1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

Virulence Gene Regulation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Jay L. Mellies1, and Alex M. S. Barron2
  • Editor: James M. Slauch3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Biology Department, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202; 2: Biology Department, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202; 3: The Schoold of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL
  • Received 09 January 2006 Accepted 10 March 2006 Published 06 June 2006
  • Address correspondence to Jay L. Mellies jay.mellies@reed.edu
image of Virulence Gene Regulation in <span class="jp-italic">Escherichia coli</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    Virulence Gene Regulation in , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/2/1/8_9_1_module-1.gif /docserver/preview/fulltext/ecosalplus/2/1/8_9_1_module-2.gif
  • Abstract:

    causes three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregative—EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenic, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied pathotypes is complex, but common themes offerinsight into the signals and regulators necessary for disease progression.

  • Citation: Mellies J, Barron A. 2006. Virulence Gene Regulation in , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.9.1

Key Concept Ranking

PmrAB Two-Component Regulatory System
0.4395315
Type III Secretion System
0.411536
Genetic Elements
0.40752417
Type 1 Fimbriae
0.34474435
Furanosyl Borate Diester
0.3432937
0.4395315

References

1. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201.
2. Clarke SC, Haigh RD, Freestone PP, Williams PH. 2003. Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin Microbiol Rev 16:365–378. [PubMed][CrossRef]
3. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140.
4. Kenny B. 2002. Enteropathogenic Escherichia coli (EPEC)—a crafty subversive little bug. Microbiology 148:1967–1978.
5. Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA. 1983. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 41:1340–1351.
6. Hueck CJ. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433.
7. Garmendia J, Frankel G, Crepin VF. 2005. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun 73:2573–2585. [PubMed][CrossRef]
8. Dean P, Maresca M, Kenny B. 2005. EPEC's weapons of mass subversion. Curr Opin Microbiol 8:28–34. [PubMed][CrossRef]
9. Klapproth JM, Scaletsky IC, McNamara BP, Lai LC, Malstrom C, James SP, Donnenberg MS. 2000. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect Immun 68:2148–2155.
10. Mellies JL, Navarro-García F, Okeke I, Frederickson J, Nataro JP, Kaper JB. 2001. espC pathogenicity island of enteropathogenic Escherichia coli encodes an enterotoxin. Infect Immun 69:315–324.
11. Stein M, Kenny B, Stein MA, Finlay BB. 1996. Characterization of EspC, a 110-kilodalton protein secreted by enteropathogenic Escherichia coli which is homologous to members of the immunoglobulin A protease-like family of secreted proteins. J Bacteriol 178:6546–6554.
12. Kenny B, Abe A, Stein M, Finlay BB. 1997. Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract. Infect Immun 65:2606–2612.
13. Kenny B, Finlay BB. 1995. Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Proc Natl Acad Sci USA 92:7991–7995.
14. Umanski T, Rosenshine I, Friedberg D. 2002. Thermoregulated expression of virulence genes in enteropathogenic Escherichia coli. Microbiology 148:2735–2744.
15. Rosenshine I, Ruschkowski S, Finlay BB. 1996. Expression of attaching/effacing activity by enteropathogenic Escherichia coli depends on growth phase, temperature, and protein synthesis upon contact with epithelial cells. Infect Immun 64:966–973.
16. Ide T, Michgehl S, Knappstein S, Heusipp G, Schmidt MA. 2003. Differential modulation by Ca2+ of type III secretion of diffusely adhering enteropathogenic Escherichia coli. Infect Immun 71:1725–1732.
17. Elliott SJ, Hutcheson SW, Dubois MS, Mellies JL, Wainwright LA, Batchelor M, Frankel G, Knutton S, Kaper JB. 1999. Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli. Mol Microbiol 33:1176–1189. [PubMed][CrossRef]
18. Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB. 1999. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33:296–306.
19. Sánchez-SanMartín C, Bustamante VH, Calva E, Puente JL. 2001. Transcriptional regulation of the orf19 gene and the tir-cesT-eae operon of enteropathogenic Escherichia coli. J Bacteriol 183:2823–2833.
20. Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff C, Dougan G, Frankel G. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17:2166–2176.
21. Lio JC, Syu WJ. 2004. Identification of a negative regulator for the pathogenicity island of enterohemorrhagic Escherichia coli O157:H7. J Biomed Sci 11:855–863.
22. Elliott SJ, Sperandio V, Girón JA, Shin S, Mellies JL, Wainwright L, Hutcheson SW, McDaniel TK, Kaper JB. 2000. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 68:6115–6126. [PubMed][CrossRef]
23. Sperandio V, Mellies JL, Delahay RM, Frankel G, Crawford JA, Nguyen W, Kaper JB. 2000. Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Mol Microbiol 38:781–793.
24. Bustamante VH, Santana FJ, Calva E, Puente JL. 2001. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol Microbiol 39:664–678. [PubMed][CrossRef]
25. Haack KR, Robinson CL, Miller KJ, Fowlkes JW, Mellies JL. 2003. Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infect Immun 71:384–392.
26. Li M, Rosenshine I, Tung SL, Wang XH, Friedberg D, Hew CL, Leung KY. 2004. Comparative proteomic analysis of extracellular proteins of enterohemorrhagic and enteropathogenic Escherichia coli strains and their ihf and ler mutants. Appl Environ Microbiol 70:5274–5282.
27. Berdichevsky T, Friedberg D, Nadler C, Rokney A, Oppenheim A, Rosenshine I. 2005. Ler is a negative autoregulator of the LEE1 operon in enteropathogenic Escherichia coli. J Bacteriol 187:349–357. [PubMed][CrossRef]
28. Friedberg D, Umanski T, Fang Y, Rosenshine I. 1999. Hierarchy in the expression of the locus of enterocyte effacement genes of enteropathogenic Escherichia coli. Mol Microbiol 34:941–952. [PubMed][CrossRef]
29. Leverton LQ, Kaper JB. 2005. Temporal expression of enteropathogenic Escherichia coli virulence genes in an in vitro model of infection. Infect Immun 73:1034–1043.
30. Jerse AE, Kaper JB. 1991. The eae gene of enteropathogenic Escherichia coli encodes a 94-kilodalton membrane protein, the expression of which is influenced by the EAF plasmid. Infect Immun 59:4302–4309.
31. Gómez-Duarte OG, Kaper JB. 1995. A plasmid-encoded regulatory region activates chromosomal eaeA expression in enteropathogenic Escherichia coli. Infect Immun 63:1767–1776.[PubMed]
32. Knutton S, Adu-Bobie J, Bain C, Phillips AD, Dougan G, Frankel G. 1997. Down regulation of intimin expression during attaching and effacing enteropathogenic Escherichia coli adhesion. Infect Immun 65:1644–1652.
33. Porter ME, Mitchell P, Roe AJ, Free A, Smith DG, Gally DL. 2004. Direct and indirect transcriptional activation of virulence genes by an AraC-like protein, PerA from enteropathogenic Escherichia coli. Mol Microbiol 54:1117–1133.
34. Iyoda S, Watanabe H. 2004. Positive effects of multiple pch genes on expression of the locus of enterocyte effacement genes and adherence of enterohaemorrhagic Escherichia coli O157:H7 to HEp-2 cells. Microbiology 150:2357–2371.
35. Bisognano C, Kelley WL, Estoppey T, Francois P, Schrenzel J, Li D, Lew DP, Hooper DC, Cheung AL, Vaudaux P. 2004. A RecA-LexA-dependent pathway mediates ciprofloxacin-induced fibronectin binding in Staphylococcus aureus. J Biol Chem 279:9064–9071. [PubMed][CrossRef]
36. Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN. 2004. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305:1629–1631.
37. Goldberg MD, Johnson M, Hinton JC, Williams PH. 2001. Role of the nucleoid-associated protein Fis in the regulation of virulence properties of enteropathogenic Escherichia coli. Mol Microbiol 41:549–559. [PubMed][CrossRef]
38. Grant AJ, Farris M, Alefounder P, Williams PH, Woodward MJ, O’Connor CD. 2003. Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol Microbiol 48:507–521. [PubMed][CrossRef]
39. Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB. 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci USA 96:15196–15201.
