1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 5:

Responding to the Environment

Osmoregulated Periplasmic Glucans

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Sébastien Bontemps-Gallo1, Jean-Pierre Bohin3, and Jean-Marie Lacroix4
  • Editor: James M. Slauch5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Univ. Lille, CNRS, UMR 8576–UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France; 2: Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT 59840; 3: Univ. Lille, CNRS, UMR 8576–UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France; 4: Univ. Lille, CNRS, UMR 8576–UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France; 5: The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL
  • Received 13 February 2017 Accepted 18 April 2017 Published 06 June 2017
  • Address correspondence to Jean-Marie Lacroix, jean-marie.lacroix@univ-lille1.fr
image of Osmoregulated Periplasmic Glucans
    Preview this reference work article:
    Zoom in
    Zoomout

    Osmoregulated Periplasmic Glucans, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/7/2/ESP-0001-2017-1.gif /docserver/preview/fulltext/ecosalplus/7/2/ESP-0001-2017-2.gif
  • Abstract:

    Among all the systems developed by enterobacteria to face osmotic stress, only osmoregulated periplasmic glucans (OPGs) were found to be modulated during osmotic fluxes. First detected in 1973 by E.P. Kennedy’s group in a study of phospholipid turnover in , OPGs have been shown across alpha, beta, and gamma subdivisions of the proteobacteria. Discovery of OPG-like compounds in the epsilon subdivision strongly suggested that the presence of periplasmic glucans is essential for almost all proteobacteria. This article offers an overview of the different classes of OPGs. Then, the biosynthesis of OPGs and their regulation in and other species are discussed. Finally, the biological role of OPGs is developed. Beyond structural function, OPGs are involved in pathogenicity, in particular, by playing a role in signal transduction pathways. Recently, OPG synthesis proteins have been suggested to control cell division and growth rate.

  • Citation: Bontemps-Gallo S, Bohin J, Lacroix J. 2017. Osmoregulated Periplasmic Glucans, EcoSal Plus 2017; doi:10.1128/ecosalplus.ESP-0001-2017

