1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 4:

Synthesis and Processing of Macromolecules

Aminoacyl-tRNA Synthetases in the Bacterial World

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Richard Giegé1, and Mathias Springer2
  • Editor: Susan T. Lovett3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France; 2: Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France; 3: Brandeis University, Waltham, MA
  • Received 27 January 2016 Accepted 22 February 2016 Published 23 May 2016
  • Address correspondence to Richard Giegé r.giege@ibmc-cnrs.unistra.fr and Mathias Springer Mathias.Springer@ibpc.fr
image of Aminoacyl-tRNA Synthetases in the Bacterial World
    Preview this reference work article:
    Zoom in
    Zoomout

    Aminoacyl-tRNA Synthetases in the Bacterial World, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/7/1/ESP-0002-2016-1.gif /docserver/preview/fulltext/ecosalplus/7/1/ESP-0002-2016-2.gif
  • Abstract:

    Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative . The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.

  • Citation: Giegé R, Springer M. 2016. Aminoacyl-tRNA Synthetases in the Bacterial World, EcoSal Plus 2016; doi:10.1128/ecosalplus.ESP-0002-2016

Key Concept Ranking

Gene Expression and Regulation
0.53051555
Amino Acids
0.5182766
Bacterial Proteins
0.47222847
Nitric Oxide Synthase
0.43013996
Amino Acid Addition
0.41153112
0.53051555

Article Version

This article is an updated version of the following content:

References

1. de Duve C. 1988. The second genetic code. Nature 333:117–118. [PubMed][CrossRef]
2. Schimmel P, Giegé R, Moras D, Yokoyama S. 1993. An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768. [PubMed][CrossRef]
3. Bullwinkle TJ, Ibba M. 2014. Emergence and evolution. Top Curr Chem 344:43–87. [PubMed][CrossRef]
4. Carter CW Jr. 1993. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62:715–748. [PubMed][CrossRef]
5. Giegé R. 2006. The early history of tRNA recognition by aminoacyl-tRNA synthetases. J Biosci 31:477–488. [PubMed][CrossRef]
6. Giegé R, Eriani G. 2014. Transfer RNA recognition and aminoacylation by synthetases, 21 pages. Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd, Chichester.
7. Ibba M, Söll D. 2000. Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650. [PubMed][CrossRef]
8. Lapointe J, Giegé R. 1991. Transfer RNAs and aminoacyl-tRNA synthetases, p 35–69. In Trachsel H (ed), Translation in Eukaryotes. CRC Presss Inc. Boca Raton, FL.
9. Martinis SA, Plateau P, Cavarelli J, Florentz C. 1999. Aminoacyl-tRNA synthetases: A family of expanding functions. EMBO J 18:4591–4596. [PubMed][CrossRef]
10. Martinis SA, Schimmel P. 1996. Aminoacyl-tRNA synthetases: General features and relationships, p 887–901. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik b, Reznikoff WS, Riley M, Schaechter M, and Umbarger EH (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., ASM Press, Washington, DC.
11. Meinnel T, Mechulam Y, Blanquet S. 1995. Aminoacyl-tRNA synthetases: Occurrence, structure, and function, p 251–290. In Söll D and RajBhandary UL (ed), tRNA: Structure, Biosynthesis, and Function. American Society for Microbiology, Washington, DC.
12. Schimmel P. 1987. Aminoacyl-tRNA synthetases: General scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem 56:125–158. [PubMed][CrossRef]
13. Söll D, Schimmel PR. 1974. Aminoacyl-tRNA synthetases, p 489–538. In Boyer P (ed), The Enzymes, vol. 10. Academic Press, New York, NY. [CrossRef]
14. Woese CR, Olsen GJ, Ibba M, Söll, D. 2000. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64:202–236. [PubMed][CrossRef]
15. Guo M, Yang X-L, Schimmel, P. 2010. New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 11:668–674. [PubMed][CrossRef]
16. Guo M, Schimmel P. 2013. Essential nontranslational functions of tRNA synthetases. Nat Chem Biol 9:145–153. [PubMed][CrossRef]
17. Pang YL, Poruri K., Martinis SA. 2014. tRNA synthetase: tRNA aminoacylation and beyond. Wiley Interdiscip Rev RNA 5:461–480. [PubMed][CrossRef]
18. Ibba M, Francklyn C, Cusack S (ed). 2005. The Aminoacyl-tRNA Synthetases, Landes Bioscience, Georgetown, TX.
19. Jühling F, Mörl M, Hartmann R, Sprinzl M, Stadler PF, Pütz J. 2009. Compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 37:D159–D162. [PubMed][CrossRef]
20. Goodsell DS, Dutta S, Zardecki C, Voigt M, Berman HM, Burley SK. 2015. The RCSB PDB “Molecule of the month”: Inspiring a molecular view of biology. PLoS Biol 13:e1002140. [PubMed][CrossRef]
21. Prilusky J, Hodis E, Canner D, Decatur WA, Oberholser K, Martz E, Berchanski A, Harel M, Sussman JL. 2011. Proteopedia: A status report on the collaborative, 3D web-encyclopedia of proteins and other biomolecules. J Struct Biol 175:244–252. [PubMed][CrossRef]
22. Davie EW, Königsberger VV, Lipmann F. 1956. The isolation of a tryptophan-activating enzyme from pancreas. Arch Biochem Biophys 65:21–36. [CrossRef]
23. Berg P. 1961. Specificity in protein synthesis. Annu Rev Biochem 30:293–322. [CrossRef]
24. Berg P, Offengand EJ. 1958. An enzymatic mechanism for linking amino acids to RNA. Proc Natl Acad Sci USA 44:78–86. [PubMed][CrossRef]
25. Cusack S, Berthet-Colominas C, Härtlein M, Nassar N, Leberman R. 1990. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5Å. Nature 347:249–255. [PubMed][CrossRef]
26. Eriani G, Delarue M, Poch O, Gangloff J, Moras D. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206. [PubMed][CrossRef]
27. Carter CW Jr, Duax WL. 2002. Did tRNA synthetase classes arise on opposite strands of the same gene? Mol Cell 10:705–708. [PubMed][CrossRef]
28. Pham Y, Li L, Kim A, Erdogan O, Weinreb V, Butterfoss GL, Kuhlman B, Carter CW Jr. 2007. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Mol Cell 25:851–862. [PubMed][CrossRef]
29. Ribas de Pouplana L, Schimmel P. 2001. Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104:191–193. [PubMed][CrossRef]
30. Rodin AS, Szathmary E, Rodin SN. 2009. One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation. Biol Direct 4:4. [PubMed][CrossRef]
31. Rodin SN, Rodin AS. 2006. Partitioning of aminoacyl-tRNA synthetases in two classes could have been encoded in a strand-symmetric RNA world. DNA Cell Biol 25:617–626. [PubMed][CrossRef]
32. Smith TF, Hartman H. 2015. The evolution of class II aminoacyl-tRNA synthetases and the first code. FEBS Lett 589:3499–3507. [PubMed][CrossRef]
33. Williams TA, Wolfe KH, Fares MA. 2009. No rosetta stone for a sense-antisense origin of aminoacyl tRNA synthetase classes. Mol Biol Evol 26:445–450. [PubMed][CrossRef]
34. Martinez-Rodriguez L, Erdogan O, Jimenez-Rodriguez M, Gonzalez-Rivera K, Williams T, Li L, Weinreb V, Collier M, Chandrasekaran SN, Ambroggio X, Kuhlman B, Carter CW Jr. 2015. Functional class I and II amino acid activating enzymes can be coded by opposite strands of the same gene. J Biol Chem 290:19710–19725. [PubMed][CrossRef]
35. Normanly J, Ogden RC, Horvath SJ, Abelson J. 1986. Changing the identity of a transfer RNA. Nature 321:213–219. [PubMed][CrossRef]
36. Shimura Y, Ozeki H. 1973. Genetic study on transfer RNA. Adv Biophys 4:191–226. [PubMed]
37. Giegé R, Puglisi JD, Florentz C. 1993. tRNA structure and aminoacylation efficiency. Prog Nucleic Acid Res Mol Biol 45:129–206. [PubMed][CrossRef]
38. Jakubowski H, Goldman E. 1992. Editing of errors in selection of amino acids for protein synthesis. Microbiol Rev 56:412–429. [PubMed]
39. Wolf YI, Aravind L, Grishin NV Koonin EV. 1999. Evolution of aminoacyl-tRNA synthetases – analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9:689–710. [PubMed]
40. O’Donoghue P, Luthey-Schulten Z. 2005. Evolutionary profiles derived from the QR factorization of multiple structural alignments gives an economy of information. J Mol Biol 346:875–894. [PubMed][CrossRef]
41. Sissler M, Lorber B, Messmer M, Schaller A, Pütz J, Florentz C. 2008. Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization. Methods 44:176–189. [PubMed][CrossRef]
42. Baouz S, Schmitter J-M, Chenoune L, Beauvallet C, Blanquet S, Woisard A, Hountondji C. 2009. Primary structure revision and active site mapping of E. coli isoleucyl-tRNA synthetase by means of Maldi mass spectrometry. Open Biochem J 3:26–38. [PubMed][CrossRef]
43. Kern D, Giegé R, Ebel J-P. 1981. Glycyl-tRNA synthetase from baker’s yeast. Interconversion between active and inactive forms of the enzyme. Biochemistry 20:122–131. [PubMed][CrossRef]
44. Paravisi S, Fumagalli G, Riva M, Morandi P, Morosi R, Konarev PV, Petoukhov MV, Bernier S, Chênevert R, Svergun DI, Curti B, Vanoni MA. 2009. Kinetic and mechanistic characterization of Mycobacterium tuberculosis glutamyl-tRNA synthetase and determination of its oligomeric structure in solution. FEBS J 276:1398–1417. [PubMed][CrossRef]
45. Terada T, Nureki O, Ishitani R, Ambrogelly A, Ibba M, Söll D, Yokoyama S. 2002. Functional convergence of two lysyl-tRNA synthetases with unrelated topologies. Nat Struct Biol 9:257–262. [PubMed][CrossRef]
46. NozawaK, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. 2009. Pyrrolysyl-tRNA synthetase-tRNAPyl structure reveals the molecular basis of orthogonality. Nature 457:1163–1167. [PubMed][CrossRef]
47. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S. 2008. Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase. J Mol Biol 378:634–652. [PubMed][CrossRef]
48. Fukunaga R, Yokoyama S. 2007. Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: Crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus. J Mol Biol 370:128–141. [PubMed][CrossRef]