40. Scaletsky IC, Silva ML, Trabulsi LR. 1984. Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect Immun 45:534–536.
41. Donnenberg MS, Girón JA, Nataro JP, Kaper JB. 1992. A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol 6:3427–3437. [PubMed][CrossRef]
42. Girón JA, Ho AS, Schoolnik GK. 1991. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254:710–713. [PubMed][CrossRef]
43. Sohel I, Puente JL, Murray WJ, Vuopio-Varkila J, Schoolnik GK. 1993. Cloning and characterization of the bundle-forming pilin gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes. Mol Microbiol 7:563–575.
44. Sohel I, Puente JL, Ramer SW, Bieber D, Wu CY, Schoolnik GK. 1996. Enteropathogenic Escherichia coli: identification of a gene cluster coding for bundle-forming pilus morphogenesis. J Bacteriol 178:2613–2628.
45. Stone KD, Zhang HZ, Carlson LK, Donnenberg MS. 1996. A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for the biogenesis of a type IV pilus. Mol Microbiol 20:325–337.
46. Bieber D, Ramer SW, Wu CY, Murray WJ, Tobe T, Fernandez R, Schoolnik GK. 1998. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280:2114–2118. [PubMed][CrossRef]
47. Hicks S, Frankel G, Kaper JB, Dougan G, Phillips AD. 1998. Role of intimin and bundle-forming pili in enteropathogenic Escherichia coli adhesion to pediatric intestinal tissue in vitro. Infect Immun 66:1570–1578.
48. Puente JL, Bieber D, Ramer SW, Murray W, Schoolnik GK. 1996. The bundle-forming pili of enteropathogenic Escherichia coli: transcriptional regulation by environmental signals. Mol Microbiol 20:87–100.
49. Vanmaele RP, Armstrong GD. 1997. Effect of carbon source on localized adherence of enteropathogenic Escherichia coli. Infect Immun 65:1408–1413.
50. Vuopio-Varkila J, Schoolnik GK. 1991. Localized adherence by enteropathogenic Escherichia coli is an inducible phenotype associated with the expression of new outer membrane proteins. J Exp Med 174:1167–1177.
51. Bustamante VH, Calva E, Puente JL. 1998. Analysis of cis-acting elements required for bfpA expression in enteropathogenic Escherichia coli. J Bacteriol 180:3013–3016.[PubMed]
52. Martínez-Laguna Y, Calva E, Puente JL. 1999. Autoactivation and environmental regulation of bfpT expression, the gene coding for the transcriptional activator of bfpA in enteropathogenic Escherichia coli. Mol Microbiol 33:153–166.
53. Tobe T, Schoolnik GK, Sohel I, Bustamante VH, Puente JL. 1996. Cloning and characterization of bfpTVW, genes required for the transcriptional activation of bfpA in enteropathogenic Escherichia coli. Mol Microbiol 21:963–975.
54. Dorman CJ, Porter ME. 1998. The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Mol Microbiol 29:677–684. [PubMed][CrossRef]
55. Munson GP, Holcomb LG, Scott JR. 2001. Novel group of virulence activators within the AraC family that are not restricted to upstream binding sites. Infect Immun 69:186–193.
56. Ibarra JA, Villalba MI, Puente JL. 2003. Identification of the DNA binding sites of PerA, the transcriptional activator of the bfp and per operons in enteropathogenic Escherichia coli. J Bacteriol 185:2835–2847.
57. Donnenberg MS, Tacket CO, James SP, Losonsky G, Nataro JP, Wasserman SS, Kaper JB, Levine MM. 1993. Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J Clin Invest 92:1412–1417. [PubMed][CrossRef]
58. Okeke IN, Borneman JA, Shin S, Mellies JL, Quinn LE, Kaper JB. 2001. Comparative sequence analysis of the plasmid-encoded regulator of enteropathogenic Escherichia coli strains. Infect Immun 69:5553–5564.
59. Jerse AE, Yu J, Tall BD, Kaper JB. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci USA 87:7839–7843.
60. Beutin L, Marches O, Bettelheim KA, Gleier K, Zimmermann S, Schmidt H, Oswald E. 2003. HEp-2 cell adherence, actin aggregation, and intimin types of attaching and effacing Escherichia coli strains isolated from healthy infants in Germany and Australia. Infect Immun 71:3995–4002. [PubMed][CrossRef]
61. Shin S, Castanie-Cornet MP, Foster JW, Crawford JA, Brinkley C, Kaper JB. 2001. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol Microbiol 41:1133–1150.
62. Sperandio V, Torres AG, Kaper JB. 2002. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809–821.
63. Ferrándiz MJ, Bishop K, Williams P, Withers H. 2005. HosA, a member of the SlyA family, regulates motility in enteropathogenic Escherichia coli. Infect Immun 73:1684–1694. [PubMed][CrossRef]
64. Yona-Nadler C, Umanski T, Aizawa S, Friedberg D, Rosenshine I. 2003. Integration host factor (IHF) mediates repression of flagella in enteropathogenic and enterohaemorrhagic Escherichia coli. Microbiology 149:877–884.
65. Farris M, Grant A, Richardson TB, O’Connor CD. 1998. BipA: a tyrosine-phosphorylated GTPase that mediates interactions between enteropathogenic Escherichia coli (EPEC) and epithelial cells. Mol Microbiol 28:265–279. [PubMed][CrossRef]
66. Pfennig PL, Flower AM. 2001. BipA is required for growth of Escherichia coli K12 at low temperature. Mol Genet Genomics 266:313–317.
67. Karmali MA, Petric M, Lim C, Fleming PC, Steele BT. 1983. Escherichia coli cytotoxin, haemolytic-uraemic syndrome, and haemorrhagic colitis. Lancet 2:1299–1300.
68. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308:681–685.
69. Mead PS, Griffin PM. 1998. Escherichia coli O157:H7. Lancet 352:1207–1212.
70. Elliott SJ, Yu J, Kaper JB. 1999. The cloned locus of enterocyte effacement from enterohemorrhagic Escherichia coli O157:H7 is unable to confer the attaching and effacing phenotype upon E. coli K-12. Infect Immun 67:4260–4263.[PubMed]
71. Campellone KG, Robbins D, Leong JM. 2004. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell 7:217–228. [PubMed][CrossRef]
72. Garmendia J, Phillips AD, Carlier MF, Chong Y, Schuller S, Marches O, Dahan S, Oswald E, Shaw RK, Knutton S, Frankel G. 2004. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol 6:1167–1183. [PubMed][CrossRef]
73. Tatsuno I, Horie M, Abe H, Miki T, Makino K, Shinagawa H, Taguchi H, Kamiya S, Hayashi T, Sasakawa C. 2001. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect Immun 69:6660–6669.
74. Nicholls L, Grant TH, Robins-Browne RM. 2000. Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol Microbiol 35:275–288.
75. Torres AG, Kaper JB. 2003. Multiple elements controlling adherence of enterohemorrhagic Escherichia coli O157:H7 to HeLa cells. Infect Immun 71:4985–4995.
76. Lathem WW, Grys TE, Witowski SE, Torres AG, Kaper JB, Tarr PI, Welch RA. 2002. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol Microbiol 45:277–288.
77. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, Vázquez A, Barba J, Ibarra JA, O’Donnell P, Metalnikov P, Ashman K, Lee S, Goode D, Pawson T, Finlay BB. 2004. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci USA 101:3597–3602. [PubMed][CrossRef]
78. Ogierman MA, Paton AW, Paton JC. 2000. Up-regulation of both intimin and eae-independent adherence of Shiga toxigenic Escherichia coli O157 by ler and phenotypic impact of a naturally occurring ler mutation. Infect Immun 68:5344–5353.
79. Kaper JB, Sperandio V. 2005. Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun 73:3197–3209.
80. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. 2005. Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 3:383–396.