Key Concept Ranking

Sodium Dodecyl Sulfate
0.42399874
0.42399874

References

1. Altman PL. 1961. Physical properties and chemical composition of urine: mammals, p 363–369. In Dittmer DS (ed), Blood and Other Bodily Fluids. Federation of American Societies for Experimental Biology, Washington, DC.
2. Kunin CM. 1987. Detection, Prevention and Management of Urinary Tract Infections, 4th ed. Lea & Febiger, Philadelphia, PA.
3. Ross DL, Neely AE. 1983. Textbook of Urinalysis and Bodily Fluids. Appleton Century Crofts, Norwalk, VA.
4. Russell PJ, Hertz PE, McMillan B. 2017. Regulating the internal environment, p 1041, Biology: The Dynamic Science, 4th ed. Brooks Cole, Salt Lake City, UT.
5. Purves WK, Sadava D, Orians GH, Heller C. 2003. Salt and Water Balance and Nitrogen Excretion, Life: The Science of Biology, 7th ed. Sinauer Associates and W. H. Freeman, Sunderland, MA.
6. Altendorf K, Booth IR, Gralla J, Greie JC, Rosenthal AZ, Wood JM. 2009. Osmotic stress. Ecosal Plus 3:3. [PubMed]
7. Bohin JP. 2000. Osmoregulated periplasmic glucans in proteobacteria. FEMS Microbiol Lett 186:11–19. [PubMed]
8. van Golde LM, Schulman GH, Kennedy EP. 1973. Metabolism of membrane phospholipids and its relation to a novel class of oligosaccharides in Escherichia coli. Proc Natl Acad Sci USA 70:1368–1372. [PubMed]
9. Kennedy EP. 1996. Membrane derived oligosaccharides (periplasmic beta-D-glucans) of Escherichia coli, p 1064–1074. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Maganasik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (ed), Escherichia coli and Salmonella Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
10. Miller KJ, Kennedy EP, Reinhold VN. 1986. Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231:48–51. [PubMed]
11. Lequette Y, Odberg-Ferragut C, Bohin JP, Lacroix JM. 2004. Identification of mdoD, an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures. J Bacteriol 186:3695–3702. [PubMed]
12. Nothaft H, Liu X, Li J, Szymanski CM. 2010. Campylobacter jejuni free oligosaccharides: function and fate. Virulence 1:546–550. [PubMed]
13. Nothaft H, Liu X, McNally DJ, Li J, Szymanski CM. 2009. Study of free oligosaccharides derived from the bacterial N-glycosylation pathway. Proc Natl Acad Sci USA 106:15019–15024. [PubMed]
14. Bohin JP, Lacroix JM. 2006. Osmoregulation in the periplasm, p, 325–341. In Ehrmann M (ed), The Periplasm. American Society for Microbiology, Washington, DC.
15. Cogez V, Talaga P, Lemoine J, Bohin JP. 2001. Osmoregulated periplasmic glucans of Erwinia chrysanthemi. J Bacteriol 183:3127–3133. [PubMed]
16. Lequette Y, Rollet E, Delangle A, Greenberg EP, Bohin JP. 2007. Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa. Microbiology 153:3255–3263. [PubMed]
17. Talaga P, Fournet B, Bohin JP. 1994. Periplasmic glucans of Pseudomonas syringae pv. syringae. J Bacteriol 176:6538–6544. [PubMed]
18. Bontemps-Gallo S, Cogez V, Robbe-Masselot C, Quintard K, Dondeyne J, Madec E, Lacroix JM. 2013. Biosynthesis of osmoregulated periplasmic glucans in Escherichia coli: the phosphoethanolamine transferase is encoded by opgE. BioMed Res Int 2013:371429. doi:10.1155/2013/371429.
19. Lacroix JM, Lanfroy E, Cogez V, Lequette Y, Bohin A, Bohin JP. 1999. The mdoC gene of Escherichia coli encodes a membrane protein that is required for succinylation of osmoregulated periplasmic glucans. J Bacteriol 181:3626–3631. [PubMed]
20. Lee S, Cho E, Jung S. 2009. Periplasmic glucans isolated from proteobacteria. BMB Rep 42:769–775. [PubMed]
21. Bontemps-Gallo S, Madec E, Dondeyne J, Delrue B, Robbe-Masselot C, Vidal O, Prouvost AF, Boussemart G, Bohin JP, Lacroix JM. 2013. Concentration of osmoregulated periplasmic glucans (OPGs) modulates the activation level of the RcsCD RcsB phosphorelay in the phytopathogen bacteria Dickeya dadantii. Environ Microbiol 15:881–894. [PubMed]
22. Breedveld MW, Miller KJ. 1994. Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Rev 58:145–161. [PubMed]
23. Briones G, Iñón de Iannino N, Steinberg M, Ugalde RA. 1997. Periplasmic cyclic 1,2-beta-glucan in Brucella spp. is not osmoregulated. Microbiology 143:1115–1124. [PubMed]
24. Choma A, Komaniecka I. 2003. Characterisation of Mesorhizobium huakuii cyclic beta-glucan. Acta Biochim Pol 50:1273–1281. [PubMed]
25. Rolin DB, Pfeffer PE, Osman SF, Szwergold BS, Kappler F, Benesi AJ. 1992. Structural studies of a phosphocholine substituted beta-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta 1116:215–225.
