Granfors K, Jalkanen S, Lindberg AA, Maki-Ikola O, von Essen R, Lahesmaa-Rantala R, Isomaki H, Saario R, Arnold WJ, Toivanen A. 1990. Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet 335:685–688. [PubMed][CrossRef]
37. Deng GM, Nilsson IM, Verdrengh M, Collins LV, Tarkowski A. 1999. Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat Med 5:702–705. [PubMed][CrossRef]
38. Zeuner RA, Verthelyi D, Gursel M, Ishii KJ, Klinman DM. 2003. Influence of stimulatory and suppressive DNA motifs on host susceptibility to inflammatory arthritis. Arthritis Rheum 48:1701–1707. [PubMed][CrossRef]
39. Gaston JS, Cox C, Granfors K. 1999. Clinical and experimental evidence for persistent Yersinia infection in reactive arthritis. Arthritis Rheum 42:2239–2242. [PubMed][CrossRef]
40. Salmi M, Jalkanen S. 2001. Human leukocyte subpopulations from inflamed gut bind to joint vasculature using distinct sets of adhesion molecules. J Immunol 166:4650–4657.[PubMed]
41. Inman RD, Payne U. 2003. Determinants of synoviocyte clearance of arthritogenic bacteria. J Rheumatol 30:1291–1297.[PubMed]
42. Meyer-Bahlburg A, Brinkhoff J, Krenn V, Trebesius K, Heesemann J, Huppertz HI. 2001. Infection of synovial fibroblasts in culture by Yersinia enterocolitica and Salmonella enterica serovar Enteritidis: ultrastructural investigation with respect to the pathogenesis of reactive arthritis. Infect Immun 69:7915–7921. [PubMed][CrossRef]
43. Cano DA, Martinez-Moya M, Pucciarelli MG, Groisman EA, Casadesus J, Garcia-del Portillo F. 2001. Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect Immun 69:6463–6474. [PubMed][CrossRef]
44. Martinez-Moya M, de Pedro MA, Schwarz H, Garcia-del Portillo F. 1998. Inhibition of Salmonella intracellular proliferation by non-phagocytic eucaryotic cells. Res Microbiol 149:309–318. [PubMed][CrossRef]
45. Cano DA, Pucciarelli MG, Martinez-Moya M, Casadesus J, Garcia-del Portillo F. 2003. Selection of small-colony variants of Salmonella enterica serovar Typhimurium in nonphagocytic eucaryotic cells. Infect Immun 71:3690–3698. [PubMed][CrossRef]
46. Young D, Hussell T, Dougan G. 2002. Chronic bacterial infections: living with unwanted guests. Nat Immunol 3:1026–1032. [PubMed][CrossRef]
47. Brewerton DA, Caffrey M, Nicholls A, Walters D, Oates JK, James DC. 1973. Reiter's disease and HL-A 27. Lancet ii:996–998. [CrossRef]
48. Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DC, Sturrock RD. 1973. Ankylosing spondylitis and HL-A 27. Lancet i:904–907. [CrossRef]
49. Penttinen MA, Ekman P, Granfors K. 2004. Non-antigen-presenting effects of HLA-B27. Curr Mol Med 4:41–49. [PubMed][CrossRef]
50. Leirisalo-Repo M, Helenius P, Hannu T, Lehtinen A, Kreula J, Taavitsainen M, Koskimies S. 1997. Long-term prognosis of reactive Salmonella arthritis. Ann Rheum Dis 56:516–520. [PubMed][CrossRef]
51. Hakansson U, Eitrem R, Low B, Winblad S. 1976. HLA-antigen b27 in cases with joint affections in an outbreak of salmonellosis. Scand J Infect Dis 8:245–248.[PubMed]
52. Samuel MP, Zwillich SH, Thomson GT, Alfa M, Orr KB, Brittain DC, Miller JR, Phillips PE. 1995. Fast food arthritis—a clinico-pathologic study of post-Salmonella reactive arthritis. J Rheumatol 22:1947–1952.[PubMed]
53. Ekman P, Kirveskari J, Granfors K. 2000. Modification of disease outcome in Salmonella-infected patients by HLA-B27. Arthritis Rheum 43:1527–1534. [PubMed][CrossRef]