49. Kamtekar S, Hohn MJ, Park HS, Schnitzbauer M, Sauerwald A, Söll D, Steitz TA. 2007. Toward understanding phosphoseryl-tRNACys formation: The crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase. Proc Natl Acad Sci USA 104:2620–2625. [PubMed][CrossRef]
50. Jasin M, Regan L, Schimmel P. 1983. Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature 306:441–447. [PubMed][CrossRef]
51. Giegé R, Touzé E, Lorber B, Théobald-Dietrich A, Sauter C. 2008. Crystallogenesis trends of free and liganded aminoacyl-tRNA synthetases. Cryst Growth Des 8:4297–4306. [CrossRef]
52. Winter GP, Hartley BS. 1977. The amino acid sequence of tryptophanyl-tRNA synthetase from Bacillus stearothermophilus. FEBS Lett 80:340–342. [PubMed][CrossRef]
53. Putney SD, Royal NJ, DeVegvar HN, Herlihy WC, Biemann K, Schimmel P. 1981. Primary structure of a large aminoacyl-tRNA synthetase. Science 213:1497–1501. [PubMed][CrossRef]
54. Perna NT, Plunkett G 3rd, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533. [PubMed][CrossRef]
55. Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024. [PubMed][CrossRef]
56. Legendre M, Arslan D, Abergel C, Claverie J-M. 2012. Genomics of Megavirus and the elusive fourth domain of life. Commun Integr Biol 5:102–106. [PubMed][CrossRef]
57. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie J-M. 2004. The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350. [PubMed][CrossRef]
58. Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry J-C, Moras D. 1991. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp. Science 252:1682–1689. [PubMed][CrossRef]
59. Cusack S. 1993. Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 3:39–44. [CrossRef]
60. Moras D. 1992. Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 2:138–142. [CrossRef]
61. Schimmel P. 1991. Classes of aminoacyl-tRNA synthetases and the establishment of the genetic code. Trends Biochem Sci 16:1–2. [CrossRef]
62. Rossmann MG, Moras D, Olsen KW. 1974. Chemical and biological evolution of a nucleotide-binding protein. Nature 250:194–199. [PubMed][CrossRef]
63. Shen N, Guo L, Yang B, Jin Y, Ding J. 2006. Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Nucleic Acids Res 34:3246–3258. [PubMed][CrossRef]
64. Yaremchuk A, Kriklivyi I, Tukalo M, Cusack S. 2002. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J 21:3829–3840. [PubMed][CrossRef]
65. Chinault AC, Tan KH, Hassur SM, Hecht SM. 1977. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs. Biochemistry 16:766–776. [PubMed][CrossRef]
66. Fraser TH, Rich A. 1975. Amino acids are not all initially attached to the same position on transfer RNA molecules. Proc Natl Acad Sci USA 72:3044–3048. [PubMed][CrossRef]
67. Sprinzl M, Cramer M. 1975. Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2′- or 3′-hydroxyl group of the terminal adenosine. Proc Natl Acad Sci USA 72:3049–3053. [PubMed][CrossRef]
68. O’Donoghue P, Luthey-Schulten Z. 2003. On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol Mol Bio. Rev 67:550–573. [CrossRef]
69. Cammer S, Carter CW Jr. 2010. Six Rossmannoid folds, including the class I aminoacyl-tRNA synthetases, share a partial core with the anti-codon-binding domain of a class II aminoacyl-tRNA synthetase. Bioinformatics 26:709–714. [PubMed][CrossRef]
70. Lapointe J, Duplain L, Proulx M. 1986. A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro. J Bacteriol 165:88–93. [PubMed]
71. Wilcox M, Nirenberg M. 1968. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc Natl Acad Sci USA 61:229–236. [PubMed][CrossRef]
72. Ibba M, Söll, D. 2001. The renaissance of aminoacyl-tRNA synthesis. EMBO Rep 2:382–387. [PubMed][CrossRef]
73. Chang KM, Hendrickson TL. 2009. Recognition of tRNAGln by Helicobacter pylori GluRS2 – a tRNAGln-specific glutamyl-tRNA synthetase. Nucleic Acids Res 37:6942–6949. [PubMed][CrossRef]
74. Nehmé B, Ganga MA, Lonvaud-Funel A. 2006. The arginine deiminase locus of Oenococcus oeni includes a putative arginyl-tRNA synthetase ArgS2 at its 3′-end. Appl Microbiol Biotechnol 70:590–597. [PubMed][CrossRef]
75. Becker HD, Roy H, Moulinier L, Mazauric M-H, Keith G, Kern D. 2000. Thermus thermophilus contains an eubacterial and an archaebacterial aspartyl-tRNA synthetase. Biochemistry 39:3216–3230. [PubMed][CrossRef]
76. Sareen D, Steffek M, Newton GL, Fahey RC. 2002. ATP-dependent L-cysteine:1D-myo-inosityl 2-amino-2-deoxy-alpha-D-glucopyranoside ligase, mycothiol biosynthesis enzyme MshC, is related to class I cysteinyl-tRNA synthetases. Biochemistry 41:6885–6890. [PubMed][CrossRef]
77. Lee J, Hendrickson TL 2004. Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases. J Mol Biol 344:1167–1174. [CrossRef]
78. Salazar, JC, Ahel I, Orellana O, Tumbula-Hansen D, Krieger R, Daniels L, Söll D. 2003. Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates. Proc Natl Acad Sci USA 100:13863–13868. [PubMed][CrossRef]
79. Skouloubris S, Ribas de Pouplana L, De Reuse H, Hendrickson TL. 2003. A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution. Proc Natl Acad Sci USA 100:11297–11302. [PubMed][CrossRef]
80. Gilbart J, Perry CR, Slocombe B. 1993. High-level mupirocin resistance in Staphylococcus aureus: Evidence for two distinct isoleucyl-tRNA synthetases. Antimicrob Agents Chemother 37:32–38. [PubMed][CrossRef]
81. Lévêque F, Plateau P, Dessen P, Blanquet S. 1990. Homology of lysS and lysYU, the two Escherichia coli genes encoding distinct lysysl-tRNA synthetas species. Nucleic Acids Res 18:305–312. [PubMed][CrossRef]
82. Zeng Y, Roy H, Patil PB, Ibba M, Chen S. 2009. Characterization of two seryl-tRNA synthetases in albomycin-producing Streptomyces sp. ATCC 700974. Antimicrob Agents Chemother 53:4619–4627. [PubMed][CrossRef]
83. Henkin TM, Glass BL, Grundy FJ. 1992. Analysis of the Bacillus subtilis tyrS gene: Conservation of a regulatory sequence in multiple tRNA synthetase genes. J Bacteriol 174:1299–1306. [PubMed]
84. Buddha MR, Crane BR. 2005. Structure and activity of an aminoacyl-tRNA synthetase that charges tRNA with nitro-tryptophan. Nat Struct Mol Biol 12:274–275. [PubMed][CrossRef]
85. Brevet A, Chen J, Lévêque F, Blanquet S, Plateau P. 1995. Comparison of the enzymatic properties of the two Escherichia coli lysyl-tRNA synthetase species. J Biol Chem 270:14439–14444. [PubMed][CrossRef]
86. Kaniga K, Compton MS, Curtiss R 3rd, Sundaram P. 1998. Molecular and functional characterization of Salmonella enterica serovar typhimurium poxA gene: Effect on attenuation of virulence and protection. Infect Immun 66:5599–5606. [PubMed]
87. Lenhard B, Orellana O, Ibba M, Weygand-Durasevic I. 1999. tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic Acids Res 27:721–729. [PubMed][CrossRef]
88. Guo M, Yang, XL. 2014. Architecture and metamorphosis. Top Curr Chem 344:89–118. [PubMed][CrossRef]
89. Frugier M, Moulinier L, Giegé R. 2000. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. EMBO J 19:2371–2380. [PubMed][CrossRef]
90. Francin M, Kaminska M, Kerjan P, Mirande M. 2002. The N-domain of mammalian lysyl-tRNA synthetase is a functional tRNA binding domain. J Biol Chem 277:1762–1769. [PubMed][CrossRef]
91. Ray PS, Sullivan JC, Jia J, Francis J, Finnerty JR, Fox PL. 2011. Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol 28:437–447. [PubMed][CrossRef]
92. Antonellis A, Green ED. 2008. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 9:87–107. [PubMed][CrossRef]
93. Park SG, Schimmel P, Kim S. 2008. Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci USA 105:11043–11049. [PubMed][CrossRef]
94. Yao P, Fox PL. 2013. Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med 5:332–343. [PubMed][CrossRef]
95. Liu J, Shue E, Ewalt KL, Schimmel P. 2004. A new gamma-interferon-inducible promoter and splice variants of an anti-angiogenic human tRNA synthetase. Nucleic Acids Res 32:719–727. [PubMed][CrossRef]
96. Yu Y, Liu Y, Shen N, Xu X, Xu F, Jia J, Jin Y, Arnold E, Ding J. 2004. Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: Insights into substrate recognition, tRNA binding, and angiogenesis activity. J Biol Chem 279:8378–8388. [PubMed][CrossRef]
97. Greenberg Y, King M. Kiosses WB, Ewalt K, Yang X, Schimmel P, Reader JS, Tzima E. 2008. The novel fragment of tyrosyl-tRNA synthetase, mini-TyrRS, is secreted to induce an angiogenic response in endothelial cells. FASEB J 22:1597–1605. [PubMed][CrossRef]
98. Arif A, Jia J, Mukhopadhyay R, Willard B, Kinter M, Fox PL. 2009. Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Mol Cell 35:164–180. [PubMed][CrossRef]
99. Kaminska M, Havrylenko S, Decottignies P, Le Maréchal P, Negrutskii B, Mirande M. 2009. Dynamic organization of aminoacyl-tRNA synthetase complexes in the cytoplasm of human cells. J Biol Chem 284:13746–13754. [PubMed][CrossRef]
100. Robinson JC, Kerjan P, Mirande M. 2000. Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein-protein interactions and mechanism of complex assembly. J Mol Biol 304:983–994. [PubMed][CrossRef]
101. Kyriacou SV, Deutscher MP. 2008. An important role for the multienzyme aminoacyl-tRNA synthetase complex in mammalian translation and cell growth. Mol Cell 29:419–427. [PubMed][CrossRef]
102. Park SG, Choi EC, Kim S. 2010. Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): A triad for cellular homeostasis. IUBMB Life 62:296–302. [PubMed]
103. KlipcanL, Levin I, Kessler N, Moor N, Finarov I, Safro M. 2008. The tRNA-induced conformational activation of human mitochondrial phenylalanyl-tRNA synthetase. Structure 16:1095–1104. [PubMed][CrossRef]
104. Sanni A,Walter P, Boulanger Y, Ebel J-P, Fasiolo F. 1991. Evolution of aminoacyl-tRNA synthetase quaternary structure and activity: Saccharomyces cerevisiae mitochondrial phenylalanyl-tRNA synthetase. Proc Natl Acad Sci USA 88:838–8391. [CrossRef]
