1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

and Enteropathogenic Interactions with Host Cells: Signaling Pathways

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Danika L. Goosney1,5, Sonya L. Kujat Choy2,5, and B. Brett Finlay3
  • Editor: Michael S. Donnenberg4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, University of British Columbia, 6174 University Blvd., Vancouver, BC, Canada V6T 1Z3, and Inimex Pharmaceuticals, 6660 Northwest Marine Drive, Vancouver, BC, Canada V6T 1X2; 2: Department of Microbiology and Immunology, University of British Columbia, 6174 University Blvd., Vancouver, BC, Canada V6T 1Z3; 3: Department of Microbiology and Immunology, University of British Columbia, 6174 University Blvd., Vancouver, BC, Canada V6T 1Z3; 4: University of Maryland, School of Medicine, Baltimore, MD
  • Received 02 September 2005 Accepted 09 November 2005 Published 05 January 2006
  • Address correspondence to B. Brett Finlay bfinlay@interchange.ubc.ca
image of <span class="jp-italic">Salmonella</span> and Enteropathogenic <span class="jp-italic">Escherichia coli</span> Interactions with Host Cells: Signaling Pathways
    Preview this reference work article:
    Zoom in
    Zoomout

    and Enteropathogenic Interactions with Host Cells: Signaling Pathways, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/1/8_8_4_module-1.gif /docserver/preview/fulltext/ecosalplus/2/1/8_8_4_module-2.gif
  • Abstract:

    The host-pathogen interaction involves a myriad of initiations and responses from both sides. Bacterial pathogens such as enteropathogenic (EPEC) and have numerous virulence factors that interact with and alter signaling components of the host cell to initiate responses that are beneficial to pathogen survival and persistence. The study of and EPEC infection reveals intricate connections between host signal transduction, cytoskeletal architecture, membrane trafficking, and cytokine gene expression. The emerging picture includes elements of molecular mimicry by bacterial effectors and bacterial subversion of typical host events, with the result that EPEC is able to survive and persist in an extracellular milieu, while establishes an intracellular niche and is able to spread systemically throughout the host. This review focuses on recent advances in our understanding of the signaling events stemming from the host-pathogen interactions specific to and EPEC.

  • Citation: Goosney D, Kujat Choy S, Finlay B. 2006. and Enteropathogenic Interactions with Host Cells: Signaling Pathways, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.4

Key Concept Ranking

Bacterial Proteins
0.5104035
Tumor Necrosis Factor alpha
0.43452483
Type III Secretion System
0.40021685
0.5104035