81. Yao Y, Martinez-Yamout MA, Dickerson TJ, Brogan AP, Wright PE, Dyson HJ. 2006. Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J Mol Biol 355:262–273.
82. Surette MG, Bassler BL. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci USA 95:7046–7050.
83. Surette MG, Miller MB, Bassler BL. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA 96:1639–1644.
84. Sperandio V, Torres AG, Girón JA, Kaper JB. 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 183:5187–5197.
85. Sperandio V, Li CC, Kaper JB. 2002. Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infect Immun 70:3085–3093.
86. Sircili MP, Walters M, Trabulsi LR, Sperandio V. 2004. Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. Infect Immun 72:2329–2337.
87. Clarke MB, Sperandio V. 2005. Transcriptional regulation of flhDC by QseBC and sigma-28 (FliA) in enterohaemorrhagic Escherichia coli. Mol Microbiol 57:1734–1749. [PubMed][CrossRef]
88. Clarke MB, Sperandio V. 2005. Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). Mol Microbiol 58:441–455. [PubMed][CrossRef]
89. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. 2003. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA 100:8951–8956.
90. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549. [PubMed][CrossRef]
91. Kanamaru K, Tatsuno I, Tobe T, Sasakawa C. 2000. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 38:805–816.
92. Aldea M, Garrido T, Pla J, Vicente M. 1990. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. EMBO J 9:3787–3794.[PubMed]
93. Wang XD, de Boer PA, Rothfield LI. 1991. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J 10:3363–3372.
94. Porter ME, Mitchell P, Free A, Smith DG, Gally DL. 2005. The LEE1 promoters from both enteropathogenic and enterohemorrhagic Escherichia coli can be activated by PerC-like proteins from either organism. J Bacteriol 187:458–472.
95. Sharma VK, Zuerner RL. 2004. Role of hha and ler in transcriptional regulation of the esp operon of enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 186:7290–7301.
96. Nieto JM, Carmona M, Bolland S, Jubete Y, de la Cruz F, Juarez A. 1991. The hha gene modulates haemolysin expression in Escherichia coli. Mol Microbiol 5:1285–1293.
97. Sharma VK, Carlson SA, Casey TA. 2005. Hyperadherence of an hha mutant of Escherichia coli O157:H7 is correlated with enhanced expression of LEE-encoded adherence genes. FEMS Microbiol Lett 243:189–196.
98. Barba J, Bustamante VH, Flores-Valdez MA, Deng W, Finlay BB, Puente JL. 2005. A positive regulatory loop controls expression of the locus of enterocyte effacement-encoded regulators Ler and GrlA. J Bacteriol 187:7918–7930. [PubMed][CrossRef]
99. Deighan P, Beloin C, Dorman CJ. 2003. Three-way interactions among the Sfh, StpA and H-NS nucleoid-structuring proteins of Shigella flexneri 2a strain 2457T. Mol Microbiol 48:1401–1416. [PubMed][CrossRef]
100. Roe AJ, Yull H, Naylor SW, Woodward MJ, Smith DG, Gally DL. 2003. Heterogeneous surface expression of EspA translocon filaments by Escherichia coli O157:H7 is controlled at the posttranscriptional level. Infect Immun 71:5900–5909.
101. Karlinsey JE, Lonner J, Brown KL, Hughes KT. 2000. Translation/secretion coupling by type III secretion systems. Cell 102:487–497.
102. Cornelis GR. 2002. The Yersinia Ysc-Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3:742–752. [PubMed][CrossRef]
103. Ebel F, Deibel C, Kresse AU, Guzmán CA, Chakraborty T. 1996. Temperature- and medium-dependent secretion of proteins by Shiga toxin-producing Escherichia coli. Infect Immun 64:4472–4479.[PubMed]
104. Parsot C, Menard R, Gounon P, Sansonetti PJ. 1995. Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol Microbiol 16:291–300.
105. Beltrametti F, Kresse AU, Guzmán CA. 1999. Transcriptional regulation of the esp genes of enterohemorrhagic Escherichia coli. J Bacteriol 181:3409–3418.[PubMed]
106. Roe AJ, Naylor SW, Spears KJ, Yull HM, Dransfield TA, Oxford M, McKendrick IJ, Porter M, Woodward MJ, Smith DG, Gally DL. 2004. Co-ordinate single-cell expression of LEE4- and LEE5-encoded proteins of Escherichia coli O157:H7. Mol Microbiol 54:337–352.
107. Deng W, Li Y, Hardwidge PR, Frey EA, Pfuetzner RA, Lee S, Gruenheid S, Strynakda NC, Puente JL, Finlay BB. 2005. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun 73:2135–2146. [PubMed][CrossRef]
108. Cornelis GR. 1998. The Yersinia deadly kiss. J Bacteriol 180:5495–5504.[PubMed]
109. Tatsuno I, Nagano K, Taguchi K, Rong L, Mori H, Sasakawa C. 2003. Increased adherence to Caco-2 cells caused by disruption of the yhiE and yhiF genes in enterohemorrhagic Escherichia coli O157:H7. Infect Immun 71:2598–2606.
110. Torres AG, Girón JA, Perna NT, Burland V, Blattner FR, Avelino-Flores F, Kaper JB. 2002. Identification and characterization of lpfABCC’DE, a fimbrial operon of enterohemorrhagic Escherichia coli O157:H7. Infect Immun 70:5416–5427.
111. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22.
112. Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533.
113. Dahan S, Knutton S, Shaw RK, Crepin VF, Dougan G, Frankel G. 2004. Transcriptome of enterohemorrhagic Escherichia coli O157 adhering to eukaryotic plasma membranes. Infect Immun 72:5452–5459. [PubMed][CrossRef]
114. Neves BC, Shaw RK, Frankel G, Knutton S. 2003. Polymorphisms within EspA filaments of enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 71:2262–2265.
115. Shaw RK, Daniell S, Ebel F, Frankel G, Knutton S. 2001. EspA filament-mediated protein translocation into red blood cells. Cell Microbiol 3:213–222.
116. Shaw RK, Daniell S, Frankel G, Knutton S. 2002. Enteropathogenic Escherichia coli translocate Tir and form an intimin-Tir intimate attachment to red blood cell membranes. Microbiology 148:1355–1365.
117. Zhang L, Chaudhuri RR, Constantinidou C, Hobman JL, Patel MD, Jones AC, Sarti D, Roe AJ, Vlisidou I, Shaw RK, Falciani F, Stevens MP, Gally DL, Knutton S, Frankel G, Penn CW, Pallen MJ. 2004. Regulators encoded in the Escherichia coli type III secretion system 2 gene cluster influence expression of genes within the locus for enterocyte effacement in enterohemorrhagic E. coli O157:H7. Infect Immun 72:7282–7293.
118. Herold S, Siebert J, Huber A, Schmidt H. 2005. Global expression of prophage genes in Escherichia coli O157:H7 strain EDL933 in response to norfloxacin. Antimicrob Agents Chemother 49:931–944.
119. Grif K, Dierich MP, Karch H, Allerberger F. 1998. Strain-specific differences in the amount of Shiga toxin released from enterohemorrhagic Escherichia coli O157 following exposure to subinhibitory concentrations of antimicrobial agents. Eur J Clin Microbiol Infect Dis 17:761–766. [PubMed][CrossRef]
120. Kimmitt PT, Harwood CR, Barer MR. 2000. Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg Infect Dis 6:458–465.
121. Walterspiel JN, Ashkenazi S, Morrow AL, Cleary TG. 1992. Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin I. Infection 20:25–29.
122. Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK, Acheson DW. 2000. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis 181:664–670.
123. Neely MN, Friedman DI. 1998. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of Shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol 28:1255–1267.
124. Wagner PL, Neely MN, Zhang X, Acheson DW, Waldor MK, Friedman DI. 2001. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 183:2081–2085.