105. Bour T, Akaddar A, Lorber B, Blais S, Balg C, Candolfi E, Frugier M. 2009. Plasmodial aspartyl-tRNA synthetases and peculiarities in Plasmodium falciparum. J Biol Chem 284:18893–18903. [PubMed][CrossRef]
106. Merritt EA,Arakaki TL, Larson ET, Kelley A, Mueller N, Napuli AJ, Zhang L, De Titta G, Luft J, Verlinde CL, Fan E, Zucker F, Buckner FS, Van Voorhis WC, Hol WG. 2010. Crystal structure of the aspartyl-tRNA synthetase from Entamoeba histolytica. Mol Biochem Parasitol 169:95–100. [PubMed][CrossRef]
107. Merritt EA, Arakaki TL, Gillespie JR, Larson ET, Kelley A, Mueller N, Napuli AJ, Kim J, Zhang L, Verlinde CL, Fan E, Zucker F, Buckner FS, van Voorhis WC, Hol WG. 2010. Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs. J Mol Biol 397:481–494. [PubMed][CrossRef]
108. SauerwaldA, Zhu W, Major TA, Roy H, Palioura S, Jahn D, Whitman WB, Yates JR 3rd, Ibba M, Söll D. 2005. RNA-dependent cysteine biosynthesis in archaea. Science 307:1969–1972. [PubMed][CrossRef]
109. Gaston MA, Jiang R, Krzycki JA. 2011. Functional context, biosynthesis, and genetic encoding of pyrrolysine. Curr Opin Microbiol 14:342–349. [PubMed][CrossRef]
110. PolycarpoC, Ambrogelly A, Bérubé A, Winbush SM, McCloskey JA, Crain PF, Wood JL, Söll D. 2004. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci USA 101:12450–12454. [PubMed][CrossRef]
111. Hauenstein SI, Hou Y-M, Perona JJ. 2008. The homotetrameric phosphoseryl-tRNA synthetase from Methanosarcina mazei exhibits half-of-the-sites activity. J Biol Chem 283:21997–22006. [PubMed][CrossRef]
112. Fukunaga R, Yokoyama S. 2007. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea. Nat Struct Mol Biol 14:272–279. [PubMed][CrossRef]
113. O’Donoghue P, Sethi A, Woese CR, Luthey-Schulten ZA. 2005. The evolutionary history of Cys-tRNACys formation. Proc Natl Acad Sci USA 102:19003–19008. [PubMed][CrossRef]
114. Englert M, Moses, S., Hohn, M., Ling, J., O’Donoghue, P., Söll D. 2013. Aminoacylation of tRNA 2′- or 3′-hydroxyl by phosphoseryl- and pyrrolysyl-tRNA synthetases. FEBS J 587:3360–3364. [PubMed][CrossRef]
115. Imanaka T, Lee S, Takagi M, Fujiwara S. 1995. Aspartyl-tRNA synthetase of the hyperthermophilic archaeon Pyrococcus sp. KOD1 has a chimerical structure of eukaryotic and bacterial enzymes. Gene 164:153–156. [PubMed][CrossRef]
116. Korencic D, Ahel I, Schelert J, Sacher M, Ruan B, Stathopoulos C, Blum P, Ibba M, Söll D. 2004. A freestanding proofreading domain is required for protein synthesis quality control in Archaea. Proc Natl Acad Sci USA 101:10260–10265. [PubMed][CrossRef]
117. Shimizu S, Juan EC, Sato Y, Miyashita Y-i, Hoque MM, Suzuki K, Sagara T, Tsunoda M, Sekiguchi T, Dock-Bregeon A-C, Moras D, Takénaka A. 2009. Two complementary enzymes for threonylation of tRNA in Crenarchaeota: Crystal structure of Aeropyrum pernix threonyl-tRNA synthetase lacking a cis-editing domain. J Mol Biol 394:286–296. [PubMed][CrossRef]
118. Hussain T, Kruparani SP, Pal B, Dock-Bregeon A-C, Dwivedi S, Shekar MR, Sureshbabu K, Sankaranarayanan R. 2006. Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. EMBO J 25:4152–4162. [PubMed][CrossRef]
119. Sasaki HM, Sekine S, Sengoku T, Fukunaga R, Hattori M, Utsunomiya Y, Kuroishi C, Kuramitsu S, Shirouzu M, Yokoyama S. 2006. Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase. Proc Natl Acad Sci USA 103:14744–14749. [PubMed][CrossRef]
120. Waller J-P, Risler J, Monteilhet C, Zelwer C. 1971. Crystallisation of trypsin-modified methionyl-tRNA synthetase from Escherichia coli. FEBS Lett 16:186–188. [PubMed][CrossRef]
121. Crépin T, Schmitt E, Mechulam Y, Sampson PB, Vaughan MD, Honek JF, Blanquet S. 2003. Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase. J Mol Biol 332:59–72. [PubMed][CrossRef]
122. Mechulam Y, Schmitt E, Maveyraud L, Zelwer C, Nureki O, Yokoyama S, Konno M, Blanquet S. 1999. Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features. J Mol Biol 294:1287–1297. [PubMed][CrossRef]
123. Serre L, Verdon G, Choinowski T, Hervouet N, Risler J-L, Zelwer C. 2001. How methionyl-tRNA synthetase creates its amino acid recognition pocket upon L-methionine binding. J Mol Biol 306:863–876. [PubMed][CrossRef]
124. Sugiura I, Nureki O, Ugaji-Yoshikawa Y, Kuwabara S, Shimada A, Tateno M, Lorber B, Giegé R, Moras D, Yokoyama S, Konno M. 2000. The 2.0Å crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules. Structure 8:197–208. [CrossRef]
125. Giegé R, Lorber B, Ebel J-P, Moras D, Thierry J-C. 1980 Crystallization of the complex formed between yeast aspartyl tRNA and its specific aminoacyl tRNA synthetase. C R Acad Sci Paris D 291:393–396. [PubMed]
126. Lorber B, Giegé R, Ebel J-P, Berthet C, Thierry J-C, Moras D. 1983. Crystallization of a tRNA-aminoacyl-tRNA synthetase complex. Characterization and first crystallographic data. J Biol Chem 258:8429–8435. [PubMed]
127. Florentz C, Kern D, Giegé R. 1990. Stimulatory effect of ammonium sulfate at high concentrations on the aminoacylation of tRNA and tRNA-like molecules. FEBS Lett 261:335–338. [PubMed][CrossRef]
128. Giegé R, Lorber B, Ebel J-P, Moras D, Thierry J-C, Jacrot B, Zaccaï G. 1982. Formation of a catalytically active complex between tRNAAsp and aspartyl-tRNA synthetase from yeast in high concentrations of ammonium sulphate. Biochimie 64:357–362. [PubMed][CrossRef]
129. Bonnet J, Ebel J-P. 1975. Influence of various factors on the recognition specificity of tRNAs by yeast valyl-tRNA synthetase. Eur J Biochem 58:193–201. [PubMed][CrossRef]
130. Smith DW. 1969. The effect of salt solutions on the acceptance of amino acids by transfer ribonucleic acid. J Biol Chem 244:896–901. [PubMed]
131. Perona JJ, Swanson R, Steitz TA, Söll D. 1988. Overproduction and purification of Escherichia coli tRNAGln2 and its use in crystallization of glutaminyl-tRNA synthetase-tRNAGln complex. J Mol Biol 202:121–126. [PubMed][CrossRef]
132. Yaremchuk AD, Tukalo MA, Krikliviy I, Malchenko N, Biou V, Berthet-Colominas C, Cusack S. 1992. A new crystal form of the complex between seryl-tRNA synthetase and tRNASer from Thermus thermophilus that diffracts to 2.8Å resolution. FEBS Lett 310:157–161. [PubMed][CrossRef]
133. Reshetnikova L, Khodyreva S, Lavrik O, Ankilova V, Frolow F, Safro M. 1993. Crystals of the phenylalanyl-tRNA synthetase from Thermus thermophilus HB8 complexed with tRNAPhe. J Mol Biol 231:927–929. [PubMed][CrossRef]
134. Swairjo MA, Schimmel PR. 2005. Breaking sieve for steric exclusion of a noncognate amino acid from active site of a tRNA synthetase. Proc Natl Acad Sci USA 102:988–993. [PubMed][CrossRef]
135. Naganuma M, Sekine S, Fukunaga R, Yokoyama S. 2009. Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization. Proc Natl Acad Sci USA 106:8489–8494. [PubMed][CrossRef]
136. Ibba M, Bono JL, Rosa PA, Söll D. 1997. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc Natl Acad Sci USA 94:14383–14388. [PubMed][CrossRef]
137. Tukalo M, Yaremchuk A, Fukunaga R, Yokoyama S, Cusack S. 2005. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation. Nat Struct Mol Biol 12:923–930. [PubMed][CrossRef]
138. Silvian LF, Wang J, Steitz, TA. 1999. Insights into editing from an ile-tRNA synthetase structure with tRNAIle and mupirocin. Science 285:1074–1077. [PubMed][CrossRef]
139. Fukai S, Nureki O, Sekine S, Shimada A, Tao J, Vassylyev DG, Yokoyama S. 2000. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNAVal and valyl-tRNA synthetase. Cell 103:793–803. [CrossRef]
140. Shimada A, Nureki O, Goto M, Takahashi S, Yokoyama S. 2001. Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase. Proc Natl Acad Sci USA 98:13537–13542. [PubMed][CrossRef]
141. Hauenstein S, Zhang C-M, Hou Y-M, Perona JJ. 2004. Shape-selective RNA recognition by cysteinyl-tRNA synthetase. Nat Struct Mol Biol 11:1134–1141. [PubMed][CrossRef]
142. Sekine S, Shichiri M, Bernier S, Chênevert R, Lapointe J, Yokoyama S. 2006. Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase. Structure 14:1791–1799. [PubMed][CrossRef]
143. Bullock TL, Uter N, Nissan TA, Perona JJ. 2003. Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants. J Mol Biol 328:395–408. [PubMed][CrossRef]
144. Kobayashi T, Takimura T, Sekine R, Kelly VP, Kamata K, Sakamoto K, Nishimura S, Yokoyama S. 2005. Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase. J Mol Biol 346:105–117. [PubMed][CrossRef]
145. Sankaranarayanan R, Dock-Bregeon A-C, Romby P, Caillet J, Springer M, Rees B, Ehresmann C, Ehresmann B, Moras D. 1999. The structure of threonyl-tRNA synthetase-tRNAThr complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97:371–381. [PubMed][CrossRef]
146. Yaremchuk A, Tukalo M, Grotli M, Cusack S. 2001. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: Comparison with histidyl-tRNA synthetase. J Mol Biol 309:989–1002. [PubMed][CrossRef]
147. Arnez JG, Augustine JG, Moras D, Francklyn CS. 1997. The first step of aminoacylation at the atomic level in histidyl-tRNA synthetase. Proc Natl Acad Sci USA 94:7144–7149. [PubMed][CrossRef]
148. Logan D, Mazauric M-H, Kern D, Moras D. 1995. Crystal structure of glycyl-tRNA synthetase from Thermus thermophilus. EMBO J 14:4156–4167. [PubMed]
149. Eiler S, Dock-Bregeon A-C, Moulinier L, Thierry J-C, Moras D. 1999. Synthesis of aspartyl-tRNAAsp in Escherichia coli - a snapshot of the second step. EMBO J 18:6532–6541. [PubMed][CrossRef]
150. Berthet-Colominas C, Seignovert L, Härtlein M, Grotli M, Cusack S, Leberman R. 1998. The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: The mechanism of discrimination between asparagine and aspartic acid. EMBO J 17:2947–2960. [PubMed][CrossRef]