References

1. Galdiero M, Vitiello M, Sanzari E, D’Isanto M, Tortora A, Longanella A, Galdiero S. 2002. Porins from Salmonella enterica serovar Typhimurium activate the transcription factors activating protein 1 and NF-κB through the Raf-1-mitogen-activated protein kinase cascade. Infect Immun 70:558–568. [PubMed][CrossRef]
2. Svitkina TM, Borisy GG. 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145:1009–1026. [PubMed][CrossRef]
3. Brumell JH, Goosney DL, Finlay BB. 2002. SifA, a Type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 3:407–415. [PubMed][CrossRef]
4. Rohatgi R, Nollau P, Ho H-YH, Kirschner MW, Mayer BJ. 2001. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 276:26448–26452. [PubMed][CrossRef]
5. Steele-Mortimer O, Knodler LA, Marcus SL, Scheid MP, Goh B, Pfeifer CG, Duronio V, Finlay BB. 2000. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J Biol Chem 275:37718–37724. [PubMed][CrossRef]
6. Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW. 1998. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA 95:14057–14059. [PubMed][CrossRef]
7. Jones B, Ghori N, Falkow S. 1994. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med 180:15–23. [PubMed][CrossRef]
8. Hayward RD, Koronakis V. 1999. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J 18:4926–4934. [PubMed][CrossRef]
9. McGhie EJ, Hayward RD, Koronakis V. 2004. Control of actin turnover by a Salmonella invasion protein. Mol Cell 13:497–510. [PubMed][CrossRef]
10. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826. [PubMed][CrossRef]
11. Muza-Moons MM, Koutsouris A, Hecht G. 2003. Disruption of cell polarity by Enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect Immun 71:7069–7078. [PubMed][CrossRef]
12. Stein MA, Leung KY, Zwick M, Garcia-del Portillo F, Finlay BB. 1996. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 20:151–164. [PubMed][CrossRef]
13. Fu Y, Galan JE. 1999. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–297. [PubMed][CrossRef]
14. Kaniga K, Tucker S, Trollinger D, Galan JE. 1995. Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells. J Bacteriol 177:3965–3971.[PubMed]
15. Collazo CM, Galan JE. 1997. The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol Microbiol 24:747–756. [PubMed][CrossRef]
16. Kalman D, Weiner OD, Goosney DL, Sedat JW, Finlay BB, Bishop JM. 1999. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nat Cell Biol 6:389–391. [CrossRef]
17. Zhou D, Chen LM, Hernandez L, Shears SB, Galan JE. 2001. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 39:248–259. [PubMed][CrossRef]
18. Zhou D, Mooseker MS, Galan JE. 1999. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283:2092–2095. [PubMed][CrossRef]
19. Higashide W, Dai S, Hombs VP, Zhou D. 2002. Involvement of SipA in modulating actin dynamics during Salmonella invasion into cultured epithelial cells. Cell Microbiol 4:357–365. [PubMed][CrossRef]
20. Marcus SL, Knodler LA, Finlay BB. 2002. Salmonella enterica serovar Typhimurium effector SigD/SopB is membrane-associated and ubiquitinated inside host cells. Cell Microbiol 4:435–446. [PubMed][CrossRef]
21. Kubori T, Galan JE. 2003. Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115:333–342. [PubMed][CrossRef]
22. Stevenson BR, Keon BH. 1998. The tight junction: morphology to molecules. Annu Rev Cell Dev Biol 14:89–109. [PubMed][CrossRef]
23. Carlier M-F, Nioche P, Broutin-L’Hermite I, Boujemaa R, Le Clainche C, Egile C, Garbay C, Ducruix A, Sansonetti P, Pantaloni D. 2000. GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J Biol Chem 275:21946–21952. [PubMed][CrossRef]
24. Procyk KJ, Rippo MR, Testi R, Hoffmann F, Parker PJ, Baccarini M. 1999. Distinct mechanisms target stress and extracellular signal-activated kinase 1 and Jun N-terminal kinase during infection of macrophages with Salmonella. J Immunol 163:4924–4930.[PubMed]