54. Laivoranta S, Ilonen J, Tuokko J, Luukkainen R, Toivanen A. 1995. HLA frequencies in HLA-B27 negative patients with reactive arthritis. Clin Exp Rheumatol 13:637–640.[PubMed]
55. Tuokko J, Reijonen H, Ilonen J, Anttila K, Nikkari S, Mottonen T, Yli-Kerttula U, Toivanen A. 1997. Increase of HLA-DRB1*0408 and -DQB1*0301 in HLA-B27 positive reactive arthritis. Ann Rheum Dis 56:37–40. [PubMed][CrossRef]
56. Ortiz-Alvarez O, Yu DT, Petty RE, Finlay BB. 1998. HLA-B27 does not affect invasion of arthritogenic bacteria into human cells. J Rheumatol 25:1765–1771.[PubMed]
57. Saarinen M, Ekman P, Ikeda M, Virtala M, Gronberg A, Yu DT, Arvilommi H, Granfors K. 2002. Invasion of Salmonella into human intestinal epithelial cells is modulated by HLA-B27. Rheumatology (Oxford) 41:651–657. [CrossRef]
58. Ikawa T, Ikeda M, Yamaguchi A, Tsai WC, Tamura N, Seta N, Trucksess M, Raybourne RB, Yu DT. 1998. Expression of arthritis-causing HLA-B27 on Hela cells promotes induction of c-fos in response to in vitro invasion by Salmonella typhimurium. J Clin Investig 101:263–272. [PubMed][CrossRef]
59. Huppertz HI, Heesemann J. 1997. Invasion and persistence of Salmonella in human fibroblasts positive or negative for endogenous HLA B27. Ann Rheum Dis 56:671–676. [PubMed][CrossRef]
60. Laitio P, Virtala M, Salmi M, Pelliniemi LJ, Yu DT, Granfors K. 1997. HLA-B27 modulates intracellular survival of Salmonella enteritidis in human monocytic cells. Eur J Immunol 27:1331–1338. [PubMed][CrossRef]
61. Kapasi K, Inman RD. 1992. HLA-B27 expression modulates gram-negative bacterial invasion into transfected L cells. J Immunol 148:3554–3559.[PubMed]
62. Ekman P, Saarinen M, He Q, Gripenberg-Lerche C, Gronberg A, Arvilommi H, Granfors K. 2002. HLA-B27-transfected (Salmonella-permissive) and HLA-A2-transfected (Salmonella-nonpermissive) human monocytic U937 cells differ in their production of cytokines. Infect Immun 70:1609–1614. [PubMed][CrossRef]
63. Khan MA. 2002. Update on spondyloarthropathies. Ann Intern Med 136:896–907.[PubMed]
64. Penttinen MA, Holmberg CI, Sistonen L, Granfors K. 2002. HLA-B27 modulates nuclear factor kappaB activation in human monocytic cells exposed to lipopolysaccharide. Arthritis Rheum 46:2172–2180. [PubMed][CrossRef]
65. Butrimiene I, Jarmalaite S, Ranceva J, Venalis A, Jasiuleviciute L, Zvirbliene A. 2004. Different cytokine profiles in patients with chronic and acute reactive arthritis. Rheumatology (Oxford) 43:1300–1304. [CrossRef]
66. Kirveskari J, He Q, Leirisalo-Repo M, Maki-Ikola O, Wuorela M, Putto-Laurila A, Granfors K. 1999. Enterobacterial infection modulates major histocompatibility complex class I expression on mononuclear cells. Immunology 97:420–428. [PubMed][CrossRef]
67. Sinha R, Aggarwal A, Prasad K, Misra R. 2003. Sporadic enteric reactive arthritis and undifferentiated spondyloarthropathy: evidence for involvement of Salmonella typhimurium. J Rheumatol 30:105–113.[PubMed]
68. Goedecke V, Crane AM, Jaakkola E, Kaluza W, Laiho K, Weeks DE, Wilson J, Kauppi M, Kaarela K, Tuomilehto J, Wordsworth BP, Brown MA. 2003. Interleukin 10 polymorphisms in ankylosing spondylitis. Genes Immun 4:74–76. [PubMed][CrossRef]