151. Desogus G, Todone F, Brick P, Onesti S. 2000. Active site of lysyl-tRNA synthetase: Structural studies of the adenylation reaction. Biochemistry 39:8418–8425. [PubMed][CrossRef]
152. Moor N, Kotik-Kogan O, Tworowski D, Sukhanova M, Safro M. 2006. The crystal structure of the ternary complex of phenylalanyl-tRNA synthetase with tRNAPhe and a phenylalanyl-adenylate analogue reveals a conformational switch of the CCA end. Biochemistry 45:10572–10583. [PubMed][CrossRef]
153. Chopra S, Palencia A, Virus C, Tripathy A, Temple BR, Velazquez-Campoy A, Cusack S, Reader JS. 2013. Plant tumour biocontrol agent employs a tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase. Nat Commun 4:1417. [PubMed][CrossRef]
154. Hernandez V, Crépin T, Palencia A, Cusack S, Akama T, Baker SJ, Bu W, Feng L, Freund YR, Liu L, Meewan M, Mohan M, Mao W, Rock FL, Sexton H, Sheoran A, Zhang Y, Zhang YK, Zhou Y, Nieman JA, Anugula MR, Keramane el M, Savariraj K, Reddy DS, Sharma R, Subedi R, Singh R, O’Leary A, Simon NL, De Marsh PL, Mushtaq S, Warner M, Livermore DM, Alley MR, Plattner JJ. 2013. Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria. Antimicrob Agents Chemother 57:1394–1403. [PubMed][CrossRef]
155. Li L, Palencia A, Lukk T, Li Z, Luthey-Schulten ZA, Cusack S, Martinis SA, Boniecki MT. 2013. Leucyl-tRNA synthetase editing domain functions as a molecular rheostat to control codon ambiguity in Mycoplasma pathogens. Proc Natl Acad Sci USA 110:3817–3822. [PubMed][CrossRef]
156. Rock FL, Mao W, Yaremchuk A, Tukalo M, Crépin T, Zhou H, Zhang Y-K, Hernandez V, Akama T, Baker SJ, Plattner JJ, Shapiro L, Martinis SA, Benkovic SJ, Cusack S, Alley MR. 2007. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 316:1759–1761. [PubMed][CrossRef]
157. Nakama T, Nureki O, Yokoyama S. 2001. Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J Biol Chem 276:47387–47393. [PubMed][CrossRef]
158. Ingvarsson H Unge T. 2010. Flexibility and communication within the structure of the Mycobacterium smegmatis methionyl-tRNA synthetase. FEBS J 277:3947–3962. [PubMed][CrossRef]
159. Teng M, Hilgers M, Cunningham M, Borchardt A, Locke J, Abraham S, Haley G, Kwan B, Hall C, Hough G, Finn J, Shaw K. 2013. Identification of bacteria selective threonyl-tRNA synthetase (ThrRS) substrate inhibitors by structure-based design. J Med Chem 56:1748–1760. [PubMed][CrossRef]
160. Qiu X, Janson CA, Smith WW, Green SM, McDevitt P, Johanson K, Carter P, Hibbs M, Lewis C, Chalker A, Fosberry A, Lalonde J, Berge J, Brown P, Houge-Frydrych CS, Jarvest RL. 2001. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci 10:2008–2016. [PubMed][CrossRef]
161. Charron C, Roy H, Blaise M, Giegé R, Kern D. 2003. Non-discriminating and discriminating aspartyl-tRNA synthetases differ in the anticodon-binding domain. EMBO J 22:1632–1643. [PubMed][CrossRef]
162. Schmitt E, Moulinier L, Fujiwara S, Imanaka T, Thierry J-C, Moras D. 1998. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: Archeon specificity and catalytic mechanism of adenylate formation. EMBO J 17:5227–5237. [PubMed][CrossRef]
163. Delarue M, Poterszman A, Nikonov S, Garber M, Moras D, Thierry J-C. 1994. Crystal structure of a prokaryotic aspartyl-tRNA synthetase. EMBO J 13:3219–3229. [PubMed]
164. Ng JD, Sauter C, Lorber B, Kirkland N, Arnez J, Giegé R. 2002. Comparative analysis of space-grown and earth-grown crystals of an aminoacyl-tRNA synthetase: Space-grown crystals are more useful for structural determination. Acta Crystallgr D 58:645–652. [CrossRef]
165. Rees B, Webster G, Delarue M, Boeglin M, Moras D. 2000. Aspartyl-tRNA synthetase from Escherichia coli: Flexibility and adaptability to the substrates. J Mol Biol 299:1157–1164. [PubMed][CrossRef]
166. Sauter C, Lorber E, Cavarelli J, Moras D, Giegé R. 2000. The free yeast aspartyl-tRNA synthetase differs from the tRNAAsp-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. J Mol Biol 299:1313–1324. [PubMed][CrossRef]
167. Schmitt E, Tanrikulu IC, Yoo TH, Panvert M, Tirrell DA, Mechulam Y. 2009. Switching from an induced fit to a lock and key mechanism in an aminoacyl-tRNA synthetase with modified specificity. J Mol Biol 394:843–851. [PubMed][CrossRef]
168. Cassio D, Waller J-P. 1971. Modification of methionyl-tRNA synthetase by proteolytic cleavage and properties of the trypsin-modified enzyme. Eur J Biochem 20:283–300. [PubMed][CrossRef]
169. Fourmy D, Dardel F, Blanquet S. 1993. Methionyl-tRNA synthetase zinc binding domain. Three-dimensional structure and homology with rubredoxin and gag retroviral proteins. J Mol Biol 231:1078–1089. [PubMed][CrossRef]
170. Cusack S, Yaremchuk A, Tukalo M. 2000. The 2Å crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J 19:2351–2361. [PubMed][CrossRef]
171. Vu MT, Martinis SA. 2007. A unique insert of leucyl-tRNA synthetase is required for aminoacylation and not amino acid editing. Biochemistry 46:5170–5176. [PubMed][CrossRef]
172. Hsu JL, Martinis SA. 2008. A flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases. J Mol Biol 376:482–491. [PubMed][CrossRef]
173. Xu M-G, Chen J-F, Martin F, Zhao M-W, Eriani G, Wang E-D. 2002. Leucyl-tRNA synthetase consisting of two subunits from hyperthermophilic bacteria Aquifex aeolicus. J Biol Chem 277:41590–41596. [PubMed][CrossRef]
174. Yamane T, Hopfield JJ. 1977. Experimental evidence for kinetic proofreading in the aminoacylation of tRNA by synthetase. Proc Natl Acad Sci USA 74:2246–2250. [PubMed][CrossRef]
175. Newberry KJ, Hou Y-M, Perona JJ. 2002. Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase. EMBO J 21:2778–2787. [PubMed][CrossRef]
176. Fersht AR, Dingwall C. 1979. Cysteinyl-tRNA synthetase from Escherichia coli does not need an editing mechanism to reject serine and alanine. High binding energy of small groups in specific molecular interactions. Biochemistry 18:1245–1249. [PubMed][CrossRef]
177. Cavarelli J, Delagoutte B, Eriani G, Gangloff J, Moras D. 1998. L-arginine recognition by yeast arginyl-tRNA synthetase. EMBO J 17:5438–5448. [PubMed][CrossRef]
178. Bi, K, Zheng, Y, Gao, F, Dong, J, Wang, J, Wang, Y, Gong, W. 2014. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition. Protein Cell 5:151–159. [PubMed][CrossRef]
179. Rould MA, Perona JJ, Söll D, Steitz TA. 1989. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8Å resolution. Science 246:1135–1142. [PubMed][CrossRef]
180. Nureki O, Vassylyev DG, Katayanagi K, Shimizu T, Sekine S-i, Kigawa T, Miyazawa T, Yokoyama S, Morikawa K. 1995. Architectures of class-defining and specific domains of glutamyl-tRNA synthetase. Science 267:1958–1965. [PubMed][CrossRef]
181. Makarova KS, Aravind L, Koonin EV. 2002. SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes. Trends Biochem Sci 27:384–386. [PubMed][CrossRef]
182. Banerjee R, Dubois DY, Gauthier J, Lin S-X, Roy S, Lapointe J. 2004. The zinc-binding site of a class I aminoacyl-tRNA synthetase is a SWIM domain that modulates amino acid binding via the tRNA acceptor arm. Eur J Biochem 271:724–733. [PubMed][CrossRef]
183. Perona JJ, Rould MA, Steitz TA, Rissler J-L, Zelwer C, Brunie S. 1991. Structural similarities in glutaminyl- and methionyl-tRNA synthetases suggest a common overall orientation of tRNA binding. Proc Natl Acad Sci USA 88:2903–2907. [PubMed][CrossRef]
184. Siatecka M, Rozek M, Barciszewski J, Mirande M. 1998. Modular evolution of the Glx-tRNA synthetase family – rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. Eur J Biochem 256:80–87. [PubMed][CrossRef]
185. Sekine S, Nureki O, Shimada A, Vassylyev D, Yokoyama S. 2001. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Mol Biol 8:203–206. [PubMed][CrossRef]
186. Ito T, Yokoyama S. 2010. Two enzymes bound to one tRNA assume alternative conformations for consecutive reactions. Nature 467:612–616. [PubMed][CrossRef]
187. Blaise M, Bailly M, Fréchin M, Behrens MA, Fischer F, Oliveira CL, Becker HD, Pedersen JS, Thirup S, Kern D. 2010. Crystal structure of a transfer-ribonucleoprotein particle that promotes asparagine formation. EMBO J 29:3118–3129. [PubMed][CrossRef]
188. Giegé R, Sissler M, Florentz C. 1998. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26:5017–5035. [PubMed][CrossRef]
189. Bailly M, Giannouli S, Blaise M, Stathopoulos C, Kern D, Becker HD. 2006. A single tRNA base pair mediates bacterial tRNA-dependent biosynthesis of asparagine. Nucleic Acids Res 34:6083–6094. [PubMed][CrossRef]
190. Ibba M, Losey HC, Kawarabayasi Y, Kikuchi H, Bunjun S, Söll D. 1999. Substrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement. Proc Natl Acad Sci USA 96:418–423. [PubMed][CrossRef]
191. Doublié S, Bricogne G, Gilmore C, Carter CW Jr. 1995. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase. Structure 3:17–31. [PubMed][CrossRef]
192. Tzima E, Schimmel P. 2006. Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem Sci 31:7–10. [PubMed][CrossRef]
193. Bedouelle H, Winter G. 1986. A model of synthetase/transfer RNA interaction as deduced by protein engineering. Nature 320:371–373. [PubMed][CrossRef]
194. Bonnefond L, Giegé R, Rudinger-Thirion J. 2005. Evolution of the tRNATyr/TyrRS aminoacylation systems. Biochimie 87:873–883. [PubMed][CrossRef]
195. Ilyin VA, Temple B, Hu M, Li G, Yin Y, Vachette P, Carter CW Jr. 2000. 2.9Å crystal structure of ligand-free tryptophanyl-tRNA synthetase: Domain movements fragment the adenine nucleotide binding site. Protein Sci 9:218–231. [PubMed][CrossRef]
196. Brick P, Bhat TN, Blow DM. 1989. Structure of tyrosyl-tRNA synthetase refined at 2.3Å resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol 208:83–98. [CrossRef]