25. Bompard G, Caron E. 2004. Regulation of WASP/WAVE proteins: making a long story short. J Cell Biol 166:957–962. [PubMed][CrossRef]
26. Dai S, Sarmiere PD, Wiggan ON, Bamburg JR, Zhou D. 2004. Efficient Salmonella entry requires activity cycles of host ADF and cofilin. Cell Microbiol 6:459–471. [PubMed][CrossRef]
27. Hardt WD, Urlaub H, Galan JE. 1998. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc Natl Acad Sci USA 95:2574–2579. [PubMed][CrossRef]
28. Buchwald G, Friebel A, Galan JE, Hardt W-D, Wittinghofer A, Scheffzek K. 2002. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J 21:3286–3295. [PubMed][CrossRef]
29. Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W, Hardt W-D. 2001. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem 276:34035–34040. [PubMed][CrossRef]
30. Phillips N, Hayward RD, Koronakis V. 2004. Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nat Cell Biol 6:618–625. [PubMed][CrossRef]
31. Prager R, Mirold S, Tietze E, Strutz U, Knuppel B, Rabsch W, Hardt WD, Tschape H. 2000. Prevalence and polymorphism of genes encoding translocated effector proteins among clinical isolates of Salmonella enterica. Int J Med Microbiol 290:605–617.[PubMed]
32. Yuhan R, Koutsouris A, Savkovic SD, Hecht G. 1997. Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 113:1873–1882. [PubMed][CrossRef]
33. Paesold G, Guiney DG, Eckmann L, Kagnoff MF. 2002. Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells. Cell Microbiol 4:771–781. [PubMed][CrossRef]
34. Chen L-M, Hobbie S, Galan JE. 1996. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 274:2115–2118. [PubMed][CrossRef]
35. Criss A, Ahlgren D, Jou T, McCormick B, Casanova J. 2001. The GTPase Rac1 selectively regulates Salmonella invasion at the apical plasma membrane of polarized epithelial cells. J Cell Sci 114:1331–1341.[PubMed]
36. Criss AK, Casanova JE. 2003. Coordinate Regulation of Salmonella enterica serovar Typhimurium invasion of epithelial cells by the Arp2/3 complex and rho GTPases. Infect Immun 71:2885–2891. [PubMed][CrossRef]
37. Brumell JH, Grinstein S. 2003. Role of lipid-mediated signal transduction in bacterial internalization. Cell Microbiol 5:287–297. [PubMed][CrossRef]
38. Malladi V, Shankar B, Williams PH, Balakrishnan A. 2004. Enteropathogenic Escherichia coli outer membrane proteins induce changes in cadherin junctions of Caco-2 cells through activation of PKCalpha. Microb Infect 6:38–50. [CrossRef]
39. Bertelsen LS, Paesold G, Marcus SL, Finlay BB, Eckmann L, Barrett KE. 2004. Modulation of chloride secretory responses and barrier function of intestinal epithelial cells by the Salmonella effector protein SigD. Am J Physiol Cell Physiol 287:C939–C948. [Online.] doi:10.1152/ajpcell.00413.2003. [PubMed][CrossRef]
40. Feng Y, Wente SR, Majerus PW. 2001. Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc Natl Acad Sci USA 98:875–879. (First published 16 January 2001 [Online]. doi: 10.1073/pnas.021558098.) [PubMed][CrossRef]
41. Zhang S, Santos RL, Tsolis RM, Stender S, Hardt WD, Baumler AJ, Adams LG. 2002. The Salmonella enterica serotype typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect Immun 70:3843–3855. [PubMed][CrossRef]
42. Swimm A, Bommarius B, Li Y, Cheng D, Reeves P, Sherman M, Veach D, Bornmann W, Kalman D. 2004. Enteropathogenic Escherichia coli use redundant tyrosine kinases to form actin pedestals. Mol Biol Cell 8:3520–3529. [CrossRef]
43. Simonovic I, Rosenberg J, Koutsouris A, Hecht G. 2000. Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol 2:305–315. [PubMed][CrossRef]
44. Kaniga K, Uralil J, Bliska JB, Galan JE. 1996. A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol Microbiol 21:633–641. [PubMed][CrossRef]
45. Mullins RD, Heuser JA, Pollard TD. 1998. The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95:6181–6186. [PubMed][CrossRef]