26. Komaniecka I, Choma A. 2003. Isolation and characterization of periplasmic cyclic beta-glucans of Azorhizobium caulinodans. FEMS Microbiol Lett 227:263–269.
27. Altabe SG, Talaga P, Wieruszeski J-M, Lippens G, Ugalde RA, Bohin JP. 1998. Periplasmic glucans of Azospirillum brasilense, p 390. In Elmerich C, Kondorosi A, Newton WE (ed), Biological Nitrogen Fixation for the 21st Century. Kluwer Academic Publishers, The Netherlands.
28. Talaga P, Stahl B, Wieruszeski JM, Hillenkamp F, Tsuyumu S, Lippens G, Bohin JP. 1996. Cell-associated glucans of Burkholderia solanacearum and Xanthomonas campestris pv. citri: a new family of periplasmic glucans. J Bacteriol 178:2263–2271. [PubMed]
29. York WS. 1995. A conformational model for cyclic beta-(1-->2)-linked glucans based on NMR analysis of the beta-glucans produced by Xanthomonas campestris. Carbohydr Res 278:205–225.
30. Talaga P, Cogez V, Wieruszeski JM, Stahl B, Lemoine J, Lippens G, Bohin JP. 2002. Osmoregulated periplasmic glucans of the free-living photosynthetic bacterium Rhodobacter sphaeroides. Eur J Biochem 269:2464–2472. [PubMed]
31. Lippens G, Wieruszeski JM, Horvath D, Talaga P, Bohin JP. 1998. Slow dynamics of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum as revealed by heteronuclear relaxation studies. J Am Chem Soc 120:170–177.
32. Lacroix JM, Loubens I, Tempête M, Menichi B, Bohin JP. 1991. The mdoA locus of Escherichia coli consists of an operon under osmotic control. Mol Microbiol 5:1745–1753. [PubMed]
33. Therisod H, Weissborn AC, Kennedy EP. 1986. An essential function for acyl carrier protein in the biosynthesis of membrane-derived oligosaccharides of Escherichia coli. Proc Natl Acad Sci USA 83:7236–7240. [PubMed]
34. Debarbieux L, Bohin A, Bohin JP. 1997. Topological analysis of the membrane-bound glucosyltransferase, MdoH, required for osmoregulated periplasmic glucan synthesis in Escherichia coli. J Bacteriol 179:6692–6698. [PubMed]
35. Lequette Y. 2002. Biosynthèse des glucanes périplasmiques osmorégulés chez Escherichia coli: analyse fonctionnelle des protéines MdoG et MdoH et caractérisation de deux nouvelles activités. PhD thesis. Université des Sciences et Technologie de Lille, France.
36. Hanoulle X, Rollet E, Clantin B, Landrieu I, Odberg-Ferragut C, Lippens G, Bohin JP, Villeret V. 2004. Structural analysis of Escherichia coli OpgG, a protein required for the biosynthesis of osmoregulated periplasmic glucans. J Mol Biol 342:195–205. [PubMed]
37. Bontemps Gallo S. 2013. Dickeya dadantii: towards the understanding of the biological role of the osmoregulated periplasmic glucans (in French). PhD thesis. Université de Lille, France.
38. Loubens I, Debarbieux L, Bohin A, Lacroix JM, Bohin JP. 1993. Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Mol Microbiol 10:329–340. [PubMed]
39. Page F, Altabe S, Hugouvieux-Cotte-Pattat N, Lacroix JM, Robert-Baudouy J, Bohin JP. 2001. Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol 183:3134–3141. [PubMed]
40. Cogez V, Gak E, Puskas A, Kaplan S, Bohin JP. 2002. The opgGIH and opgC genes of Rhodobacter sphaeroides form an operon that controls backbone synthesis and succinylation of osmoregulated periplasmic glucans. Eur J Biochem 269:2473–2484. [PubMed]
41. Minsavage GV, Mudgett MB, Stall RE, Jones JB. 2004. Importance of opgHXcv of Xanthomonas campestris pv. vesicatoria in host-parasite interactions. Mol Plant Microbe Interact 17:152–161. [PubMed]
42. Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester E, Helinski DR, Ditta G. 1986. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 83:4403–4407. [PubMed]
43. Iñón de Iannino N, Briones G, Tolmasky M, Ugalde RA. 1998. Molecular cloning and characterization of cgs, the Brucella abortus cyclic beta(1-2) glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J Bacteriol 180:4392–4400. [PubMed]
44. Puvanesarajah V, Schell FM, Stacey G, Douglas CJ, Nester EW. 1985. Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol 164:102–106. [PubMed]
45. Roset MS, Ciocchini AE, Ugalde RA, Iñón de Iannino N. 2004. Molecular cloning and characterization of cgt, the Brucella abortus cyclic beta-1,2-glucan transporter gene, and its role in virulence. Infect Immun 72:2263–2271. [PubMed]
46. Ciocchini AE, Roset MS, Iñón de Iannino N, Ugalde RA. 2004. Membrane topology analysis of cyclic glucan synthase, a virulence determinant of Brucella abortus. J Bacteriol 186:7205–7213. [PubMed]
47. Altabe SG, Iñón de Iannino N, de Mendoza D, Ugalde RA. 1994. New osmoregulated beta(1-3),beta(1-6) glucosyltransferase(s) in Azospirillum brasilense. J Bacteriol 176:4890–4898. [PubMed]