197. Guijarro JI, Pintar A, Prochnicka-Chalufour A, Guez V, Gilquin B, Bedouelle H, Delepierre M. 2002. Structure and dynamics of the anticodon arm binding domain of Bacillus stearothermophilus tyrosyl-tRNA synthetase. Structure 10:311–317. [PubMed][CrossRef]
198. Pham Y, Kuhlman B, Butterfoss GL, Hu H, Weinreb V, Carter CW Jr. 2010. Tryptophanyl-tRNA synthetase Urzyme: A model to recapitulate molecular evolution and investigate intramolecular complementation. J Biol Chem 285:38590–38601. [PubMed][CrossRef]
199. Retailleau P, Huang X, Yin Y, Hu M, Weinreb V, Vachette P, Vonrhein C, Bricogne G, Roversi P, Ilyin V, Carter CW Jr. 2003. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations. J Mol Biol 325:39–63. [PubMed][CrossRef]
200. Retailleau P, Weinreb V, Hu M, Carter CW Jr. 2007. Crystal structure of tryptophanyl-tRNA synthetase complexed with adenosine-5′ tetraphosphate: Evidence for distributed use of catalytic binding energy in amino acid activation by class I aminoacyl-tRNA synthetases. J Mol Biol 369:108–128. [PubMed][CrossRef]
201. Han GW, Yang X-L, McMullan D, Chong YE, Krishna SS, Rife CL, Weekes D, Brittain SM, Abdubek P, Ambing E, Astakhova T, Axelrod HL, Carlton D, Caruthers J, Chiu H-J, Clayton T, Duan L, Feuerhelm J, Grant JC, Grzechnik SK, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kumar A, Marciano D, Miller MD, Morse AT, Nigoghossian E, Okach L, Paulsen J, Reyes R, van den Bedem H, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Elsliger MA, Schimmel P, Wilson IA. 2010. Structure of a tryptophanyl-tRNA synthetase containing an iron-sulfur cluster. Acta Crystallgr F 66:1326–1334. [PubMed][CrossRef]
202. Pierrel F, Douki T, Fontecave M, Atta M. 2004. MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J Biol Chem 279:47555–47563. [PubMed][CrossRef]
203. Biou V, Yaremchuk A, Tukalo M, Cusack S. 1994. The 2.9Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer. Science 263:1404–1410. [PubMed][CrossRef]
204. Gruic-Sovulj I, Rokov-Plavec J, Weygand-Durasevic I. 2007. Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. FEBS Lett 581:5110–5114. [PubMed][CrossRef]
205. Romby P, Springer M. 2003. Bacterial translational control at atomic resolution. Trends Genet 19:155–161. [PubMed][CrossRef]
206. Torres-Larios A, Dock-Bregeon A-C, Romby P, Rees B, Sankaranarayanan R, Caillet J, Springer M, Ehresmann C, Ehresmann B, Moras D. 2002. Structural basis of translational control by Escherichia coli threonyl-tRNA synthetase. Nat Struct Biol 9:343–347. [PubMed][CrossRef]
207. Beebe K, Ribas de Pouplana L, Schimmel P. 2003. Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J 22:668–675. [PubMed][CrossRef]
208. Fukunaga R, Yokoyama S. 2007. Structure of the AlaX-M trans-editing enzyme from Pyrococcus horikoshii. Acta Crystallgr D 63:390–400. [PubMed][CrossRef]
209. Dock-Bregeon A-C, Rees B, Torres-Larios A, Bey G, Caillet J, Moras D. 2004. Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution. Mol Cell 16:375–386. [CrossRef]
210. Torres-Larios A, Sankaranarayanan R, Rees B, Dock-Bregeon A-C, Moras D. 2003. Conformational movements and cooperativity upon amino acid, ATP and tRNA binding in threonyl-tRNA synthetase. J Mol Biol 331:201–211. [PubMed][CrossRef]
211. Crépin T, Yaremchuk A, Tukalo M, Cusack S. 2006. Structures of two bacterial prolyl-tRNA synthetases with and without a cis-editing domain. Structure 14:1511–1525. [PubMed][CrossRef]
212. Yaremchuk A, Cusack S, Tukalo M. 2000. Crystal structure of a eukaryote/archaeon-like prolyl-tRNA synthetase and its complex with tRNAPro(CGG). EMBO J 19:4745–4758. [PubMed][CrossRef]
213. Arnez JG, Harris DC, Mitschler A, Rees B, Francklyn CS, Moras D. 1995. Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate. EMBO J 14:4143–4155. [PubMed]
214. Aberg A, Yaremchuk A, Tukalo M, Rasmussen B, Cusack S. 1997. Crystal structure analysis of the activation of histidine by Thermus thermophilus histidyl-tRNA synthetase. Biochemistry 36:3084–3094 [PubMed][CrossRef]
215. Qiu X, Janson CA, Blackburn MN, Chhohan IK, Hibbs M, Abdel-Meguid SS. 1999. Cooperative structural dynamics and a novel fidelity mechanism in histidyl-tRNA synthetases. Biochemistry 38:12296–12304. [PubMed][CrossRef]
216. Guth E, Farris M, Bovee M, Francklyn CS. 2009. Asymmetric amino acid activation by class II histidyl-tRNA synthetase from Escherichia coli. J Biol Chem 284:20753–20762. [PubMed][CrossRef]
217. Kaur G, Subramanian S. 2015. The insertion domain 1 of class IIA dimeric glycyl-tRNA synthetase is a rubredoxin-like zinc ribbon. J Struct Biol 190:38–46. [PubMed][CrossRef]
218. Murzin AG. 1993. OB (oligonucleotide/oligosaccharide binding)-binding fold: Common structural and functional solution for non-homologous sequences. EMBO J 12:861–867. [PubMed]
219. Commans S, Lazard M, Delort F, Blanquet S, Plateau P. 1998. tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases. J Mol Biol 278:801–813. [PubMed][CrossRef]
220. Bernard D, Akochy PM, Beaulieu D, Lapointe J, Roy PH. 2006. Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeroginosa are individually implicated in the recognition of tRNAAsn. J Bacteriol 188:269–274. [PubMed][CrossRef]
221. Chuawong P, Hendrickson TL. 2006. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: Anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Biochemistry 45:8079–8087. [PubMed][CrossRef]
222. Archontis G, Simonson T, Moras D, Karplus M. 1998. Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations. J Mol Biol 275:823–846. [PubMed][CrossRef]
223. Iwasaki W, Sekine S, Kuroishi C, Kuramitsu S, Shirouzu M, Yokoyama S. 2006. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase. J Mol Biol 360:329–342. [PubMed][CrossRef]
224. Onesti S, Miller AD, Brick P. 1995. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. Structure 3:163–176. [PubMed][CrossRef]
225. Brevet A, Chen J, Lévêque F, Plateau P, Blanquet S. 1989. In vivo synthesis of adenylylated bis(5′-nucleosidyl) tetraphosphates (Ap4N) by Escherichia coli aminoacyl-tRNA synthetases. Proc Natl Acad Sci USA 86:8275–8279. [PubMed][CrossRef]
226. Kisselev LL, Justesen J, Wolfson AD, Frolova LY. 1998. Diadenosine oligophosphates (Ap(n)A), a novel class of signalling molecules? FEBS Lett 427:157–163. [PubMed][CrossRef]
227. Cusack S, Yaremchuk A, Tukalo M. 1996. The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNALys and a T. thermophilus tRNALys transcript: Anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J 15:6321–6334. [PubMed]
228. Sakurama H, Takita T, Mikami B, Itoh T, Yasukawa K, Inouye K. 2009. Two crystal structures of lysyl-tRNA synthetase from Bacillus stearothermophilus in complex with lysyladenylate-like compounds: Insights into the irreversible formation of the enzyme-bound adenylate of L-lysine hydroxamate. J Biochem 154:555–563. [PubMed][CrossRef]
229. Navarre WW, Zou SB, Roy H, Xie JL, Savchenko A, Singer A, Edvokimova E, Prost LR, Kumar R, Ibba, M, Fang FC. 2010. PoxA, YjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol Cell 39:209–221. [PubMed][CrossRef]
230. Swairjo MA, Otero FJ, Yang X-L, Lovato MA, Skene RJ, McRee DE, Ribas de Pouplana L, Schimmel P. 2004. Alanyl-tRNA synthetase crystal structure and design for acceptor-stem recognition. Mol Cell 13:829–841. [PubMed][CrossRef]
231. Fishman R, Ankilova V, Moor N, Safro M. 2001. Structure at 2.6Å resolution of phenylalanyl-tRNA synthetase complexed with phenylalanyl-adenylate in the presence of manganese. Acta Crystallgr D 57:1534–1544. [PubMed][CrossRef]
232. Goldgur Y, Mosyak L, Reshetnikova L, Ankilova V, Lavrik O, Khodyreva S, Safro M. 1997. The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe. Structure 5:59–68. [PubMed][CrossRef]
233. Kotik-Kogan O, Moor N, Tworowski D, Safro M. 2005. Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase. Structure 13:1799–1807. [PubMed][CrossRef]
234. Mosyak L, Reshetnikova L, Goldgur Y, Delarue M, Safro MG. 1995. Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus. Nat Struct Biol 2:537–547. [PubMed][CrossRef]
235. Mermershtain I, Finarov I, Klipcan L, Kessler N, Rozenberg H, Safro MG. 2011. Idiosyncrasy and identity in the prokaryotic phe-system: Crystal structure of E. coli phenylalanyl-tRNA synthetase complexed with phenylalanine and AMP. Protein Sci 20:160–167. [PubMed][CrossRef]
236. Safro M, Mosyak L. 1995. Structural similarities in the noncatalytic domains of phenylalanyl-tRNA and biotin synthetases. Protein Sci 4:2429–2432. [PubMed][CrossRef]
237. Evdokimov AG, Mekel M, Hutchings K, Narasimhan L, Holler T, McGrath T, Beattie B, Fauman E, Yan C, Heaslet H, Walter R, Finzel B, Ohren J, McConnell P, Braden T, Sun F, Spessard C, Banotai C, Al-Kassim L, Ma W, Wengender P, Kole D, Garceau N, Toogood P, Liu J. 2008. Rational protein engineering in action: The first crystal structure of a phenylalanine tRNA synthetase from Staphylococcus haemolyticus. J Struct Biol 162:152–169. [PubMed][CrossRef]
238. Abibi A, Ferguson AD, Fleming PR, Gao N, Hajec LI, Hu J, Laganas VA, McKinney DC, McLeod SM, Prince DB, Shapiro AB, Buurman ET. 2014. The role of a novel auxiliary pocket in bacterial phenylalanyl-tRNA synthetase druggability. J Biol Chem 289:21651–22162. [PubMed][CrossRef]
239. Luque I, Riera-Alberola M, Andujar A, Ochoa de Alda JA. 2008. Intraphylum diversity and complex evolution of cyanobacterial aminoacyl-tRNA synthetases. Mol Biol Evol 25:2369–2389. [PubMed][CrossRef]
240. First EA. 2005. Catalysis of the tRNA aminoacylation reaction, p 328–352. In Ibba M, Francklyn C, and Cusack S (ed), The Aminoacyl-tRNA Synthetases. Landes Bioscience, Georgetown, TX.