46. Lee CA, Silva M, Siber AM, Kelly AJ, Galyov E, McCormick BA. 2000. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc Natl Acad Sci USA 97:12283–12288. [PubMed][CrossRef]
47. McNamara BP, Koutsouris A, O’Connell CB, Nougayrede J-P, Donnenberg MS, Hecht G. 2001. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J Clin Investig 107:621–629. [PubMed][CrossRef]
48. Hobbie S, Chen LM, Davis RJ, Galan JE. 1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J Immunol 159:5550–5559.[PubMed]
49. Chen LM, Bagrodia S, Cerione RA, Galan JE. 1999. Requirement of p21-activated kinase (PAK) for Salmonella typhimurium-induced nuclear responses. J Exp Med 189:1479–1488. [PubMed][CrossRef]
50. Haraga A, Miller SI. 2003. A Salmonella enterica serovar Typhimurium translocated leucine-rich repeat effector protein inhibits NF-κB-dependent gene expression. Infect Immun 71:4052–4058. [PubMed][CrossRef]
51. Uchiya K, Barbieri MA, Funato K, Shah AH, Stahl PD, Groisman EA. 1999. A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18:3924–3933. [PubMed][CrossRef]
52. Seachrist JL, Ferguson SSG. 2003. Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sci 74:225–235. [PubMed][CrossRef]
53. Touze T, Hayward RD, Eswaran J, Leong JM, Koronakis V. 2004. Self-association of EPEC intimin mediated by the beta-barrel-containing anchor domain: a role in clustering of the Tir receptor. Mol Microbiol 51:73–87. [PubMed][CrossRef]
54. Le Clainche C, Drubin DG. 2004. Actin lessons from pathogens. Mol Cell 13:453–454. [PubMed][CrossRef]
55. Freeman JA, Rappl C, Kuhle V, Hensel M, Miller SI. 2002. SpiC is required for translocation of Salmonella pathogenicity island 2 effectors and secretion of translocon proteins SseB and SseC. J Bacteriol 184:4971–4980. [PubMed][CrossRef]
56. Warawa J, Kenny B. 2001. Phosphoserine modification of the enteropathogenic Escherichia coli Tir molecule is required to trigger conformational changes in Tir and efficient pedestal elongation. Mol Microbiol 42:1269–1280. [PubMed][CrossRef]
57. Prager R, Rabsch W, Streckel W, Voigt W, Tietze E, Tschape H. 2003. Molecular properties of Salmonella enterica serotype Paratyphi B distinguish between its systemic and its enteric pathovars. J Clin Microbiol 41:4270–4278. [PubMed][CrossRef]
58. Procyk KJ, Kovarik P, von Gabain A, Baccarini M. 1999. Salmonella typhimurium and lipopolysaccharide stimulate extracellularly regulated kinase activation in macrophages by a mechanism involving phosphatidylinositol 3-kinase and phospholipase D as novel intermediates. Infect Immun 67:1011–1017.[PubMed]
59. Jesenberger V, Procyk KJ, Ruth J, Schreiber M, Theussl H-C, Wagner EF, Baccarini M. 2001. Protective role of Raf-1 in Salmonella-induced macrophage apoptosis. J Exp Med 193:353–364. [PubMed][CrossRef]
60. Jarvelainen HA, Galmiche A, Zychlinsky A. 2003. Caspase-1 activation by Salmonella. Trends Cell Biol 13:204–209. [PubMed][CrossRef]
61. Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A. 1999. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96:2396–2401. [PubMed][CrossRef]
62. Rosenberger CM, Finlay BB. 2002. Macrophages Inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem 277:18753–18762. [PubMed][CrossRef]
63. Forsberg M, Blomgran R, Lerm M, Sarndahl E, Sebti SM, Hamilton A, Stendahl O, Zheng L. 2003. Differential effects of invasion by and phagocytosis of Salmonella typhimurium on apoptosis in human macrophages: potential role of Rho-GTPases and Akt. J Leukoc Biol 74:620–629. [PubMed][CrossRef]
64. Hernandez LD, Pypaert M, Flavell RA, Galan JE. 2003. A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol 163:1123–1131. [PubMed][CrossRef]
65. Jesenberger V, Procyk KJ, Yuan J, Reipert S, Baccarini M. 2000. Salmonella-induced Caspase-2 activation in macrophages: A novel mechanism in pathogen-mediated apoptosis. J Exp Med 192:1035–1046. [PubMed][CrossRef]