125. Balagué, C, Véscovi EG. 2001. Activation of multiple antibiotic resistance in uropathogenic Escherichia coli strains by aryloxoalcanoic acid compounds. Antimicrob Agents Chemother 45:1815–1822. [PubMed][CrossRef]
126. Gamage SD, Strasser JE, Chalk CL, Weiss AA. 2003. Nonpathogenic Escherichia coli can contribute to the production of Shiga toxin. Infect Immun 71:3107–3115. [PubMed][CrossRef]
127. Haberberger RL Jr, Mikhail IA, Burans JP, Hyams KC, Glenn JC, Diniega BM, Sorgen S, Mansour N, Blacklow NR, Woody JN. 1991. Travelers’ diarrhea among United States military personnel during joint American-Egyptian armed forces exercises in Cairo, Egypt. Mil Med 156:27–30.
128. Hyams KC, Bourgeois AL, Merrell BR, Rozmajzl P, Escamilla J, Thornton SA, Wasserman GM, Burke A, Echeverria P, Green KY, Kapikian AZ, Woody JN. 1991. Diarrheal disease during Operation Desert Shield. N Engl J Med 325:1423–1428.
129. Wolf MK. 1997. Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxins of enterotoxigenic Escherichia coli. Clin Microbiol Rev 10:569–584.
130. Boylan M, Coleman DC, Smyth CJ. 1987. Molecular cloning and characterization of the genetic determinant encoding CS3 fimbriae of enterotoxigenic Escherichia coli. Microb Pathog 2:195–209. [PubMed][CrossRef]
131. Cravioto A, Scotland SM, Rowe B. 1982. Hemagglutination activity and colonization factor antigens I and II in enterotoxigenic and non-enterotoxigenic strains of Escherichia coli isolated from humans. Infect Immun 36:189–197.[PubMed]
132. Mullany P, Field AM, McConnell MM, Scotland SM, Smith HR, Rowe B. 1983. Expression of plasmids coding for colonization factor antigen II (CFA/II) and enterotoxin production in Escherichia coli. J Gen Microbiol 129:3591–3601.
133. Smith HR, Willshaw GA, Rowe B. 1982. Mapping of a plasmid, coding for colonization, factor antigen I and heat-stable enterotoxin production, isolated from an enterotoxigenic strain of Escherichia coli. J Bacteriol 149:264–275.
134. Smyth CJ. 1982. Two mannose-resistant haemagglutinins on enterotoxigenic Escherichia coli of serotype O6:K15:H16 or H-isolated from travellers' and infantile diarrhoea. J Gen Microbiol 128:2081–2096.
135. Gaastra W, Svennerholm AM. 1996. Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 4:444–452. [PubMed][CrossRef]
136. Savelkoul PH, Willshaw GA, McConnell MM, Smith HR, Hamers AM, van der Zeijst BA, Gaastra W. 1990. Expression of CFA/I fimbriae is positively regulated. Microb Pathog 8:91–99.
137. Caron J, Coffield LM, Scott JR. 1989. A plasmid-encoded regulatory gene, rns, required for expression of the CS1 and CS2 adhesins of enterotoxigenic Escherichia coli. Proc Natl Acad Sci USA 86:963–967. [PubMed][CrossRef]
138. Grewal HM, Gaastra W, Svennerholm AM, Rèoli J, Sommerfelt H. 1993. Induction of colonization factor antigen I (CFA/I) and coli surface antigen 4 (CS4) of enterotoxigenic Escherichia coli: relevance for vaccine production. Vaccine 11:221–226. [PubMed][CrossRef]
139. Sommerfelt H, Grewal HM, Gaastra W, Bhan MK, Svennerholm AM, Kalland KH, Asphaug V, Aasland R, Bjorvatn B. 1991. Presence of cfaD-homologous sequences and expression of coli surface antigen 4 on enterotoxigenic Escherichia coli; relevance for diagnostic procedures. Microb Pathog 11:297–304.
140. Jordi BJ, Dagberg B, de Haan LA, Hamers AM, van der Zeijst BA, Gaastra W, Uhlin BE. 1992. The positive regulator CfaD overcomes the repression mediated by histone-like protein H-NS (H1) in the CFA/I fimbrial operon of Escherichia coli. EMBO J 11:2627–2632.
141. Karjalainen TK, Evans DG, Evans DJ Jr, Graham DY, Lee CH. 1991. Iron represses the expression of CFA/I fimbriae of enterotoxigenic E. coli. Microb Pathog 11:317–323.
142. Sommerfelt H, Grewal HM, Svennerholm AM, Gaastra W, Flood PR, Viboud G, Bhan MK. 1992. Genetic relationship of putative colonization factor O166 to colonization factor antigen I and coli surface antigen 4 of enterotoxigenic Escherichia coli. Infect Immun 60:3799–3806.
143. Willshaw GA, McConnell MM, Smith HR, Rowe B. 1990. Structural and regulatory genes for coli surface associated antigen 4 (CS4) are encoded by separate plasmids in enterotoxigenic Escherichia coli strains of serotype O25:H42. FEMS Microbiol Lett 56:255–260.
144. Valvatne H, Sommerfelt H, Gaastra W, Bhan MK, Grewal HM. 1996. Identification and characterization of CS20, a new putative colonization factor of enterotoxigenic Escherichia coli. Infect Immun 64:2635–2642.
145. Porter ME, Smith SG, Dorman CJ. 1998. Two highly related regulatory proteins, Shigella flexneri VirF and enterotoxigenic Escherichia coli Rns, have common and distinct regulatory properties. FEMS Microbiol Lett 162:303–309.
146. Froehlich B, Husmann L, Caron J, Scott JR. 1994. Regulation of rns, a positive regulatory factor for pili of enterotoxigenic Escherichia coli. J Bacteriol 176:5385–5392.[PubMed]
147. Caron J, Scott JR. 1990. A rns-like regulatory gene for colonization factor antigen I (CFA/I) that controls expression of CFA/I pilin. Infect Immun 58:874–878.[PubMed]
148. de Haan LA, Willshaw GA, van der Zeijst BA, Gaastra W. 1991. The nucleotide sequence of a regulatory gene present on a plasmid in an enterotoxigenic Escherichia coli strain of serotype O167:H5. FEMS Microbiol Lett 67:341–346. [PubMed][CrossRef]
149. Willshaw GA, Smith HR, McConnell MM, Rowe B. 1991. Cloning of regulator genes controlling fimbrial production by enterotoxigenic Escherichia coli. FEMS Microbiol Lett 66:125–129.
150. Higgins DE, Nazareno E, DiRita VJ. 1992. The virulence gene activator ToxT from Vibrio cholerae is a member of the AraC family of transcriptional activators. J Bacteriol 174:6974–6980.
151. Munson GP, Scott JR. 1999. Binding site recognition by Rns, a virulence regulator in the AraC family. J Bacteriol 181:2110–2117.
152. Scott JR, Wakefield JC, Russell PW, Orndorff PE, Froehlich BJ. 1992. CooB is required for assembly but not transport of CS1 pilin. Mol Microbiol 6:293–300.
153. Perez-Casal J, Swartley JS, Scott JR. 1990. Gene encoding the major subunit of CS1 pili of human enterotoxigenic Escherichia coli. Infect Immun 58:3594–3600.
154. Munson GP, Scott JR. 2000. Rns, a virulence regulator within the AraC family, requires binding sites upstream and downstream of its own promoter to function as an activator. Mol Microbiol 36:1391–1402.
155. Murphree D, Froehlich B, Scott JR. 1997. Transcriptional control of genes encoding CS1 pili: negative regulation by a silencer and positive regulation by Rns. J Bacteriol 179:5736–5743.
156. Fletcher SA, Csonka LN. 1995. Fine-structure deletion analysis of the transcriptional silencer of the proU operon of Salmonella typhimurium. J Bacteriol 177:4508–4513.[PubMed]
157. Jubete Y, Zabala JC, Juarez A, de la Cruz F. 1995. hlyM, a transcriptional silencer downstream of the promoter in the hly operon of Escherichia coli. J Bacteriol 177:242–246.
158. Overdier DG, Csonka LN. 1992. A transcriptional silencer downstream of the promoter in the osmotically controlled proU operon of Salmonella typhimurium. Proc Natl Acad Sci USA 89:3140–3144.