48. Bhagwat AA, Tully RE, Keister DL. 1993. Identification and cloning of a cyclic beta-(1-->3), beta-(1-->6)-D-glucan synthesis locus from Bradyrhizobium japonicum. FEMS Microbiol Lett 114:139–144. [PubMed]
49. Bhagwat AA, Gross KC, Tully RE, Keister DL. 1996. Beta-glucan synthesis in Bradyrhizobium japonicum: characterization of a new locus (ndvC) influencing beta-(1-->6) linkages. J Bacteriol 178:4635–4642. [PubMed]
50. Chen R, Bhagwat AA, Yaklich R, Keister DL. 2002. Characterization of ndvD, the third gene involved in the synthesis of cyclic beta-(1 --> 3),(1 --> 6)-D-glucans in Bradyrhizobium japonicum. Can J Microbiol 48:1008–1016. [PubMed]
51. Jackson BJ, Bohin JP, Kennedy EP. 1984. Biosynthesis of membrane-derived oligosaccharides: characterization of mdoB mutants defective in phosphoglycerol transferase I activity. J Bacteriol 160:976–981. [PubMed]
52. Bohin JP, Kennedy EP. 1984. Regulation of the synthesis of membrane-derived oligosaccharides in Escherichia coli. Assay of phosphoglycerol transferase I in vivo. J Biol Chem 259:8388–8393. [PubMed]
53. Jackson BJ, Kennedy EP. 1983. The biosynthesis of membrane-derived oligosaccharides. A membrane-bound phosphoglycerol transferase. J Biol Chem 258:2394–2398. [PubMed]
54. Lequette Y, Lanfroy E, Cogez V, Bohin JP, Lacroix JM. 2008. Biosynthesis of osmoregulated periplasmic glucans in Escherichia coli: the membrane-bound and the soluble periplasmic phosphoglycerol transferases are encoded by the same gene. Microbiology 154:476–483. [PubMed]
55. Bontemps-Gallo S, Madec E, Robbe-Masselot C, Souche E, Dondeyne J, Lacroix JM. 2016. The opgC gene is required for OPGs succinylation and is osmoregulated through RcsCDB and EnvZ/OmpR in the phytopathogen Dickeya dadantii. Sci Rep 6:19619. doi:10.1038/srep19619.
56. Bohin JP, Kennedy EP. 1984. Mapping of a locus (mdoA) that affects the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. J Bacteriol 157:956–957. [PubMed]
57. Quintard K, Dewitte A, Reboul A, Madec E, Bontemps-Gallo S, Dondeyne J, Marceau M, Simonet M, Lacroix JM, Sebbane F. 2015. Evaluation of the role of the opgGH operon in Yersinia pseudotuberculosis and its deletion during the emergence of Yersinia pestis. Infect Immun 83:3638–3647. [PubMed]
58. Campbell JA, Davies GJ, Bulone V, Henrissat B. 1997. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–939. [PubMed]
59. Coutinho PM, Deleury E, Davies GJ, Henrissat B. 2003. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317. [PubMed]
60. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495. [PubMed]
61. Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859. [PubMed]
62. Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316. [PubMed]
63. Henrissat B, Bairoch A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788. [PubMed]
64. Henrissat B, Bairoch A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696. [PubMed]
65. Henrissat B, Davies G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644. [PubMed]
66. Lacroix J-M. 1989. Etude génétique et physiologique de la régulation osmotique de la biosynthèse du MDO chez Escherichia coli. PhD thesis. Université de Paris-Sud, Centre d’Orsay, France.
67. Breedveld MW, Zevenhuizen LP, Zehnder AJ. 1992. Synthesis of cyclic beta-(1,2)-glucans by Rhizobium leguminosarum biovar trifolii TA-1: factors influencing excretion. J Bacteriol 174:6336–6342. [PubMed]
68. Vojnov AA, Slater H, Newman MA, Daniels MJ, Dow JM. 2001. Regulation of the synthesis of cyclic glucan in Xanthomonas campestris by a diffusible signal molecule. Arch Microbiol 176:415–420. [PubMed]
69. Astua-Monge G, Freitas-Astua J, Bacocina G, Roncoletta J, Carvalho SA, Machado MA. 2005. Expression profiling of virulence and pathogenicity genes of Xanthomonas axonopodis pv. citri. J Bacteriol 187:1201–1205. [PubMed]
70. de Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Yanai GM, Muto NH, de Oliveira RC, Nunes LR, Machado MA. 2004. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiol Lett 237:341–353. [PubMed]
71. Brown DG, Allen C. 2004. Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Mol Microbiol 53:1641–1660. [PubMed]
72. Rougemont B, Bontemps Gallo S, Ayciriex S, Carriere R, Hondermarck H, Lacroix JM, Le Blanc JC, Lemoine J. 27 December 2016. Scout-MRM: multiplexed targeted mass spectrometry-based assay without retention time scheduling exemplified by Dickeya dadantii proteomic analysis during plant infection. Anal Chem doi:10.1021/acs.analchem.6b03201.