66. Uchiya K, Groisman EA, Nikai T. 2004. Involvement of Salmonella pathogenicity island 2 in the up-regulation of interleukin-10 expression in macrophages: role of protein kinase A signal pathway. Infect Immun 72:1964–1973. [PubMed][CrossRef]
67. Dreher D, Kok M, Obregon C, Kiama SG, Gehr P, Nicod LP. 2002. Salmonella virulence factor SipB induces activation and release of IL-18 in human dendritic cells. J Leukoc Biol 72:743–751.[PubMed]
68. Savkovic SD, Ramaswamy A, Koutsouris A, Hecht G. 2001. EPEC-activated ERK1/2 participate in inflammatory response but not tight junction barrier disruption. Am J Physiol 281:G890–G898.
69. Harrison RE, Brumell JH, Khandani A, Bucci C, Scott CC, Jiang X, Finlay BB, Grinstein S. 2004. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol Biol Cell 15:3146–3154. (First published 30 April 2004; doi:10.1091/mbc.E04-02-0092.) [PubMed][CrossRef]
70. Shotland Y, Kramer H, Groisman EA. 2003. The Salmonella SpiC protein targets the mammalian Hook3 protein function to alter cellular trafficking. Mol Microbiol 49:1565–1576. [PubMed][CrossRef]
71. Criss AK, Silva M, Casanova JE, McCormick BA. 2001. Regulation of Salmonella-induced neutrophil transmigration by epithelial ADP-ribosylation factor 6. J Biol Chem 276:48431–48439.[PubMed]
72. Lee AH, Zareei MP, Daefler S. 2002. Identification of a NIPSNAP homologue as host cell target for Salmonella virulence protein SpiC. Cell Microbiol 4:739–750. [PubMed][CrossRef]
73. Zhang S, Santos RL, Tsolis RM, Mirold S, Hardt W-D, Adams LG, Baumler AJ. 2002. Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol Lett 217:243–247. [PubMed][CrossRef]
74. Terebiznik MR, Vieira OV, Marcus SL, Slade A, Yip CM, Trimble WS, Meyer T, Finlay BB, Grinstein S. 2002. Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol 4:766–773. [PubMed][CrossRef]
75. de Grado M, Abe A, Gauthier A, Steele-Mortimer O, DeVinney R, Finlay BB. 1999. Identification of the intimin-binding domain of Tir of enteropathogenic Escherichia coli. Cell Microbiol 1:7–17. [PubMed][CrossRef]
76. Pelludat C, Mirold S, Hardt W-D. 2003. The SopEΦ phage integrates into the ssrA gene of Salmonella enterica serovar Typhimurium A36 and is closely related to the Fels-2 prophage. J Bacteriol 185:5182–5191. [PubMed][CrossRef]
77. Sweet MJ, Hume DA. 1996. Endotoxin signal transduction in macrophages. J Leukoc Biol 60:8–26.[PubMed]
78. van der Velden AWM, Velasquez M, Starnbach MN. 2003. Salmonella rapidly kill dendritic cells via a Caspase-1-dependent mechanism. J Immunol 171:6742–6749.[PubMed]
79. Campellone KG, Giese N, Tipper OJ, Leong JM. 2002. A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol Microbiol 43:1227–1241. [PubMed][CrossRef]
80. Campellone KG, Rankin S, Pawson T, Kirschner MW, Tipper DJ, Leong JM. 2004. Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J Cell Biol 164:407–416. [PubMed][CrossRef]
81. Gruenheid S, DeVinney R, Bladt F, Goosney D, Gelkop S, Gish GD, Pawson T, Finlay BB. 2001. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol 3:856–859. [PubMed][CrossRef]
82. Lin SL, Le TX, Cowen DS. 2003. SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell Microbiol 5:267–275. [PubMed][CrossRef]
83. Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A, Falkow S. 2000. Salmonella exploits Caspase-1 to colonize Peyer’s patches in a murine typhoid model. J Exp Med 192:249–258. [PubMed][CrossRef]
84. Cantarelli VV, Takahashi A, Yanagihara I, Akeda Y, Imura K, Kodama T, Kono G, Sato Y, Honda T. 2001. Talin, a host cell protein, interacts directly with the translocated intimin receptor, Tir, of enteropathogenic Escherichia coli, and is essential for pedestal formation. Cell Microbiol 3:745–751. [PubMed][CrossRef]
85. Cantarelli VV, Takahashi A, Akeda Y, Nagayama K, Honda T. 2000. Interaction of enteropathogenic or enterohemorrhagic Escherichia coli with HeLa cells results in translocation of cortactin to the bacterial adherence site. Infect Immun 68:382–386. [PubMed][CrossRef]