159. Schnetz K. 1995. Silencing of Escherichia coli bgl promoter by flanking sequence elements. EMBO J 14:2545–2550.
160. Trachman JD, Maas WK. 1998. Temperature regulation of heat-labile enterotoxin (LT) synthesis in Escherichia coli is mediated by an interaction of H-NS protein with the LT A-subunit DNA. J Bacteriol 180:3715–3718.
161. Yang J, Tauschek M, Strugnell R, Robins-Browne RM. 2005. The H-NS protein represses transcription of the eltAB operon, which encodes heat-labile enterotoxin in enterotoxigenic Escherichia coli, by binding to regions downstream of the promoter. Microbiology 151:1199–1208.
162. Edwards RA, Schifferli DM. 1997. Differential regulation of fasA and fasH expression of Escherichia coli 987P fimbriae by environmental cues. Mol Microbiol 25:797–809. [PubMed][CrossRef]
163. Honarvar S, Choi BK, Schifferli DM. 2003. Phase variation of the 987P-like CS18 fimbriae of human enterotoxigenic Escherichia coli is regulated by site-specific recombinases. Mol Microbiol 48:157–171.
164. Nataro JP, Kaper JB, Robins-Browne R, Prado V, Vial P, Levine MM. 1987. Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr Infect Dis J 6:829–831.
165. Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP. 1999. Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun 67:5587–5596.
166. Czeczulin JR, Whittam TS, Henderson IR, Navarro-García F, Nataro JP. 1999. Phylogenetic analysis of enteroaggregative and diffusely adherent Escherichia coli. Infect Immun 67:2692–2699.[PubMed]
167. Menard LP, Dubreuil JD. 2002. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1): a new toxin with an old twist. Crit Rev Microbiol 28:43–60.
168. Nataro JP. 2005. Enteroaggregative Escherichia coli pathogenesis. Curr Opin Gastroenterol 21:4–8.
169. Nataro JP, Hicks S, Phillips AD, Vial PA, Sears CL. 1996. T84 cells in culture as a model for enteroaggregative Escherichia coli pathogenesis. Infect Immun 64:4761–4768.
170. Tzipori S, Montanaro J, Robins-Browne RM, Vial P, Gibson R, Levine MM. 1992. Studies with enteroaggregative Escherichia coli in the gnotobiotic piglet gastroenteritis model. Infect Immun 60:5302–5306.
171. Vial PA, Robins-Browne R, Lior H, Prado V, Kaper JB, Nataro JP, Maneval D, Elsayed A, Levine MM. 1988. Characterization of enteroadherent-aggregative Escherichia coli, a putative agent of diarrheal disease. J Infect Dis 158:70–79.
172. Elias WP Jr, Czeczulin JR, Henderson IR, Trabulsi LR, Nataro JP. 1999. Organization of biogenesis genes for aggregative adherence fimbria II defines a virulence gene cluster in enteroaggregative Escherichia coli. J Bacteriol 181:1779–1785.[PubMed]
173. Savarino SJ, Fox P, Deng Y, Nataro JP. 1994. Identification and characterization of a gene cluster mediating enteroaggregative Escherichia coli aggregative adherence fimbria I biogenesis. J Bacteriol 176:4949–4957.
174. Bernier C, Gounon P, Le Bouguénec C. 2002. Identification of an aggregative adhesion fimbria (AAF) type III-encoding operon in enteroaggregative Escherichia coli as a sensitive probe for detecting the AAF-encoding operon family. Infect Immun 70:4302–4311. [PubMed][CrossRef]
175. Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR, Le Bouguenec C, Gounon P, Phillips A, Nataro JP. 2002. A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest 110:1329–1337.
176. Nataro JP, Yikang D, Girón JA, Savarino SJ, Kothary MH, Hall R. 1993. Aggregative adherence fimbria I expression in enteroaggregative Escherichia coli requires two unlinked plasmid regions. Infect Immun 61:1126–1131.
177. Nataro JP, Yikang D, Yingkang D, Walker K. 1994. AggR, a transcriptional activator of aggregative adherence fimbria I expression in enteroaggregative Escherichia coli. J Bacteriol 176:4691–4699.
178. Nishi J, Sheikh J, Mizuguchi K, Luisi B, Burland V, Boutin A, Rose DJ, Blattner FR, Nataro JP. 2003. The export of coat protein from enteroaggregative Escherichia coli by a specific ATP-binding cassette transporter system. J Biol Chem 278:45680–45689.
179. Sheikh J, Hicks S, Dall’Agnol M, Phillips AD, Nataro JP. 2001. Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol 41:983–997.
180. Ruiz-Perez F, Sheikh J, Davis S, Boedeker EC, Nataro JP. 2004. Use of a continuous-flow anaerobic culture to characterize enteric virulence gene expression. Infect Immun 72:3793–3802.
181. Behrens M, Sheikh J, Nataro JP. 2002. Regulation of the overlapping pic/set locus in Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun 70:2915–2925. [PubMed][CrossRef]
182. Eslava C, Navarro-García F, Czeczulin JR, Henderson IR, Cravioto A, Nataro JP. 1998. Pet, an autotransporter enterotoxin from enteroaggregative Escherichia coli. Infect Immun 66:3155–3163.[PubMed]
183. Russo TA, Johnson JR. 2003. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microb Infect 5:449–456.
184. Foxman B. 2002. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 113(Suppl. 1A):5S–13S. [CrossRef]
185. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024.
186. Johnson JR, Stamm WE. 1989. Urinary tract infections in women: diagnosis and treatment. Ann Intern Med 111:906–917.
187. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474. [PubMed][CrossRef]
188. Anderson GG, Dodson KW, Hooton TM, Hultgren SJ. 2004. Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol 12:424–430. [PubMed][CrossRef]
189. Guyer DM, Gunther NW IV, Mobley HL. 2001. Secreted proteins and other features specific to uropathogenic Escherichia coli. J Infect Dis 183:S32–S35.
190. Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ. 2000. Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci USA 97:8829–8835.
191. Kau AL, Hunstad DA, Hultgren SJ. 2005. Interaction of uropathogenic Escherichia coli with host uroepithelium. Curr Opin Microbiol 8:54–59.
192. Hung CS, Bouckaert J, Hung D, Pinkner J, Widberg C, DeFusco A, Auguste CG, Strouse R, Langermann S, Waksman G, Hultgren SJ. 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44:903–915.
193. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497.
194. Dodson KW, Pinkner JS, Rose T, Magnusson G, Hultgren SJ, Waksman G. 2001. Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743. [PubMed][CrossRef]
195. Balsalobre C, Morschhäuser J, Jass J, Hacker J, Uhlin BE. 2003. Transcriptional analysis of the sfa determinant revealing mRNA processing events in the biogenesis of S fimbriae in pathogenic Escherichia coli. J Bacteriol 185:620–629. [PubMed][CrossRef]
196. Korhonen TK, Valtonen MV, Parkkinen J, Vaisanen-Rhen V, Finne J, Orskov F, Orskov I, Svenson SB, Makela PH. 1985. Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis. Infect Immun 48:486–491.
197. Henderson IR, Nataro JP. 2001. Virulence functions of autotransporter proteins. Infect Immun 69:1231–1243.
198. Henderson IR, Navarro-García F, Nataro JP. 1998. The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6:370–378.
199. Guyer DM, Henderson IR, Nataro JP, Mobley HL. 2000. Identification of sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol Microbiol 38:53–66.
200. Guyer DM, Radulovic S, Jones FE, Mobley HL. 2002. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun 70:4539–4546.
201. Mills M, Meysick KC, O’Brien AD. 2000. Cytotoxic necrotizing factor type 1 of uropathogenic Escherichia coli kills cultured human uroepithelial 5637 cells by an apoptotic mechanism. Infect Immun 68:5869–5880.
202. Ratledge C, Dover LG. 2000. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941.
203. Schubert S, Rakin A, Karch H, Carniel E, Heesemann J. 1998. Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 66:480–485.