69. Kaluza W, Leirisalo-Repo M, Marker-Hermann E, Westman P, Reuss E, Hug R, Mastrovic K, Stradmann-Bellinghausen B, Granfors K, Galle PR, Hohler T. 2001. IL10.G microsatellites mark promoter haplotypes associated with protection against the development of reactive arthritis in Finnish patients. Arthritis Rheum 44:1209–1214. [PubMed][CrossRef]
70. Lundin BS, Johansson C, Svennerholm AM. 2002. Oral immunization with a Salmonella enterica serovar Typhi vaccine induces specific circulating mucosa-homing CD4+ and CD8+ T cells in humans. Infect Immun 70:5622–5627. [PubMed][CrossRef]
71. Salerno-Goncalves R, Pasetti MF, Sztein MB. 2002. Characterization of CD8(+) effector T cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J Immunol 169:2196–2203.[PubMed]
72. Salerno-Goncalves R, Wyant TL, Pasetti MF, Fernandez-Vina M, Tacket CO, Levine MM, Sztein MB. 2003. Concomitant induction of CD4+ and CD8+ T cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain CVD 908-htrA. J Immunol 170:2734–2741.[PubMed]
73. Sztein MB, Tanner MK, Polotsky Y, Orenstein JM, Levine MM. 1995. Cytotoxic T lymphocytes after oral immunization with attenuated vaccine strains of Salmonella typhi in humans. J Immunol 155:3987–3993.[PubMed]
74. Hess J, Ladel C, Miko D, Kaufmann SH. 1996. Salmonella typhimurium aroA infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 156:3321–3326.[PubMed]
75. Lo W-F, Woods A, Cotter R, DeCloux A, Metcalf ES, Soloski MJ. 2000. Molecular mimicry mediated by MHC class Ib molecules following infection with gram-negative pathogens. Nat Med 6:215–218. [PubMed][CrossRef]
76. Lo WF, Ong H, Metcalf ES, Soloski MJ. 1999. T cell responses to Gram-negative intracellular bacterial pathogens: a role for CD8+ T cells in immunity to Salmonella infection and the involvement of MHC class Ib molecules. J Immunol 162:5398–5406.[PubMed]
77. McSorley SJ, Cookson BT, Jenkins MK. 2000. Characterization of CD4+ T cell responses during natural infection with Salmonella typhimurium. J Immunol 164:986–993.[PubMed]
78. Soloski MJ, Metcalf ES. 2001. The involvement of class Ib molecules in the host response to infection with Salmonella and its relevance to autoimmunity. Microbes Infect 3:1249–1259. [PubMed][CrossRef]
79. Kirveskari J, He Q, Holmstrom T, Leirisalo-Repo M, Wuorela M, Mertsola J, Granfors K. 1999. Modulation of peripheral blood mononuclear cell activation status during Salmonella-triggered reactive arthritis. Arthritis Rheum 42:2045–2054. [PubMed][CrossRef]
80. Kuuliala A, Takala A, Siitonen S, Leirisalo-Repo M, Repo H. 2004. Cellular and humoral markers of systemic inflammation in acute reactive arthritis and early rheumatoid arthritis. Scand J Rheumatol 33:13–18. [PubMed][CrossRef]
81. Konttinen YT, Nordstrom D, Bergroth V, Leirisalo-Repo M, Skrifvars B. 1986. Cell-mediated immune response in the diseased joints in patients with reactive arthritis. Scand J Immunol 23:685–691. [PubMed][CrossRef]
82. Hermann E, Mayet WJ, Poralla T, Meyer zum Buschenfelde KH, Fleischer B. 1990. Salmonella-reactive synovial fluid T-cell clones in a patient with post-infectious Salmonella arthritis. Scand J Rheumatol 19:350–355. [PubMed][CrossRef]
83. Appel H, Rudwaleit M, Wu P, Grolms M, Sieper J, Mertz A. 2002. Synovial T cell proliferation to the Yersinia enterocolitica 19 kDa antigen differentiates Yersinia triggered reactive arthritis (ReA) from ReA triggered by other enterobacteria. Ann Rheum Dis 61:566–567. [PubMed][CrossRef]