86. Goosney DL, DeVinney R, Finlay BB. 2001. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect Immun 69:3315–3322. [PubMed][CrossRef]
87. Murli S, Watson RO, Galan JE. 2001. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol 3:795–810. [PubMed][CrossRef]
88. Yu X-J, Ruiz-Albert J, Unsworth KE, Garvis S, Liu M, Holden DW. 2002. SpiC is required for secretion of Salmonella pathogenicity island 2 type III secretion system proteins. Cell Microbiol 4:531–540. [PubMed][CrossRef]
89. Stender S, Friebel A, Linder S, Rohde M, Mirold S, Hardt WD. 2000. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol 36:1206–1221. [PubMed][CrossRef]
90. McGhie EJ, Hayward RD, Koronakis V. 2001. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J 20:2131–2139. [PubMed][CrossRef]
91. Crane J, Oh J. 1997. Activation of host cell protein kinase C by enteropathogenic Escherichia coli. Infect Immun 65:3277–3285.[PubMed]
92. Silva M, Song C, Nadeau WJ, Matthews JB, McCormick BA. 2004. Salmonella typhimurium SipA-induced neutrophil transepithelial migration: involvement of a PKC-α-dependent signal transduction pathway. Am J Physiol 286:G1024–G1031.
93. Simonovic I, Arpin M, Koutsouris A, Falk-Krzesinski HJ, Hecht G. 2001. Enteropathogenic Escherichia coli activates ezrin, which participates in disruption of tight junction barrier function. Infect Immun 69:5679–5688. [PubMed][CrossRef]
94. Lommel S, Benesch S, Rottner K, Franz T, Wehland J, Kuhn R. 2001. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep 2:850–857. [PubMed][CrossRef]
95. Elliott SJ, O’Connell CB, Koutsouris A, Brinkley C, Donnenberg MS, Hecht G, Kaper JB. 2002. A gene from the locus of enterocyte effacement that is required for enteropathogenic Escherichia coli to increase tight-junction permeability encodes a chaperone for EspF infect. Infect Immun 70:2271–2277. [CrossRef]
96. Santos RL, Tsolis RM, Baumler AJ, Smith R III, Adams LG. 2001. Salmonella enterica serovar Typhimurium induces cell death in bovine monocyte-derived macrophages by early sipB-dependent and delayed sipB-independent mechanisms. Infect Immun 69:2293–2301. [PubMed][CrossRef]
97. de Grado M, Rosenberger CM, Gauthier A, Vallance BA, Finlay BB. 2001. Enteropathogenic Escherichia coli infection induces expression of the early growth response factor by activating mitogen-activated protein kinase cascades in epithelial cells. Infect Immun 69:6217–6224. [PubMed][CrossRef]
98. Inman LR, Cantey JR. 1983. Specific adherence of Escherichia coli (strain RDEC-1) to membranous (M) cells of the Peyer’s patch in Escherichia coli diarrhea in the rabbit. J Clin Investig 71:1–8. [PubMed][CrossRef]
99. Celli J, Olivier M, Finlay BB. 2001. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J 20:1245–1258. [PubMed][CrossRef]
100. Goosney DL, Knoechel DG, Finlay BB. 1999. Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cytoskeletal exploitation. Emerg Infect Dis 5:216–223. [PubMed][CrossRef]
101. Caron E, Hall A. 1998. Identification of two distinct mechanisms of phagocytosis controlled by different rho GTPases. Science 282:1717–1721. [PubMed][CrossRef]
102. Donnenberg MS, Tacket CO, James SP, Losonsky G, Nataro JP, Wasserman SS, Kaper JB, Levine MM. 1993. Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J Clin Investig 92:1412–1417. [PubMed][CrossRef]
103. Collington GK, Booth IW, Knutton S. 1998. Rapid modulation of electrolyte transport in Caco-2 cell monolayers by enteropathogenic Escherichia coli (EPEC) infection. Gut 42:200–207.[PubMed]
104. Crane JK, Olson RA, Jones HM, Duffey ME. 2002. Release of ATP during host cell killing by enteropathogenic E. coli and its role as a secretory mediator. Am J Physiol 283:G74–G86.
ecosalplus.8.8.4.citations
ecosalplus/2/1
content/journal/ecosalplus/10.1128/ecosalplus.8.8.4
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.8.4
2006-01-05
2017-10-20