73. Dartigalongue C, Missiakas D, Raina S. 2001. Characterization of the Escherichia coli sigma E regulon. J Biol Chem 276:20866–20875. [PubMed]
74. Link AJ, Robison K, Church GM. 1997. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18:1259–1313. [PubMed]
75. Hengge-Aronis R. 2002. Stationary phase gene regulation: what makes an Escherichia coli promoter sigmaS-selective? Curr Opin Microbiol 5:591–595. [PubMed]
76. Lacour S, Landini P. 2004. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 186:7186–7195. [PubMed]
77. Wang P, Ingram-Smith C, Hadley JA, Miller KJ. 1999. Cloning, sequencing, and characterization of the cgmB gene of Sinorhizobium meliloti involved in cyclic beta-glucan biosynthesis. J Bacteriol 181:4576–4583. [PubMed]
78. Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P. 2005. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA 102:11118–11123. [PubMed]
79. Strøm AR, Kaasen I. 1993. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210. [PubMed]
80. Boos W, Ehmann U, Bremer E, Middendorf A, Postma P. 1987. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem 262:13212–13218. [PubMed]
81. Horlacher R, Uhland K, Klein W, Ehrmann M, Boos W. 1996. Characterization of a cytoplasmic trehalase of Escherichia coli. J Bacteriol 178:6250–6257. [PubMed]
82. Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR. 1999. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. [PubMed]
83. Pfeffer PE, Bécard G, Rolin DB, Uknalis J, Cooke P, Tu S. 1994. In vivo nuclear magnetic resonance study of the osmoregulation of phosphocholine-substituted beta-1,3;1,6 cyclic glucan and its associated carbon metabolism in Bradyrhizobium japonicum USDA 110. Appl Environ Microbiol 60:2137–2146. [PubMed]
84. Fiedler W, Rotering H. 1988. Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides. J Biol Chem 263:14684–14689. [PubMed]
85. Bhagwat AA, Jun W, Liu L, Kannan P, Dharne M, Pheh B, Tall BD, Kothary MH, Gross KC, Angle S, Meng J, Smith A. 2009. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice. Microbiology 155:229–237. [PubMed]
86. Bouchart F, Delangle A, Lemoine J, Bohin JP, Lacroix JM. 2007. Proteomic analysis of a non-virulent mutant of the phytopathogenic bacterium Erwinia chrysanthemi deficient in osmoregulated periplasmic glucans: change in protein expression is not restricted to the envelope, but affects general metabolism. Microbiology 153:760–767. [PubMed]
87. Cooper B, Chen R, Garrett WM, Murphy C, Chang C, Tucker ML, Bhagwat AA. 2012. Proteomic pleiotropy of OpgGH, an operon necessary for efficient growth of Salmonella enterica serovar typhimurium under low-osmotic conditions. J Proteome Res 11:1720–1727. [PubMed]
88. Dylan T, Nagpal P, Helinski DR, Ditta GS. 1990. Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants. J Bacteriol 172:1409–1417. [PubMed]
89. Rajagopal S, Eis N, Bhattacharya M, Nickerson KW. 2003. Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli. FEMS Microbiol Lett 223:25–31. [PubMed]
90. Höltje JV, Fiedler W, Rotering H, Walderich B, van Duin J. 1988. Lysis induction of Escherichia coli by the cloned lysis protein of the phage MS2 depends on the presence of osmoregulatory membrane-derived oligosaccharides. J Biol Chem 263:3539–3541. [PubMed]
91. Cangelosi GA, Martinetti G, Nester EW. 1990. Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic beta-1,2-glucan. J Bacteriol 172:2172–2174. [PubMed]
92. Mills D, Mukhopadhyay P. 1990. Organization of the hrpM locus of Pseudomonas syringae pv. syringae and its potential function in pathogenesis, p 47–57. In Silver S, Chakrabarty AM, Iglewski B, Kaplan S (ed), Pseudomonas: Biotransformation, Pathogenesis, and Evolving Biotechnology. ASM Press, Washington, DC. [PubMed]
93. Young GM, Miller VL. 1997. Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis. Mol Microbiol 25:319–328. [PubMed]
94. Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96:47–56. [PubMed]
95. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310. [PubMed]
96. Dunlap J, Minami E, Bhagwat AA, Keister DL, Stacey G. 1996. Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic B-glucan synthesis. Mol Plant Microbe Interact 9:546–555. [PubMed]
97. Arellano-Reynoso B, Lapaque N, Salcedo S, Briones G, Ciocchini AE, Ugalde R, Moreno E, Moriyón I, Gorvel JP. 2005. Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol 6:618–625. [PubMed]
98. Bontemps-Gallo S, Lacroix JM. 2015. New insights into the biological role of the osmoregulated periplasmic glucans in pathogenic and symbiotic bacteria. Environ Microbiol Rep 7:690–697. [PubMed]