204. Schubert S, Picard B, Gouriou S, Heesemann J, Denamur E. 2002. Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections. Infect Immun 70:5335–5337.
205. Torres AG, Redford P, Welch RA, Payne SM. 2001. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69:6179–6185.
206. Williams PH, Warner PJ. 1980. ColV plasmid-mediated, colicin V-independent iron uptake system of invasive strains of Escherichia coli. Infect Immun 29:411–416.
207. Russo TA, Carlino UB, Johnson JR. 2001. Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 69:6209–6216.
208. Russo TA, Carlino UB, Mong A, Jodush ST. 1999. Identification of genes in an extraintestinal isolate of Escherichia coli with increased expression after exposure to human urine. Infect Immun 67:5306–5314.
209. Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Barnard TJ, Johnson JR. 2002. IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 70:7156–7160.
210. Torres AG, Payne SM. 1997. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 23:825–833.
211. Mulvey MA. 2002. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4:257–271.
212. Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci USA 93:9827–9832. [PubMed][CrossRef]
213. Keith BR, Maurer L, Spears PA, Orndorff PE. 1986. Receptor-binding function of type 1 pili effects bladder colonization by a clinical isolate of Escherichia coli. Infect Immun 53:693–696.
214. Goluszko P, Popov V, Selvarangan R, Nowicki S, Pham T, Nowicki BJ. 1997. Dr fimbriae operon of uropathogenic Escherichia coli mediate microtubule-dependent invasion to the HeLa epithelial cell line. J Infect Dis 176:158–167. [PubMed][CrossRef]
215. Redford P, Roesch PL, Welch RA. 2003. DegS is necessary for virulence and is among extraintestinal Escherichia coli genes induced in murine peritonitis. Infect Immun 71:3088–3096.
216. Abraham JM, Freitag CS, Clements JR, Eisenstein BI. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci USA 82:5724–5727. [PubMed][CrossRef]
217. Klemm P. 1986. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5:1389–1393.
218. McClain MS, Blomfield IC, Eberhardt KJ, Eisenstein BI. 1993. Inversion-independent phase variation of type 1 fimbriae in Escherichia coli. J Bacteriol 175:4335–4344.
219. Gunther NW IV, Lockatell V, Johnson DE, Mobley HL. 2001. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect Immun 69:2838–2846.
220. Schwan WR, Lee JL, Lenard FA, Matthews BT, Beck MT. 2002. Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect Immun 70:1391–1402.
221. Hultgren SJ, Abraham S, Caparon M, Falk P, St Geme JW III, Normark S. 1993. Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73:887–901.
222. Low D, Robinson EN Jr, McGee ZA, Falkow S. 1987. The frequency of expression of pyelonephritis-associated pili is under regulatory control. Mol Microbiol 1:335–346.
223. Braaten BA, Nou X, Kaltenbach LS, Low DA. 1994. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 76:577–588. [PubMed][CrossRef]
224. van der Woude MW, Braaten BA, Low DA. 1992. Evidence for global regulatory control of pilus expression in Escherichia coli by Lrp and DNA methylation: model building based on analysis of pap. Mol Microbiol 6:2429–2435.
225. Blyn LB, Braaten BA, Low DA. 1990. Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J 9:4045–4054.[PubMed]
226. Nou X, Braaten B, Kaltenbach L, Low DA. 1995. Differential binding of Lrp to two sets of pap DNA binding sites mediated by Pap I regulates Pap phase variation in Escherichia coli. EMBO J 14:5785–5797.
227. van der Woude M, Braaten B, Low D. 1996. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol 4:5–9.
228. Weyand NJ, Low DA. 2000. Regulation of Pap phase variation. Lrp is sufficient for the establishment of the phase off pap DNA methylation pattern and repression of pap transcription in vitro. J Biol Chem 275:3192–3200.
229. Braaten BA, Blyn LB, Skinner BS, Low DA. 1991. Evidence for a methylation-blocking factor (mbf) locus involved in pap pilus expression and phase variation in Escherichia coli. J Bacteriol 173:1789–1800.[PubMed]
230. Nou X, Skinner B, Braaten B, Blyn L, Hirsch D, Low D. 1993. Regulation of pyelonephritis-associated pili phase-variation in Escherichia coli: binding of the PapI and the Lrp regulatory proteins is controlled by DNA methylation. Mol Microbiol 7:545–553.
231. Weyand NJ, Braaten BA, van der Woude M, Tucker J, Low DA. 2001. The essential role of the promoter-proximal subunit of CAP in pap phase variation: Lrp- and helical phase-dependent activation of papBA transcription by CAP from -215. Mol Microbiol 39:1504–1522.
232. White-Ziegler CA, Angus Hill ML, Braaten BA, van der Woude MW, Low DA. 1998. Thermoregulation of Escherichia coli pap transcription: H-NS is a temperature-dependent DNA methylation blocking factor. Mol Microbiol 28:1121–1137.
233. Goransson M, Forsman P, Nilsson P, Uhlin BE. 1989. Upstream activating sequences that are shared by two divergently transcribed operons mediate cAMP-CRP regulation of pilus-adhesin in Escherichia coli. Mol Microbiol 3:1557–1565. [PubMed][CrossRef]
234. Goransson M, Uhlin BE. 1984. Environmental temperature regulates transcription of a virulence pili operon in E. coli. EMBO J 3:2885–2888.[PubMed]
235. White-Ziegler CA, Blyn LB, Braaten BA, Low DA. 1990. Identification of an Escherichia coli genetic locus involved in thermoregulation of the pap operon. J Bacteriol 172:1775–1782.
236. Blyn LB, Braaten BA, White-Ziegler CA, Rolfson DH, Low DA. 1989. Phase-variation of pyelonephritis-associated pili in Escherichia coli: evidence for transcriptional regulation. EMBO J 8:613–620.[PubMed]
237. White-Ziegler CA, Low DA. 1992. Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. J Bacteriol 174:7003–7012.
238. Forsman K, Goransson M, Uhlin BE. 1989. Autoregulation and multiple DNA interactions by a transcriptional regulatory protein in E. coli pili biogenesis. EMBO J 8:1271–1277.[PubMed]
239. White-Ziegler CA, Black AM, Eliades SH, Young S, Porter K. 2002. The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli. J Bacteriol 184:4334–4342.
240. Schmoll T, Ott M, Oudega B, Hacker J. 1990. Use of a wild-type gene fusion to determine the influence of environmental conditions on expression of the S fimbrial adhesin in an Escherichia coli pathogen. J Bacteriol 172:5103–5111.
241. Bailey MJ, Hughes C, Koronakis V. 1997. RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Mol Microbiol 26:845–851. [PubMed][CrossRef]
242. Bailey MJ, Hughes C, Koronakis V. 1996. Increased distal gene transcription by the elongation factor RfaH, a specialized homologue of NusG. Mol Microbiol 22:729–737. [PubMed][CrossRef]
243. Leeds JA, Welch RA. 1997. Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism. J Bacteriol 179:3519–3527.
244. Leeds JA, Welch RA. 1996. RfaH enhances elongation of Escherichia coli hlyCABD mRNA. J Bacteriol 178:1850–1857.
245. Welch RA, Pellett S. 1988. Transcriptional organization of the Escherichia coli hemolysin genes. J Bacteriol 170:1622–1630.
246. Nagy G, Dobrindt U, Schneider G, Khan AS, Hacker J, Emödy L. 2002. Loss of regulatory protein RfaH attenuates virulence of uropathogenic Escherichia coli. Infect Immun 70:4406–4413.
247. Nagy G, Dobrindt U, Kupfer M, Emèody L, Karch H, Hacker J. 2001. Expression of hemin receptor molecule ChuA is influenced by RfaH in uropathogenic Escherichia coli strain 536. Infect Immun 69:1924–1938.
248. Landraud L, Gibert M, Popoff MR, Boquet P, Gauthier M. 2003. Expression of cnf1 by Escherichia coli J96 involves a large upstream DNA region including the hlyCABD operon, and is regulated by the RfaH protein. Mol Microbiol 47:1653–1667.