241. Airas K. 1996. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli. Eur J Biochem 240:223–231. [PubMed][CrossRef]
242. Perona JJ, Rould MA, Steitz TA. 1993. Structural basis for transfer RNA aminoacylation by glutaminyl-tRNA synthetase. Biochemistry 32:8758–8771. [PubMed][CrossRef]
243. Weinreb V, Li L, Carter Jr CW. 2012. A master switch couples Mg2+-assisted catalysis to domain motion in B. stearothermophilus tryptophanyl-tRNA synthetase. Structure 20:128–138. [PubMed][CrossRef]
244. Rould MA, Perona JJ, Steitz TA. 1991. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature 352:213–218. [PubMed][CrossRef]
245. Briand C, Poterszman A, Eiler S, Webster G, Thierry JC, Moras D. 2000. An intermediate step in the recognition of tRNAAsp by aspartyl-tRNA synthetase. J Mol Biol 299:1051–1060. [PubMed][CrossRef]
246. Pauling L. 1957. The probability of errors in the process of synthesis of protein molecules, p 597–602. Festschrift Prof. Dr. Arthur Stoll zum siebzigsten Geburtstag, 8 Januar 1957. Birkhäuser Verlag, Basel, Switzerland.
247. Geslain R, Ribas de Pouplana L. 2004. Regulation of RNA function by aminoacylation and editing? Trends Genet 20:604–610. [PubMed][CrossRef]
248. Mascarenhas AP, An S, Rosen AE, Martinis SA, Musier-Forsyth K. 2009. Fidelity mechanisms of aminoacyl-tRNA synthetases, p 155–203. In Köhrer C and RajBhandary UL (ed), Protein Engineering, vol. 22. Springer, Berlin, Germany. [CrossRef]
249. Thompson D, Lazennec C, Plateau P, Simonson T. 2007. Ammonium scanning in an enzyme active site. The chiral specificity of aspartyl-tRNA synthetase. J Biol Chem 282:30856–30868. [PubMed][CrossRef]
250. Banik SD, Nandi N. 2010. Aminoacylation reaction in the histidyl-tRNA synthetase: Fidelity mechanism of the activation step. J Phys Chem B 114:2301–2311. [PubMed][CrossRef]
251. Thompson D, Lazennec C, Plateau P, Simonson T. 2008. Probing electrostatic interactions and ligand binding in aspartyl-tRNA synthetase through site-directed mutagenesis and computer simulations. Proteins 71:1450–1460. [PubMed][CrossRef]
252. Stephen P, Lin S-X, Giegé R. 2016. Interplay between catalysts and substrates for activity of class Ib aminoacyl-tRNA synthetases and implications for pharmacology. Curr Top Med Chem 16:616–633. [PubMed][CrossRef]
253. Banerjee R, Chen S, Dare K, Gilreath M, Praetorius-Ibba M, Raina M, Reynolds NM, Rogers T, Roy H, Yadavalli SS, Ibba M. 2010. tRNAs: Cellular barcodes for amino acids. FEBS Lett 584:387–395. [PubMed][CrossRef]
254. Uter NT, Gruic-Sovulj I, Perona JJ. 2005. Amino acid-dependent transfer RNA affinity in a class I aminoacyl-tRNA synthetase. J Biol Chem 280:23966–23977. [PubMed][CrossRef]
255. Uter NT, Perona JJ. 2006. Active-site assembly in glutaminyl-tRNA synthetase by tRNA-mediated induced fit. Biochemistry 45:6858–6865. [PubMed][CrossRef]
256. Bullock TL, Rodriguez-Hernandez A, Corigliano EM, Perona JJ. 2008. A rationally engineered misacylating aminoacyl-tRNA synthetase. Proc Natl Acad Sci USA 105:7428–7433. [PubMed][CrossRef]
257. Delagoutte B, Moras D, Cavarelli J. 2000. tRNA aminoacylation by arginyl-tRNA synthetase: Induced conformations during substrates binding. EMBO J 19:5599–5610. [PubMed][CrossRef]
258. Zhou M, Ye S, Stephen P, Zhang R-G, Wang E-D, Giegé R, Lin S-X. 2016. Structures of Escherichia coli arginyl-tRNA synthetase mediated by arginine and tRNAArg binding. in preparation.
259. Lam SSM, Schimmel PR. 1975. Equilibrium measurements of cognate and noncognate interactions between aminoacyl transfer RNA synthetases and transfer RNA. Biochemistry 14:2775–2780. [PubMed][CrossRef]
260. Ebel J-P, Giegé R, Bonnet J, Kern D, Befort N, Bollack C, Fasiolo F, Gangloff J, Dirheimer G. 1973. Factors determining the specificity of the tRNA aminoacylation reaction. Biochimie 55:547–557. [PubMed][CrossRef]
261. Beuning PJ, Musier-Forsyth K. 1999. Transfer RNA recognition by aminoacyl-tRNA synthetases. Biopolymers 52:1–28. [PubMed][CrossRef]
262. Giegé R, Frugier M. 2003. Transfer RNA structure and identity, p 1–24. In Lapointe J and Brakier-Gringas L (ed), Translation Mechanisms. Landes Biociences, Georgetown, TX.
263. McClain WH. 2005. tRNA aminoacylation: the crucial roles of tRNA deformabilty and backbone-mediated interactions by synthetase, p 266–270. In Ibba M, Francklyn C, and Cusack S (ed), The Aminoacyl-tRNA Synthetases. Landes Bioscience, Georgetown, TX.
264. Giegé R. 2008. Toward a more complete view of tRNA biology. Nat Struct Mol Biol 15:1007–1014. [PubMed][CrossRef]
265. Frugier M, Helm M, Felden B, Giegé R, Florentz C. 1998. Sequences outside recognition sets are not neutral for tRNA aminoacylation: Evidence for non-permissive combinations of nucleotides in the acceptor stem of yeast tRNAPhe. J Biol Chem 273:11605–11610. [PubMed][CrossRef]
266. Perona JJ, Hou Y-M. 2007. Indirect readout of tRNA for aminoacylation. Biochemistry 46:10419–10432. [PubMed][CrossRef]
267. Choi H, Kay G, Schneider JA, Otten S, McClain WH. 2003. Recognition of acceptor-stem structure of tRNAAsp by Escherichia coli aspartyl-tRNA synthetase. RNA 9:386–393. [PubMed][CrossRef]
268. Giegé R, Jühling F, Pütz J, Stadler P, Sauter C, Florentz C. 2012. Structure of transfer RNAs: Similarity and variability. Wiley Interdiscip Rev RNA 3:37–61. [PubMed][CrossRef]
269. Salinas-Giegé T, Giegé R., Giegé P. 2015. tRNA biology in mitochondria. Int J Mol Sci 16:4518–4559. [PubMed][CrossRef]
270. Musier-Forsyth K, Schimmel P. 1999. Atomic determinants for aminoacylation of RNA minihelices and relationship to genetic code. Acc Chem Res 32:368–375. [CrossRef]
271. Musier-Forsyth K, Schimmel P. 1992. Functional contacts of a transfer RNA synthetase with 2′-hydroxyl groups in the RNA minor groove. Nature 357:513–515. [PubMed][CrossRef]
272. Aphasizhev R, Théobald-Dietrich A, Kostyuk D, Kochetkov SN, Kisselev L, Giegé R, Fasiolo F. 1997. Structure and aminoacylation capacities of tRNA transcripts containing deoxyribonucleotides. RNA 3:893–904. [PubMed]
273. Giegé R, Lapointe J. 2009. Transfer RNA aminoacylation and modified nucleosides, p 475–492. In Grosjean H (ed), DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution. Landes Bioscience, Georgetown, TX.
274. Muramatsu T, Nishikawa K, Nemoto F, Kuchino Y, Nishimura S, Miyazawa T, Yokoyama S. 1988. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336:179–181. [PubMed][CrossRef]
275. Pütz J, Florentz C, Benseler F, Giegé R. 1994. A single methyl group prevents the mischarging of a tRNA. Nat Struct Biol 1:580–582. [PubMed][CrossRef]
276. Giegé R, Rees B. 2005. Aspartyl-tRNA synthetases, p 210–226. In Ibba M, Francklyn C, and Cusack S (ed), The Aminoacyl-tRNA Synthetases. Landes Bioscience, Georgetown, TX.
277. Freyhult E, Cui Y, Nilsson O, Ardell DH. 2007. New computational methods reveal tRNA identity element divergence between Proteobacteria and Cyanobacteria. Biochimie 89:1276–1288. [PubMed][CrossRef]
278. Perret V, Florentz C, Puglisi JD, Giegé R. 1992. Effect of conformational features on the aminoacylation of tRNAs and consequences on the permutation of tRNA specificities. J Mol Biol 226:323–333. [PubMed][CrossRef]
279. McClain WH, Nicholas HBJ. 1987. Differences between transfer RNA molecules. J Mol Biol 194:635–642. [PubMed][CrossRef]
280. Ardell DH, Andersson SG. 2006. TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase. Nucleic Acids Res 34:893–904. [PubMed][CrossRef]
281. Freyhult E, Moulton V, Ardell DH. 2006. Visualizing bacterial tRNA identity determinants and antideterminants using function logos and inverse function logos. Nucleic Acids Res 34:905–916. [PubMed][CrossRef]
282. Jako E, Ittzes P, Szenes A, Kun A, Szathmary E, Pal G. 2007. In silico detection of tRNA sequence features characteristic to aminoacyl-tRNA synthetase class membership. Nucleic Acids Res 35:5593–5609. [PubMed][CrossRef]
283. Korencic D, Söll D, Ambrogelly A. 2002. A one-step method for in vitro production of tRNA transcripts. Nucleic Acids Res 30:e105. [PubMed][CrossRef]
284. Beuning PJ, Gulotta M, Musier-Forsyth K. 1997. Atomic group “mutagenesis” reveals major groove fine interactions of a tRNA synthetase with an RNA helix. J Am Chem Soc 119:8397–8402. [CrossRef]
285. Martinis SA, Schimmel P. 1995. Small RNA oligonucleotide substrates for specific aminoacylations, p 349–370, In Söll D and RajBhandary UL (ed), tRNA: Structure, Biosynthesis, and Function. American Society for Microbiology, Washington, DC.