Abstract:

The host-pathogen interaction involves a myriad of initiations and responses from both sides. Bacterial pathogens such as enteropathogenic (EPEC) and have numerous virulence factors that interact with and alter signaling components of the host cell to initiate responses that are beneficial to pathogen survival and persistence. The study of and EPEC infection reveals intricate connections between host signal transduction, cytoskeletal architecture, membrane trafficking, and cytokine gene expression. The emerging picture includes elements of molecular mimicry by bacterial effectors and bacterial subversion of typical host events, with the result that EPEC is able to survive and persist in an extracellular milieu, while establishes an intracellular niche and is able to spread systemically throughout the host. This review focuses on recent advances in our understanding of the signaling events stemming from the host-pathogen interactions specific to and EPEC.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

(Step 1) Ras induces membrane translocation of Raf-1. SptP tyrosine phosphatase activity interferes with this step. (Step 2) After being activated by CDC42/Rac, Pak1 and 3 phosphorylate Raf at Ser338. SptP inhibits this step through its inhibitory GAP activity at Cdc42/Rac. (Step 3) Stc phosphorylates Raf at tyrosines 340/341, resulting in complete activation of Raf. Activated Raf then phosphorylates MEK1/MEK2, which phosphorylate and activate Erk1/Erk2. (Reprinted from reference 47 with permission from Blackwell Publishing Limited, Oxford, England.)

Citation: Goosney D, Kujat Choy S, Finlay B. 2006. and Enteropathogenic Interactions with Host Cells: Signaling Pathways, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Interaction of serovar Typhimurium and its type III secreted effector protein SipA with the apical domain of polarized epithelial cells leads to activation of ARF6 at the apical membrane, presumably through the mammalian GEF ARNO. This leads to an increase in PLD activity and local production of phosphatidic acid (PA), which is speculated to be metabolized to diacylglycerol (DAG) by PA phosphohydrolase (PAP). Generation of DAG recruits PKC to the apical membrane. Activation of PKC at this site (PKC*) is necessary for the apical release of the chemokine PEEC and subsequent basolateral-to-apical PMN transmigration. (Reprinted from reference 35 with permission from the .)

Citation: Goosney D, Kujat Choy S, Finlay B. 2006. and Enteropathogenic Interactions with Host Cells: Signaling Pathways, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

EPEC attaches to the intestinal epithelial cell and remains extracellular, where it mediates numerous effects on the host. Signaling events include lipid raft recruitment upon initial bacterial attachment, rearrangement of the host actin cytoskeleton resulting in the formation of the pedestal, alteration in the ionic balance of the intestinal epithelium, disruption of tight junction integrity, and signaling to the nucleus via NF-κB to induce IL-8-mediated immune responses, including PMN recruitment and transmigration.

Citation: Goosney D, Kujat Choy S, Finlay B. 2006. and Enteropathogenic Interactions with Host Cells: Signaling Pathways, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.4
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Host proteins characterized in pedestals

Citation: Goosney D, Kujat Choy S, Finlay B. 2006. and Enteropathogenic Interactions with Host Cells: Signaling Pathways, EcoSal Plus 2006; doi:10.1128/ecosalplus.8.8.4

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error