84. Hermann E, Lohse AW, Van der Zee R, Van EW, Mayet WJ, Probst P, Poralla T, Meyer zum Buschenfelde K-H, Fleischer B. 1991. Synovial fluid-derived Yersinia-reactive T cells responding to human 65-kDa heat-shock protein and heat-stressed antigen-presenting cells. Eur J Immunol 21:2139–2143. [PubMed][CrossRef]
85. Mertz AK, Ugrinovic S, Lauster R, Wu P, Grolms M, Bottcher U, Appel H, Yin Z, Schiltz E, Batsford S, Schauer-Petrowski C, Braun J, Distler A, Sieper J. 1998. Characterization of the synovial T cell response to various recombinant Yersinia antigens in Yersinia enterocolitica-triggered reactive arthritis. Heat-shock protein 60 drives a major immune response. Arthritis Rheum 41:315–326. [PubMed][CrossRef]
86. Probst P, Hermann E, Meyer zum Buschenfelde KH, Fleischer B. 1993. Multiclonal synovial T cell response to Yersinia enterocolitica in reactive arthritis: the Yersinia 61-kDa heat-shock protein is not the major target antigen. J Infect Dis 167:385–391.[PubMed]
87. Viner N, Bailey L, Life P, Bacon P, Gaston J. 1991. Isolation of Yersinia-specific T cell clones from the synovial membrane and synovial fluid of a patient with reactive arthritis. Arthritis Rheum 34:1151. [CrossRef]
88. Hermann E, Yu DT, Meyer zum Buschenfelde K-H, Fleischer B. 1993. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 342:646–650. [PubMed][CrossRef]
89. Hermann E, Fleischer B, Meyer zum Buschenfelde KH. 1994. Bacteria-specific cytotoxic CD8+ T cells: a missing link in the pathogenesis of the HLA-B27-associated spondylarthropathies. Ann Med 26:365–369. [PubMed][CrossRef]
90. Ugrinovic S, Mertz A, Wu P, Braun J, Sieper J. 1997. A single nonamer from the Yersinia 60-kDa heat shock protein is the target of HLA-B27-restricted CTL response in Yersinia-induced reactive arthritis. J Immunol 159:5715–5723.[PubMed]
91. Steinhoff U, Brinkmann V, Klemm U, Aichele P, Seiler P, Brandt U, Bland PW, Prinz I, Zugel U, Kaufmann SH. 1999. Autoimmune intestinal pathology induced by hsp60-specific CD8 T cells. Immunity 11:349–358. [PubMed][CrossRef]
92. Zugel U, Kaufmann SH. 1999. Immune response against heat shock proteins in infectious diseases. Immunobiology 201:22–35.[PubMed]
93. Ramos M, Alvarez I, Garcia-del-Portillo F, Lopez de Castro JA. 2001. Minimal alterations in the HLA-B27-bound peptide repertoire induced upon infection of lymphoid cells with Salmonella Typhimurium. Arthritis Rheum 44:1677–1688. [PubMed][CrossRef]
94. Ringrose JH, Meiring HD, Speijer D, Feltkamp TE, van Els CA, de Jong AP, Dankert J. 2004. Major histocompatibility complex class I peptide presentation after Salmonella enterica serovar Typhimurium infection assessed via stable isotope tagging of the B27-presented peptide repertoire. Infect Immun 72:5097–5105. [PubMed][CrossRef]
95. Ringrose JH, Muijsers AO, Pannekoek Y, Yard BA, Boog CJ, van Alphen L, Dankert J, Feltkamp TE. 2001. Influence of infection of cells with bacteria associated with reactive arthritis on the peptide repertoire presented by HLA-B27. J Med Microbiol 50:385–389.[PubMed]
96. Ringrose JH, Yard BA, Muijsers A, Boog CJ, Feltkamp TE. 1996. Comparison of peptides eluted from the groove of HLA-B27 from Salmonella infected and non-infected cells. Clin Rheumatol 15(Suppl. 1):74–78.
97. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. 1990. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell 63:1099–1112. [PubMed][CrossRef]
98. Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE Jr, Balish E, Taurog JD, Hammer RE, Wilson KH, Sartor RB. 1996. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Investig 98:945–953. [PubMed][CrossRef]
99. Taurog JD, Maika SD, Simmons WA, Breban M, Hammer RE. 1993. Susceptibility to inflammatory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression. J Immunol 150:4168–4178.[PubMed]
100. Khare SD, Hansen J, Luthra HS, David CS. 1996. Hla-B27 heavy chains contribute to spontaneous inflammatory disease in B27/human beta(2)-microglobulin (beta(2)M) double transgenic mice with disrupted mouse beta(2)M. J Clin Investig 98:2746–2755. [PubMed][CrossRef]
101. Khare SD, Luthra HS, David CS. 1995. Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies. J Exp Med 182:1153–1158. [PubMed][CrossRef]
102. Khare SD, Lee S, Bull MJ, Hanson J, Luthra HS, David CS. 2001. Spontaneous inflammatory disease in HLA-B27 transgenic mice does not require transporter of antigenic peptides. Clin Immunol 98:364–369. [PubMed][CrossRef]
103. May E, Dorris ML, Satumtira N, Iqbal I, Rehman MI, Lightfoot E, Taurog JD. 2003. CD8 alpha beta T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J Immunol 170:1099–1105.[PubMed]
104. Allen RL, O'Callaghan CA, McMichael AJ, Bowness P. 1999. Cutting edge: HLA-B27 can form a novel beta 2-microglobulin-free heavy chain homodimer structure. J Immunol 162:5045–5048.[PubMed]
105. Antoniou AN, Ford S, Taurog JD, Butcher GW, Powis SJ. 2004. Formation of HLA-B27 homodimers and their relationship to assembly kinetics. J Biol Chem 279:8895–8902. [PubMed][CrossRef]
106. Dangoria NS, DeLay ML, Kingsbury DJ, Mear JP, Uchanska-Ziegler B, Ziegler A, Colbert RA. 2002. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 277:23459–23468. [PubMed][CrossRef]
107. Kollnberger S, Bird L, Sun MY, Retiere C, Braud VM, McMichael A, Bowness P. 2002. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum 46:2972–2982. [PubMed][CrossRef]
108. Boyle LH, Goodall JC, Opat SS, Gaston JS. 2001. The recognition of HLA-B27 by human CD4(+) T lymphocytes. J Immunol 167:2619–2624.[PubMed]
109. Boyle LH, Hill Gaston JS. 2003. Breaking the rules: the unconventional recognition of HLA-B27 by CD4+ T lymphocytes as an insight into the pathogenesis of the spondyloarthropathies. Rheumatology (Oxford) 42:404–412. [CrossRef]
110. Frumento G, Harris PE, Gawinowicz MA, Suciu-Foca N, Pernis B. 1993. Sequence of a prominent 16-residue self-peptide bound to HLA-B27 in a lymphoblastoid cell line. Cell Immunol 152:623–626. [PubMed][CrossRef]
111. Urban RG, Chicz RM, Lane WS, Strominger JL, Rehm A, Kenter MJ, UytdeHaag FG, Ploegh H, Uchanska-Ziegler B, Ziegler A. 1994. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc Natl Acad Sci USA 91:1534–1538. [PubMed][CrossRef]
112. Roddis M, Carter RW, Sun MY, Weissensteiner T, McMichael AJ, Bowness P, Bodmer HC. 2004. Fully functional HLA B27-restricted CD4+ as well as CD8+ T cell responses in TCR transgenic mice. J Immunol 172:155–161.[PubMed]
113. Kaslow RA, Ryder RW, Calin A. 1979. Search for Reiter's syndrome after an outbreak of Shigella sonnei dysentery. J Rheumatol 6:562–566.[PubMed]
114. Simon DG, Kaslow RA, Rosenbaum J, Kaye RL, Calin A. 1981. Reiter's syndrome following epidemic shigellosis. J Rheumatol 8:969–973.[PubMed]