249. Blanco J, Blanco M, Alonso MP, Blanco JE, Gonzalez EA, Garabal JI. 1992. Characteristics of haemolytic Escherichia coli with particular reference to production of cytotoxic necrotizing factor type 1 (CNF1). Res Microbiol 143:869–878. [PubMed][CrossRef]
250. Landraud L, Gauthier M, Fosse T, Boquet P. 2000. Frequency of Escherichia coli strains producing the cytotoxic necrotizing factor (CNF1) in nosocomial urinary tract infections. Lett Appl Microbiol 30:213–216.
251. Fabbri A, Gauthier M, Boquet P. 1999. The 5′ region of cnf1 harbours a translational regulatory mechanism for CNF1 synthesis and encodes the cell-binding domain of the toxin. Mol Microbiol 33:108–118. [PubMed][CrossRef]
252. Mourino M, Munoa F, Balsalobre C, Diaz P, Madrid C, Juarez A. 1994. Environmental regulation of alpha-haemolysin expression in Escherichia coli. Microb Pathog 16:249–259.
253. Balsalobre C, Johansson J, Uhlin BE, Juarez A, Munoa FJ. 1999. Alterations in protein expression caused by the hha mutation in Escherichia coli: influence of growth medium osmolarity. J Bacteriol 181:3018–3024.[PubMed]
254. Nieto JM, Madrid C, Prenafeta A, Miquelay E, Balsalobre C, Carrascal M, Juarez A. 2000. Expression of the hemolysin operon in Escherichia coli is modulated by a nucleoid-protein complex that includes the proteins Hha and H-NS. Mol Gen Genet 263:349–358.
255. Nieto JM, Mourino M, Balsalobre C, Madrid C, Prenafeta A, Munoa FJ, Juarez A. 1997. Construction of a double hha hns mutant of Escherichia coli: effect on DNA supercoiling and alpha-haemolysin production. FEMS Microbiol Lett 155:39–44.
256. Dobrindt U, Emödy L, Gentschev I, Goebel W, Hacker J. 2002. Efficient expression of the alpha-haemolysin determinant in the uropathogenic Escherichia coli strain 536 requires the leuX-encoded tRNA(5)(Leu). Mol Genet Genomics 267:370–379. [PubMed][CrossRef]
257. Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschape H, Hacker J. 1994. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62:606–614.[PubMed]
258. Dobrindt U, Cohen PS, Utley M, Muhldorfer I, Hacker J. 1998. The leuX-encoded tRNA5(Leu) but not the pathogenicity islands I and II influence the survival of the uropathogenic Escherichia coli strain 536 in CD-1 mouse bladder mucus in the stationary phase. FEMS Microbiol Lett 162:135–141. [PubMed][CrossRef]
259. Ritter A, Blum G, Emödy L, Kerenyi M, Bock A, Neuhierl B, Rabsch W, Scheutz F, Hacker J. 1995. tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol Microbiol 17:109–121.
260. Ritter A, Gally DL, Olsen PB, Dobrindt U, Friedrich A, Klemm P, Hacker J. 1997. The Pai-associated leuX specific tRNA5(Leu) affects type 1 fimbriation in pathogenic Escherichia coli by control of FimB recombinase expression. Mol Microbiol 25:871–882.
261. Dobrindt U, Hacker J. 2001. Regulation of tRNA5Leu-encoding gene leuX that is associated with a pathogenicity island in the uropathogenic Escherichia coli strain 536. Mol Genet Genomics 265:895–904. [PubMed][CrossRef]
262. Zhang JP, Normark S. 1996. Induction of gene expression in Escherichia coli after pilus-mediated adherence. Science 273:1234–1236.
263. Schwan WR, Beck MT, Hultgren SJ, Pinkner J, Woolever NL, Larson T. 2005. Down-regulation of the kps region 1 capsular assembly operon following attachment of Escherichia coli type 1 fimbriae to D-mannose receptors. Infect Immun 73:1226–1231.
264. de Vries FP, van Der Ende A, van Putten JP, Dankert J. 1996. Invasion of primary nasopharyngeal epithelial cells by Neisseria meningitidis is controlled by phase variation of multiple surface antigens. Infect Immun 64:2998–3006.[PubMed]
265. Sahly H, Podschun R, Ullmann U. 2000. Klebsiella infections in the immunocompromised host. Adv Exp Med Biol 479:237–249.
266. Russo TA, Jodush ST, Brown JJ, Johnson JR. 1996. Identification of two previously unrecognized genes (guaA and argC) important for uropathogenesis. Mol Microbiol 22:217–229.
267. Snyder JA, Haugen BJ, Buckles EL, Lockatell CV, Johnson DE, Donnenberg MS, Welch RA, Mobley HL. 2004. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72:6373–6381.
268. Braun V, Fischer E, Hantke K, Heller K, Rotering H. 1985. Functional aspects of gram-negative cell surfaces. Subcell Biochem 11:103–180.[PubMed]
269. Braun V. 2003. Iron uptake by Escherichia coli. Front Biosci 8:s1409–s1421. [PubMed][CrossRef]
270. Heimer SR, Rasko DA, Lockatell CV, Johnson DE, Mobley HL. 2004. Autotransporter genes pic and tsh are associated with Escherichia coli strains that cause acute pyelonephritis and are expressed during urinary tract infection. Infect Immun 72:593–597.
271. Stathopoulos C, Provence DL, Curtiss R III. 1999. Characterization of the avian pathogenic Escherichia coli hemagglutinin Tsh, a member of the immunoglobulin A protease-type family of autotransporters. Infect Immun 67:772–781.
272. Lèugering A, Benz I, Knochenhauer S, Ruffing M, Schmidt MA. 2003. The Pix pilus adhesin of the uropathogenic Escherichia coli strain X2194 (O2 : K(-): H6) is related to Pap pili but exhibits a truncated regulatory region. Microbiology 149:1387–1397.
273. Pernestig AK, Georgellis D, Romeo T, Suzuki K, Tomenius H, Normark S, Melefors O. 2003. The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. J Bacteriol 185:843–853.
274. Ahmer BM, Heffron F. 1999. Salmonella typhimurium recognition of intestinal environments: response. Trends Microbiol 7:222–223. [PubMed][CrossRef]
275. Heeb S, Haas D. 2001. Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14:1351–1363.
276. Pernestig AK, Melefors O, Georgellis D. 2001. Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J Biol Chem 276:225–231.
277. Sarff LD, McCracken GH, Schiffer MS, Glode MP, Robbins JB, Orskov I, Orskov F. 1975. Epidemiology of Escherichia coli K1 in healthy and diseased newborns. Lancet 1:1099–1104.
278. Unhanand M, Mustafa MM, McCracken GH Jr, Nelson JD. 1993. Gram-negative enteric bacillary meningitis: a twenty-one-year experience. J Pediatr 122:15–21.
279. Pong A, Bradley JS. 1999. Bacterial meningitis and the newborn infant. Infect Dis Clin N Am 13:711–733, viii.
280. Bortolussi R, Ferrieri P, Wannamaker LW. 1978. Dynamics of Escherichia coli infection and meningitis in infant rats. Infect Immun 22:480–485.[PubMed]
281. Glode MP, Sutton A, Moxon ER, Robbins JB. 1977. Pathogenesis of neonatal Escherichia coli meningitis: induction of bacteremia and meningitis in infant rats fed E. coli K1. Infect Immun 16:75–80.[PubMed]
282. Kim KS. 2003. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 4:376–385.
283. Aguero ME, de la Fuente G, Vivaldi E, Cabello F. 1989. ColV increases the virulence of Escherichia coli K1 strains in animal models of neonatal meningitis and urinary infection. Med Microbiol Immunol (Berl) 178:211–216. [PubMed][CrossRef]
284. Hoffman JA, Wass C, Stins MF, Kim KS. 1999. The capsule supports survival but not traversal of Escherichia coli K1 across the blood-brain barrier. Infect Immun 67:3566–3570.