99. Stock JB, Rauch B, Roseman S. 1977. Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252:7850–7861. [PubMed]
100. Donnan FG. 1911. Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Z Elektrochem Angew Phys Chem 17:572–581.
101. Kennedy EP. 1982. Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc Natl Acad Sci USA 79:1092–1095. [PubMed]
102. Cayley DS, Guttman HJ, Record MT Jr. 2000. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys J 78:1748–1764.
103. Koch AL. 1998. The biophysics of the gram-negative periplasmic space. Crit Rev Microbiol 24:23–59. [PubMed]
104. Oliver DB. 1996. Periplasm, p 88–103. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Maganasik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (ed), Escherichia coli and Salmonella Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
105. Wood JM. 1999. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262. [PubMed]
106. Sen K, Hellman J, Nikaido H. 1988. Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. J Biol Chem 263:1182–1187. [PubMed]
107. Ruby EG, McCabe JB. 1988. Metabolism of periplasmic membrane-derived oligosaccharides by the predatory bacterium Bdellovibrio bacteriovorus 109J. J Bacteriol 170:646–652.
108. Banta LM, Bohne J, Lovejoy SD, Dostal K. 1998. Stability of the Agrobacterium tumefaciens VirB10 protein is modulated by growth temperature and periplasmic osmoadaption. J Bacteriol 180:6597–6606. [PubMed]
109. Santini CL, Bernadac A, Zhang M, Chanal A, Ize B, Blanco C, Wu LF. 2001. Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276:8159–8164. [PubMed]
110. Wieruszeski JM, Bohin A, Bohin JP, Lippens G. 2001. In vivo detection of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum by high-resolution magic angle spinning NMR. J Magn Reson 151:118–123. [PubMed]
111. Delcour AH, Adler J, Kung C, Martinac B. 1992. Membrane-derived oligosaccharides (MDO’s) promote closing of an E. coli porin channel. FEBS Lett 304:216–220. [PubMed]
112. Mogensen JE, Otzen DE. 2005. Interactions between folding factors and bacterial outer membrane proteins. Mol Microbiol 57:326–346. [PubMed]
113. Böhringer J, Fischer D, Mosler G, Hengge-Aronis R. 1995. UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli. J Bacteriol 177:413–422. [PubMed]
114. Hiniker A, Bardwell JC. 2004. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem 279:12967–12973. [PubMed]
115. Poolman B, Blount P, Folgering JH, Friesen RH, Moe PC, van der Heide T. 2002. How do membrane proteins sense water stress? Mol Microbiol 44:889–902. [PubMed]
116. Ebel W, Vaughn GJ, Peters HK III, Trempy JE. 1997. Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli. J Bacteriol 179:6858–6861. [PubMed]
117. Majdalani N, Gottesman S. 2005. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379–405. [PubMed]
118. Bouchart F, Boussemart G, Prouvost AF, Cogez V, Madec E, Vidal O, Delrue B, Bohin JP, Lacroix JM. 2010. The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD-RcsB phosphorelay. J Bacteriol 192:3484–3490. [PubMed]
119. Madec E, Bontemps-Gallo S, Lacroix JM. 2014. Increased phosphorylation of the RcsB regulator of the RcsCDB phosphorelay in strains of Dickeya dadantii devoid of osmoregulated periplasmic glucans revealed by Phos-tag gel analysis. Microbiology 160:2763–2770. [PubMed]
120. Sun YC, Hinnebusch BJ, Darby C. 2008. Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci USA 105:8097–8101. [PubMed]
121. Hill NS, Buske PJ, Shi Y, Levin PA. 2013. A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet 9:e1003663. doi:10.1371/journal.pgen.1003663.
122. Chien AC, Zareh SK, Wang YM, Levin PA. 2012. Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability. Mol Microbiol 86:594–610. [PubMed]
123. Weart RB, Lee AH, Chien AC, Haeusser DP, Hill NS, Levin PA. 2007. A metabolic sensor governing cell size in bacteria. Cell 130:335–347. [PubMed]
124. Lazarevic V, Soldo B, Médico N, Pooley H, Bron S, Karamata D. 2005. Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol 71:39–45. [PubMed]
125. Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. [PubMed]
126. Tanabe M, Kanehisa M. 2012. Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1:Unit1.12. doi:10.1002/0471250953.bi0112s38. [PubMed]
ecosalplus.ESP-0001-2017.citations
ecosalplus/7/2
content/journal/ecosalplus/10.1128/ecosalplus.ESP-0001-2017
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0001-2017
2017-06-06
2017-09-24