286. Normanly J, Abelson J. 1989. tRNA identity. Annu Rev Biochem 58:1029–1049. [PubMed][CrossRef]
287. McClain WH. 1993. Transfer RNA identity. FASEB J 7:72–78. [PubMed]
288. McClain WH. 1993. Rules that govern tRNA identity in protein synthesis. J Mol Biol 234:257–280. [PubMed][CrossRef]
289. Kobayashi T, Nureki O, Ishitani R, Yaremchuk A, Tukalo M, Cusack S, Sakamoto K, Yokoyama S. 2003. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nat Struct Biol 10:425–432. [PubMed][CrossRef]
290. Bonnefond L, Frugier M, Giegé R, Rudinger-Thirion J. 2005. Human mitochondrial TyrRS disobeys the tyrosine idenity rules. RNA 11:558–562. [PubMed][CrossRef]
291. Moulinier L, Eiler S, Eriani G, Gangloff J, Thierry J-C, Gabriel K, McClain WH, Moras D. 2001. The structure of an AspRS-tRNAAsp complex reveals a tRNA-dependant control mechanism. EMBO J 20:5290–5301. [PubMed][CrossRef]
292. Nameki N, Tamura K, Himeno H, Asahara H, Hasegawa T, Shimuzu M. 1992. Escherichia coli tRNAAsp recognition mechanism differing from that of the yeast system. Biochem Biophys Res Commun 189:856–862. [PubMed][CrossRef]
293. Hou Y-M, Westhof E, Giegé R. 1993. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc Natl Acad Sci USA 90:6776–6780. [CrossRef]
294. Hou Y-M, Motegi H, Lipman RSA, Hamann CS, Shiba K. 1999. Conservation of a tRNA core for aminoacylation. Nucleic Acids Res 27:4743–4750. [PubMed][CrossRef]
295. Tocchini-Valentini G, Saks ME, Abelson J. 2000. tRNA leucine identity and recognition sets. J Mol Biol 298:779–793. [PubMed][CrossRef]
296. Burke B, Yang F, Chen F, Stehlin C, Chan B, Musier-Forsyth K. 2000. Evolutionary coadaptation of the motif 2-acceptor stem interaction in the class II prolyl-tRNA synthetase system. Biochemistry 39:15540–15547. [PubMed][CrossRef]
297. Larkin DC, Williams AM, Martinis SA, Fox GE. 2002. Identification of essential domains for Escherichia coli tRNALeu aminoacylation and amino acid editing using minimalist RNA molecules. Nucleic Acids Res 30:2103–2113. [PubMed][CrossRef]
298. Fukunaga J, Ohno S, Nishikawa K, Yokogawa T. 2006. A base pair at the bottom of the anticodon stem is reciprocally preferred for discrimination of cognate tRNAs by Escherichia coli lysyl- and glutaminyl-tRNA synthetases. Nucleic Acids Res 34:3181–3188. [PubMed][CrossRef]
299. Wong F-C, Beuning PJ, Silvers C, Musier-Forsyth K. 2003. An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing. J Biol Chem 278:52857–52864. [PubMed][CrossRef]
300. Zhao M-W, Zhu B, Hao R, Xu M-G, Eriani G, Wang E-D. 2005. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution. EMBO J 24:1430–1439. [PubMed][CrossRef]
301. Tamura K, Himeno H, Asahara H, Hasegawa T, Shimizu M. 1992. In vitro study of E. coli tRNAArg and tRNALys identity elements. Nucleic Acids Res 20:2335–2339. [PubMed][CrossRef]
302. Schmitt E, Meinnel T, Panvert M, Mechulam Y, Blanquet S. 1993. Two acidic residues of Escherichia coli methionyl-tRNA synthetase act as negative discriminants towards the binding of non-cognate tRNA anticodons. J Mol Biol 233:615–628. [PubMed][CrossRef]
303. Bedouelle H, Guez-Ivanier V, Nageotte R. 1993. Discrimination between transfer-RNAs by tyrosyl-tRNA synthetase. Biochimie 75:1099–1108. [PubMed][CrossRef]
304. Nureki O, Niimi T, Muramatsu T, Kanno H, Kohno T, Florentz C, Giegé R, Yokoyama S. 1994. Molecular recognition of the identity-determinant set of isoleucine transfer RNA from Escherichia coli. J Mol Biol 236:710–724. [PubMed][CrossRef]
305. Madore E, Florentz C, Giegé R, Sekine S, Yokoyama S, Lapointe J. 1999. Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase – Predominant and distinct roles of the mnm5 and s2 modifications of U34. Eur J Biochem 266:1128–1135. [PubMed][CrossRef]
306. Beebe K, Merriman E, Schimmel P. 2003. Structure-specific tRNA determinants for editing a mischarged amino acid. J Biol Chem 278:45056–45061. [PubMed][CrossRef]
307. Zhu B, Zhao M-W, Eriani G, Wang E-D. 2007. A present-day aminoacyl-tRNA synthetase with ancestral editing properties. RNA 13:15–21. [PubMed][CrossRef]
308. Francklyn C, Schimmel P. 1989. Aminoacylation of RNA minihelices with alanine. Nature 337:478–481. [PubMed][CrossRef]
309. Musier-Forsyth K, Usman N, Scaringe S, Doudna J, Green R, Schimmel P. 1991. Specificity for aminoacylation of an RNA helix: An unpaired, exocyclic amino group in the minor groove. Science 253:784–786. [PubMed][CrossRef]
310. Fischer AE, Beuning PJ, Musier-Forsyth K. 1999. Identification of discriminator base atomic groups that modulate the alanine aminoacylation reaction. J Biol Chem 274:37093–37096. [PubMed][CrossRef]
311. Martinis SA, Schimmel P. 1992. Enzymatic aminoacylation of sequence-specific RNA minihelices and hybrid duplexes with methionine. Proc Natl Acad Sci USA 89:65–69. [PubMed][CrossRef]
312. Quinn CL, Tao N, Schimmel P. 1995. Species-specific microhelix aminoacylation by a eukaryotic pathogen tRNA synthetase dependent on a single base pair. Biochemistry 34:12489–12495. [PubMed][CrossRef]
313. Liu H, Yap L-P, Musier-Forsyth K. 1996. Single atomic group in RNA helix needed for positive and negative tRNA synthetase discrimination. J Am Chem Soc 118:2523–2524. [CrossRef]
314. Saks ME, Sampson JR. 1996. Variant minihelix RNAs reveal sequence-specific recognition of the helical tRNASer acceptor stem by E. coli seryl-tRNA synthetase. EMBO J 15:2843–2849. [PubMed]
315. Frugier M, Florentz C, Giegé R. 1992. Anticodon-independent aminoacylation of an RNA minihelix with valine. Proc Natl Acad Sci USA 89:3990–3994. [PubMed][CrossRef]
316. Frugier M, Florentz C, Giegé R. 1994. Efficient aminoacylation of resected RNA helices by class II aspartyl-tRNA synthetase dependent on a single nucleotide. EMBO J 13:2218–2226. [PubMed]
317. Rosen AE, Musier-Forsyth K. 2004. Recognition of G-1:C73 atomic groups by Escherichia coli histidyl-tRNA synthetase. J Am Chem Soc 126:64–65. [PubMed][CrossRef]
318. Gustilo EM, Dubois DY, Lapointe J, Agris PF. 2007. E. coli glutamyl-tRNA synthetase is inhibited by anticodon stem-loop domains and a minihelix. RNA Biol 4:85–92. [PubMed][CrossRef]
319. Grosjean H, de Crécy-Lagard V, Björk GR. 2004. Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: Relic of an ancient code? Trends Biochem Sci 29:519–522. [PubMed][CrossRef]
320. Ibba M, Francklyn C. 2004. Turning tRNA upside down: When aminoacylation is not a prerequisite to protein synthesis. Proc Natl Acad Sci USA 101:7493–7494. [PubMed][CrossRef]
321. Di Giulio M. 2004. The origin of the tRNA molecule: Implications for the origin of protein synthesis. J Theor Biol 226:89–93. [PubMed][CrossRef]
322. Dubois DY, Blais SP, Huot JL, Lapointe J. 2009. A C-truncated glutamyl-tRNA synthetase specific for tRNAGlu is stimulated by its free complementary distal domain: Mechanistic and evolutionary implications. Biochemistry 48:6012–6021. [PubMed][CrossRef]
323. Carter CW Jr, Wolfenden R. 2015. tRNA acceptor stem and anticodon bases form independent codes related to protein folding. Proc Natl Acad Sci USA 112:7489–7494. [PubMed][CrossRef]
324. First EA. 1998. Catalysis of tRNA aminoacylation by class I and class II aminoacyl-tRNA synthetases, p 573–607. In Sinnott M (ed), Comprehensive Biological Catalysis, vol. 1. Academic Press, New-York, NY.