115. Hannu T, Mattila L, Siitonen A, Leirisalo-Repo M. 2005. Reactive arthritis attributable to Shigella infection: a clinical and epidemiological nationwide study. Ann Rheum Dis 64:594–598. [PubMed][CrossRef]
116. Mazumder RN, Salam MA, Ali M, Bhattacharya MK. 1997. Reactive arthritis associated with Shigella dysenteriae type 1 infection. J Diarrhoeal Dis Res 15:21–24.[PubMed]
117. Gaston JS. 2005. Shigella induced reactive arthritis. Ann Rheum Dis 64:517–518. [PubMed][CrossRef]
118. Stieglitz H, Fosmire S, Lipsky P. 1989. Identification of a 2-Md plasmid from Shigella flexneri associated with reactive arthritis. Arthritis Rheum 32:937–946. [PubMed][CrossRef]
119. Stieglitz H, Lipsky P. 1993. Association between reactive arthritis and antecedent infection with Shigella flexneri carrying a 2-Md plasmid and encoding an HLA-B27 mimetic epitope. Arthritis Rheum 36:1387–1391. [PubMed][CrossRef]
120. Tsuchiya N, Husby G, Williams RC Jr, Stieglitz H, Lipsky PE, Inman RD. 1990. Autoantibodies to the HLA-B27 sequence cross-react with the hypothetical peptide from the arthritis-associated Shigella plasmid. J Clin Investig 86:1193–1203. [PubMed][CrossRef]
121. van Bohemen CG, Nabbe AJ, Landheer JE, Grumet FC, Mazurkiewicz ES, Dinant HJ, Lionarons RJ, van Bodegom PC, Zanen HC. 1986. HLA-B27M1M2 and high immune responsiveness to Shigella flexneri in post-dysenteric arthritis. Immunol Lett 13:71–74. [PubMed][CrossRef]
122. Adam T, Siewerdt R, Offermann I, Lang J, Tschape H, Sieper J, Graf B. 2003. Prevalence and molecular diversity of pHS-2 plasmids, marker for arthritogenicity, among clinical Escherichia coli Shigella isolates. Microbes Infect 5:579–592. [PubMed][CrossRef]
ecosalplus.8.8.13.citations
ecosalplus/2/2
content/journal/ecosalplus/10.1128/ecosalplus.8.8.13
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.8.13
2007-04-19
2017-10-20

Abstract:

A clear etiological link has been established between infection with several gram-negative enteric pathogens, including spp., and the incidence of reactive arthritis (ReA), an autoimmune disease that largely affects the joints. ReA is sometimes referred to as Reiter's syndrome, particularly when accompanied by uveitis and urethritis. This review reviews the evidence etiologically linking infection with autoimmune disease and addresses the roles that bacterial and host elements play in controlling disease outcome. ReA is an autoimmune disease that largely consists of painful joint inflammation but also can include inflammation of the eye, gastrointestinal tract, and skin. ReA is a member of a broad spectrum of chronic inflammatory disorders termed the seronegative spondyloarthropathies (SNSpAs) that includes ankylosing spondylitis (AS), psoriatic arthritis, and enteropathic arthritis. species, as well as other enteric pathogens associated with postgastroenteritis ReA, are facultative intracellular gram-negative bacteria. Many studies have analyzed the association of the HLA class I molecule, HLA-B27, with SNSpAs. Whereas B27 has been shown to be present in 90 to 95% of cases of AS, the association of the B27 haplotype with other SNSpAs is more tenuous. The clear association between ReA and infection with or other gram-negative enteric pathogens has led to the suggestion that the adaptive immune response to infection has an autoimmune component. In addition to various species, other gram-negative enteric pathogens have been linked to the development of ReA. Given their close relationship to , this review considers the involvement of species in ReA.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error