Abstract:

Among all the systems developed by enterobacteria to face osmotic stress, only osmoregulated periplasmic glucans (OPGs) were found to be modulated during osmotic fluxes. First detected in 1973 by E.P. Kennedy’s group in a study of phospholipid turnover in , OPGs have been shown across alpha, beta, and gamma subdivisions of the proteobacteria. Discovery of OPG-like compounds in the epsilon subdivision strongly suggested that the presence of periplasmic glucans is essential for almost all proteobacteria. This article offers an overview of the different classes of OPGs. Then, the biosynthesis of OPGs and their regulation in and other species are discussed. Finally, the biological role of OPGs is developed. Beyond structural function, OPGs are involved in pathogenicity, in particular, by playing a role in signal transduction pathways. Recently, OPG synthesis proteins have been suggested to control cell division and growth rate.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Reprinted with permission from reference 7 .

Citation: Bontemps-Gallo S, Bohin J, Lacroix J. 2017. Osmoregulated Periplasmic Glucans, EcoSal Plus 2017; doi:10.1128/ecosalplus.ESP-0001-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The variety of backbone structures and patterns of substitution are schematically represented (see text for details). Ptd-Gro, phosphatidylglycerol; Ptd-Etn, phosphatidylethanolamine; DG, diacylglycerol; Suc-CoA, succinyl-coenzyme A; CoA, coenzyme A; UDP, uridine diphosphate.

Citation: Bontemps-Gallo S, Bohin J, Lacroix J. 2017. Osmoregulated Periplasmic Glucans, EcoSal Plus 2017; doi:10.1128/ecosalplus.ESP-0001-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Protein-protein BLAST program was used to search in the nonredundant database sequences highly similar to OpgG, OpgH, and OpgD from ; OpgI from , NdvB, NdvC, and NdvD from , and ChvB and ChvA from , OpgB and OpgE from , OpgC from ; and , and CgmB from .

Citation: Bontemps-Gallo S, Bohin J, Lacroix J. 2017. Osmoregulated Periplasmic Glucans, EcoSal Plus 2017; doi:10.1128/ecosalplus.ESP-0001-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to establish the metabolic pathway ( 125 , 126 ). Glucose is transported into the cell via the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS). During uptake, glucose is activated and transformed into glucose-6-P. Glucose-6-P is used by Pgm and GalU enzymes to produce uridine-diphosphate (UDP)-glucose (in red). The UDP-glucose can be used either to produce OPGs via the OpgH/OpgG complex or trehalose-6-P via OtsA. Trehalose-6-P is transformed into trehalose by OtsB enzyme. Then, it can either be excreted via the stretch-activated proteins (SAP) into the periplasm or maintained inside the cell. In both cases, the trehalose will be degraded in 2 glucoses by TreF in the cytoplasm or TreA in the periplasm. P, Phosphate; OPG, osmoregulated periplasmic glucan.

Citation: Bontemps-Gallo S, Bohin J, Lacroix J. 2017. Osmoregulated Periplasmic Glucans, EcoSal Plus 2017; doi:10.1128/ecosalplus.ESP-0001-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error