325. Perona JJ, Gruic-Sovulj I. 2014. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem 344:1–41. [PubMed][CrossRef]
326. Onesti S, Desogus G, Brevet A, Chen J, Plateau P, Blanquet S, Brick P. 2000. Structural studies of lysyl-tRNA synthetase: Conformational changes induced by substrate binding. Biochemistry 39:12853–12861. [PubMed][CrossRef]
327. Kapustina M, Weinreb V, Li L, Kuhlman B, Carter CW Jr. 2007. A conformational transition state accompanies tryptophan activation by B. stearothermophilus tryptophanyl-tRNA synthetase. Structure 15:1272–1284. [PubMed][CrossRef]
328. Laowanapiban P, Kapustina M, Vonrhein C, Delarue M, Koehl P, Carter CW Jr. 2009. Independent saturation of three TrpRS subsites generates a partially assembled state similar to those observed in molecular simulations. Proc Natl Acad Sci USA 106:1790–1795. [PubMed][CrossRef]
329. Weinreb V, Li L, Campbell CL, Kaguni LS, Carter CW Jr. 2009. Mg2+-assisted catalysis by B. stearothermophilus TrpRS is promoted by allosteric effects. Structure 17:952–964. [PubMed][CrossRef]
330. Cramer F, Freist W. 1993. Aminoacyl-tRNA synthetases: The division into two classes predicted by the chemistry of substrates and enzymes. Angew Chem Int Ed Engl 32:190–200. [CrossRef]
331. Sprinzl M. 2006. Chemistry of aminoacylation and peptide bond formation on the 3′-terminus of tRNA. J Biosci 31:489–496. [PubMed][CrossRef]
332. Förster C, Limmer S, Zeidler W, Sprinzl M. 1994. Effector region or the translation elongation factor EF-Tu-GTP complex stabilizes an orthoester acid intermediate structure of aminoacyl-tRNA in a ternary complex. Proc Natl Acad Sci USA 92:4254–4257. [CrossRef]
333. Ward WH, Fersht AR. 1988. Tyrosyl-tRNA synthetase acts as an asymmetric dimer in charging tRNA. A rationale for half-of-the-sites activity. Biochemistry 27:5525–5530. [PubMed][CrossRef]
334. Kern D, Lorber B, Boulanger Y, Giegé R. 1985. A peculiar property of aspartyl-tRNA synthetase from bakers yeast: Chemical modification of the protein by the enzymatically synthesized aminoacyl adenylate. Biochemistry 24:1321–1332. [CrossRef]
335. Guth E, Connolly SH, Bovee M, Francklyn CS. 2005. A substrate-assisted concerted mechanism for aminoacylation by a class II aminoacyl-tRNA synthetase. Biochemistry 44:3785–3794. [PubMed][CrossRef]
336. Minajigi A, Francklyn CS. 2010. Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase. J Biol Chem 285:23810–23817. [PubMed][CrossRef]
337. Guth EC, Francklyn CS. 2007. Kinetic discrimination of tRNA identity by the conserved motif 2 loop of a class II aminoacyl-tRNA synthetase. Mol Cell 25:531–542. [PubMed][CrossRef]
338. Hughes SJ, Tanner JA, Miller AD, Gould IR. 2006. Molecular dynamics simulations of LysRS: An asymmetric state. Proteins 62:649–662. [PubMed][CrossRef]
339. Freist W, Logan DT, Gauss DH. 1996. Glycyl-tRNA synthetases. Biol Chem 377:343–356. [PubMed]
340. Bovee ML, Yan W, Sproat BS, Francklyn CS. 1999. tRNA discrimination at the binding step by a class II aminoacyl-tRNA synthetase. Biochemistry 38:13725–13735. [PubMed][CrossRef]
341. Ibba M, Sever S, Praetorius-Ibba M, Söll D. 1999. Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis. Nucleic Acids Res 27:3631–3637. [PubMed][CrossRef]
342. Pütz J, Puglisi JD, Florentz C, Giegé R. 1993. Additive, cooperative and anti-cooperative effects between identity nucleotides of a tRNA. EMBO J 12:2949–2957. [PubMed]
343. Uter NT, Perona JJ. 2004. Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics. Proc Natl Acad Sci USA 101:14396–14401. [PubMed][CrossRef]
344. Bonnet J, Ebel J-P. 1972. Interpretation of incomplete reactions in tRNA aminoacylation. Aminoacylation of yeast tRNAValII with yeast valyl-tRNA synthetase. Eur J Biochem 31:335–344. [PubMed][CrossRef]
345. Schimmel PR, Söll D. 1979. Aminoacyl-tRNA synthetases: General features and recognition of transfer RNAs. Annu Rev Biochem 48:601–648. [PubMed][CrossRef]
346. Black Pyrkosz A, Eargle J, Sethi A, Luthey-Schulten Z. 2010. Exit strategies for charged tRNA from GluRS. J Mol Biol 397:1350–1371. [PubMed][CrossRef]
347. Banerjee P, Warf MB, Alexander R. 2009. Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase activity. Biochemistry 48:10113–10119. [PubMed][CrossRef]
348. Cui Q, Karplus M. 2008. Allostery and cooperativity revisited. Protein Sci 17:1295–1307. [PubMed][CrossRef]
349. Zhang CM, Hou Y-M. 2005. Domain-domain communication for tRNA aminoacylation: The importance of covalent connectivity. Biochemistry 44:7240–7249. [PubMed][CrossRef]
350. Alexander RW, Schimmel P. 2001. Domain-domain communication in aminoacyl-tRNA synthetases. Prog Nucleic Acid Res Mol Biol 69:317–349. [PubMed][CrossRef]
351. Li R, Macnamara LM, Leuchter JD, Alexander RW, Cho SS. 2015. MD Simulations of tRNA and aminoacyl-tRNA synthetases: Dynamics, folding, binding, and allostery. Int J Mol Sci 16:15872–15902. [PubMed][CrossRef]
352. Budiman ME, Knaggs MH, Fetrow JS, Alexander RW. 2007. Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase. Proteins 68:670–689. [PubMed][CrossRef]
353. Bushnell EAC, Huang W, Llano J, Gauld JW. 2012. Molecular dynamics investigation into substrate binding of the catalytic base in the mechanism of threonyl-tRNA synthetase. J Phys Chem B 116:5205–5212. [PubMed][CrossRef]
354. Weinreb V, Li L, Chandrasekaran SN, Koehl P, Delarue M, Carter Jr CW. 2014. Enhanced amino acid selection in fully evolved tryptophanyl-tRNA synthetase, relative to its urzyme, requires domain motion sensed by the D1 switch, a remote dynamic packing motif. J Biol Chem 289:4367–4376. [PubMed][CrossRef]
355. Ghosh A, Vishveshwara S. 2007. A study of communication pathways in methionyl-tRNA synthetase by molecular dynamics simulations and structure network analysis. Proc Natl Acad Sci USA 104:15711–15716. [PubMed][CrossRef]
356. Ghosh A, Vishveshwara S. 2008. Variations in clique and community patterns in protein structures during allosteric communication: Investigation of dynamically equilibrated structures of methionyl tRNA synthetase complexes. Biochemistry 47:11398–11407. [PubMed][CrossRef]
357. Sethi A, Eargle J, Black AA, Luthey-Schulten Z. 2009. Dynamical networks in tRNA:protein complexes. Proc Natl Acad Sci USA 106:6620–6625. [PubMed][CrossRef]
358. Fukunaga R, Yokoyama S. 2005. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. J Mol Biol 346:57–71. [PubMed][CrossRef]
359. Sekine S-i, Nureki O, Dubois DY, Bernier S, Chênevert R, Lapointe J, Vassylyev DG, Yokoyama S. 2003. ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J 22:676–688. [PubMed][CrossRef]
360. Rodriguez-Hernandez A, Perona JJ. 2011. Heat maps for intramolecular communication in an RNP enzyme encoding glutamine. Structure 19:386–396. [PubMed][CrossRef]
361. Weimer KM, Shane BL, Brunetto M, Bhattacharyya S, Hati S. 2009. Evolutionary basis for the coupled-domain motions in Thermus thermophilus leucyl-tRNA synthetase. J Biol Chem 284:10088–10099. [PubMed][CrossRef]
362. Johnson JM, Sanford BL, Strom AM, Tadayon SN, Lehman BP, Zirbes AM, Bhattacharyya S, Musier-Forsyth K, Hati S. 2013. Multiple pathways promote dynamical coupling between catalytic domains in Escherichia coli prolyl-tRNA synthetase. Biochemistry 52:4399–4412. [PubMed][CrossRef]
363. Deniziak M, Sauter C, Becker HD, Paulus CA, Giegé R, Kern D. 2007. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation. Nucleic Acids Res 35:1421–1431. [PubMed][CrossRef]
364. Touzé E, Lorber B, Deniziak M, Becker HD, Kern D, Giegé R, Sauter C. 2007. Disorder can exist inside well-diffracting crystals. Cryst Growth Des 7:2195–2197. [CrossRef]
365. Kapustina M, Carter CW Jr. 2006. Computational studies of tryptophanyl-tRNA synthetase: Activation of ATP by induced-fit. J Mol Biol 362:1159–1180. [PubMed][CrossRef]
366. Bhattacharyya M, Ghosh A, Hansia P, Vishveshwara S. 2010. Allostery and conformational free energy changes in human tryptophanyl-tRNA synthetase from essential dynamics and structure networks. Proteins 78:506–517. [PubMed][CrossRef]
367. Strom AM, Fehling SC, Bhattacharyya S, Hati S. 2014. Probing the global and local dynamics of aminoacyl-tRNA synthetases using all-atom and coarse-grained simulations. J Mol Model 20:2245. [PubMed][CrossRef]
368. Guillon J-M, Mechulam Y, Blanquet S, Fayat G. 1993. Importance of formylability and anticodon stem sequence to give a tRNAMet an initiator identity in Escherichia coli. J Bacteriol 175:4507–4514. [PubMed]
369. LaRiviere FJ, Wolfson A.D, Uhlenbeck, OC. 2001. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 294:165–168. [PubMed][CrossRef]
370. Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V. 2002. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721–732. [PubMed][CrossRef]
371. Francklyn C. 2003. tRNA synthetase paralogs: Evolutionary links in the transition from tRNA-dependent amino acid biosynthesis to de novo biosynthesis. Proc Natl Acad Sci USA 100:9650–9652. [PubMed][CrossRef]
372. Calendar R, Berg P. 1967. D-Tyrosyl RNA: Formation, hydrolysis and utilization for protein synthesis. J Mol Biol 26:39–54. [PubMed][CrossRef]
373. Ferri-Fioni ML, Schmitt E. Soutourina J, Plateau P, Mechulam Y, Blanquet S. 2001. Structure of crystalline D-Tyr-tRNATyr deacylase. A representative of a new class of tRNA-dependent hydrolases. J Biol Chem 276:47285–47290. [PubMed][CrossRef]
374. Soutourina J, Plateau P, Blanquet S. 2000. Metabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells. J Biol Chem 275:32535–32542. [PubMed][CrossRef]
375. Soutourina O, Soutourina J, Blanquet S, Plateau P. 2004. Formation of D-tyrosyl-tRNATyr accounts for the toxicity of D-tyrosine toward Escherichia coli. J Biol Chem 279:42560–42565. [PubMed][CrossRef]
376. Wydau S, van der Rest G, Aubard C, Plateau P, Blanquet S. 2009. Widespread distribution of cell defense against D-aminoacyl-tRNAs. J Biol Chem 284:14096–14104. [PubMed][CrossRef]
377. Jakubowski H. 1999. Misacylation of tRNALys with noncognate amino acids by lysyl-tRNA synthetase. Biochemistry 38:8088–8093. [PubMed][CrossRef]
378. Hendrickson WA, Horton JR, LeMaster DM. 1990. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): A vehicle for direct determination of the three-dimensional structure. EMBO J 9:1665–1672. [PubMed]
379. Strub M-P, Hoh F, Sanchez J-F, Strub JM, Böck A, Aumelas A, Dumas C. 2003. Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing. Structure 11:1359–1367. [PubMed][CrossRef]