285. Leying H, Suerbaum S, Kroll HP, Stahl D, Opferkuch W. 1990. The capsular polysaccharide is a major determinant of serum resistance in K-1-positive blood culture isolates of Escherichia coli. Infect Immun 58:222–227.
286. Robbins JB, McCracken GH Jr, Gotschlich EC, Orskov F, Orskov I, Hanson LA. 1974. Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis. N Engl J Med 290:1216–1220.
287. Prasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS. 1996. Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 64:146–153.
288. Tunkel AR, Wispelwey B, Scheld WM. 1990. Pathogenesis and pathophysiology of meningitis. Infect Dis Clin N Am 4:555–581.
289. Badger JL, Wass CA, Weissman SJ, Kim KS. 2000. Application of signature-tagged mutagenesis for identification of Escherichia coli K1 genes that contribute to invasion of human brain microvascular endothelial cells. Infect Immun 68:5056–5061. [PubMed][CrossRef]
290. Huang SH, Wan ZS, Chen YH, Jong AY, Kim KS. 2001. Further characterization of Escherichia coli brain microvascular endothelial cell invasion gene ibeA by deletion, complementation, and protein expression. J Infect Dis 183:1071–1078.
291. Hill VT, Townsend SM, Arias RS, Jenabi JM, Gomez-Gonzalez I, Shimada H, Badger JL. 2004. TraJ-dependent Escherichia coli K1 interactions with professional phagocytes are important for early systemic dissemination of infection in the neonatal rat. Infect Immun 72:478–488.
292. Nègre VL, Bonacorsi S, Schubert S, Bidet P, Nassif X, Bingen E. 2004. The siderophore receptor IroN, but not the high-pathogenicity island or the hemin receptor ChuA, contributes to the bacteremic step of Escherichia coli neonatal meningitis. Infect Immun 72:1216–1220.
293. Khan NA, Shin S, Chung JW, Kim KJ, Elliott S, Wang Y, Kim KS. 2003. Outer membrane protein A and cytotoxic necrotizing factor-1 use diverse signaling mechanisms for Escherichia coli K1 invasion of human brain microvascular endothelial cells. Microb Pathog 35:35–42.
294. Prasadarao NV, Wass CA, Kim KS. 1997. Identification and characterization of S fimbria-binding sialoglycoproteins on brain microvascular endothelial cells. Infect Immun 65:2852–2860.
295. Teng CH, Cai M, Shin S, Xie Y, Kim KJ, Khan NA, Di Cello F, Kim KS. 2005. Escherichia coli K1 RS218 interacts with human brain microvascular endothelial cells via type 1 fimbria bacteria in the fimbriated state. Infect Immun 73:2923–2931.
296. Wang Y, Wen ZG, Kim KS. 2004. Role of S fimbriae in Escherichia coli K1 binding to brain microvascular endothelial cells in vitro and penetration into the central nervous system in vivo. Microb Pathog 37:287–293.
297. Huang SH, Chen YH, Kong G, Chen SH, Besemer J, Borodovsky M, Jong A. 2001. A novel genetic island of meningitic Escherichia coli K1 containing the ibeA invasion gene (GimA): functional annotation and carbon-source-regulated invasion of human brain microvascular endothelial cells. Funct Integr Genomics 1:312–322.
298. Khan MA, Isaacson RE. 2002. Identification of Escherichia coli genes that are specifically expressed in a murine model of septicemic infection. Infect Immun 70:3404–3412.
299. Dorman CJ. 2004. H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400. [PubMed][CrossRef]
300. Dorman CJ, Deighan P. 2003. Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev 13:179–184. [PubMed][CrossRef]
301. Rimsky S. 2004. Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol 7:109–114.
302. Tendeng C, Bertin PN. 2003. H-NS in Gram-negative bacteria: a family of multifaceted proteins. Trends Microbiol 11:511–518.
303. Poore CA, Mobley HL. 2003. Differential regulation of the Proteus mirabilis urease gene cluster by UreR and H-NS. Microbiology 149:3383–3394.
304. Dame RT, Luijsterburg MS, Krin E, Bertin PN, Wagner R, Wuite GJ. 2005. DNA bridging: a property shared among H-NS-like proteins. J Bacteriol 187:1845–1848. [PubMed][CrossRef]
305. Dame RT, Wyman C, Wurm R, Wagner R, Goosen N. 2002. Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J Biol Chem 277:2146–2150. [PubMed][CrossRef]
306. Liu Q, Richardson CC. 1993. Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H-NS of Escherichia coli. Proc Natl Acad Sci USA 90:1761–1765.
ecosalplus.8.9.1.citations
ecosalplus/2/1
content/journal/ecosalplus/10.1128/ecosalplus.8.9.1
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.8.9.1
2006-06-06
2017-08-21

Abstract:

causes three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregative—EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenic, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied pathotypes is complex, but common themes offerinsight into the signals and regulators necessary for disease progression.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Thin arrows represent positive regulatory signals, and blunt arrows represent negative signals. Regulatory proteins and QS molecules are within ovals. Solid arrows note expression of regulatory proteins, TTSS components, QS molecules, adhesions, and flagella. BfpA is the structural subunit of the BFP fimbria. Environmental signals regulate multiple aspects of EPEC virulence: temperature, growth phase, and ammonium ions affect expression of both the LEE and the BFP operon, while these and other signals control expression of additional virulence determinants (see text for details). GadX is maximally expressed at pH 5.5 and is postulated to be involved in acid tolerance. Question marks represent potential initial adhesions.

Citation: Mellies J, Barron A. 2006. Virulence Gene Regulation in , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.9.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Thin arrows represent positive regulatory signals, and blunt arrows represent negative signals. Regulatory proteins and QS molecules are within ovals. Solid arrows note expression of regulatory proteins, TTSS components, QS molecules, adhesions, and flagella. The EtrA and EivF proteins are encoded in a second cryptic TTSS of the Sakai 813 strain. The QS-associated signaling molecule epinephrine, adherence and SOS-associated regulation, and regulation in response to divalent cation concentrations are noted by boxes. Stx is represented by a spiked circle.

Citation: Mellies J, Barron A. 2006. Virulence Gene Regulation in , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.9.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Thin arrows represent positive regulatory signals, and blunt arrows represent negative signals. Solid arrows note expression of regulatory proteins and adhesins. Regulatory proteins are within ovals. CfaB and CooA are the structural subunits, while CfaE and CooD are the tip adhesins for the CFA/I and CS1 fimbriae, respectively. The environmental signals temperature and iron are noted by boxes. The ST and LT toxins are represented by a star and jagged circle, respectively.

Citation: Mellies J, Barron A. 2006. Virulence Gene Regulation in , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.9.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Thin arrows represent positive regulatory signals, and blunt arrows represent negative signals. Solid arrows note expression of regulatory proteins and adhesins. The EAEC biofilm is represented by the bricklike structure. AggA and AafA are the structural subunits of the AAF/I and AAF/II fimbriae, respectively. Regulatory and DsbA proteins are within ovals.

Citation: Mellies J, Barron A. 2006. Virulence Gene Regulation in , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.9.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Thin arrows represent positive regulatory signals, and blunt arrows represent negative signals. Solid arrows note expression of regulatory proteins, adhesins, capsule, autotransported proteins, including Pic, Sat, and Tsh, targeted to the host cell and α-hemolysin. Regulatory proteins, capsule, and the regulatory tRNA are within ovals. FimA, PapA, and SfaA are the structural subunits of the type 1, Pap, and S fimbriae, respectively. FimH and PapG are the tip adhesins for the type 1 and Pap fimbriae. The FimH and PapG tip adhesins and S fimbriae bind to mannose moieties found on uroplakin, globoside, and α-sialic acid, respectively, within the host. Environmental signals affecting UPEC virulence gene expression are boxed and appear at the upper right.

Citation: Mellies J, Barron A. 2006. Virulence Gene Regulation in , EcoSal Plus 2006; doi:10.1128/ecosalplus.8.9.1
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error