1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 7:

Genetics and Genetic Tools

Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    197.31 Kb
  • XML
    195.72 Kb
  • PDF
    1.36 MB
  • Author: Günther Koraimann1
  • Editors: James M. Slauch2, Gregory Phillips3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institute of Molecular Biosciences, University of Graz, Graz, Austria; 2: The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL; 3: College of Veterinary Medicine, Iowa State University, Ames, IA
  • Received 30 January 2018 Accepted 30 April 2018 Published 17 July 2018
  • Address correspondence to Günther Koraimann, [email protected]
image of Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module
    Preview this reference work article:
    Zoom in
    Zoomout

    Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/8/1/ESP-0003-2018-1.gif /docserver/preview/fulltext/ecosalplus/8/1/ESP-0003-2018-2.gif
  • Abstract:

    The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBA group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBA plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBA group of conjugative plasmids.

  • Citation: Koraimann G. 2018. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0003-2018

References

1. Norman A, Hansen LH, Sørensen SJ. 2009. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 364:2275–2289. [PubMed]
2. Lederberg J, Tatum EL. 1946. Gene recombination in Escherichia coli. Nature 158:558. [PubMed]
3. Garcillán-Barcia MP, Francia MV, de la Cruz F. 2009. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33:657–687. [PubMed]
4. Fernandez-Lopez R, de Toro M, Moncalian G, Garcillan-Barcia MP, de la Cruz F. 2016. Comparative genomics of the conjugation region of F-like plasmids: five shades of F. Front Mol Biosci 3:71. doi:10.3389/fmolb.2016.00071. [PubMed]
5. Lanza VF, de Toro M, Garcillán-Barcia MP, Mora A, Blanco J, Coque TM, de la Cruz F. 2014. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet 10:e1004766. doi:10.1371/journal.pgen.1004766. [PubMed]
6. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE, Sebra R, Turner P, Anson LW, Kasarskis A, Batty EM, Kos V, Wilson DJ, Phetsouvanh R, Wyllie D, Sokurenko E, Manges AR, Johnson TJ, Price LB, Peto TEA, Johnson JR, Didelot X, Walker AS, Crook DW, Modernizing Medical Microbiology Informatics Group (MMMIG). 2016. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. MBio 7:e02162. doi:10.1128/mBio.02162-15. [PubMed]
7. Koraimann G. 2003. Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci 60:2371–2388. [PubMed]
8. Zahrl D, Wagner M, Bischof K, Bayer M, Zavecz B, Beranek A, Ruckenstuhl C, Zarfel GE, Koraimann G. 2005. Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology 151:3455–3467. [PubMed]
9. Cheah KC, Skurray R. 1986. The F plasmid carries an IS3 insertion within finO.J Gen Microbiol 132:3269–3275. [PubMed]
10. Koraimann G, Wagner MA. 2014. Social behavior and decision making in bacterial conjugation. Front Cell Infect Microbiol 4:54. doi:10.3389/fcimb.2014.00054. [PubMed]
11. Frost LS, Koraimann G. 2010. Regulation of bacterial conjugation: balancing opportunity with adversity. Future Microbiol 5:1057–1071. [PubMed]
12. Stingl K, Koraimann G. 2018. Prokaryotic information games: how and when to take up and secrete DNA. Curr Top Microbiol Immunol 413:61–92. [PubMed]
13. Firth N, Ippen-Ihler K, Skurray RA. 1996. Structure and function of the F factor and mechanism of conjugation, p 2377–2401. In Neidhard FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Schaechter M, Umbarger HE (ed), Escherichia coli and Salmonella. ASM Press, Washington, DC.
14. Datta N, Kontomichalou P. 1965. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208:239–241. [PubMed]
15. Wagner MA, Bischof K, Kati D, Koraimann G. 2013. Silencing and activating type IV secretion genes of the F-like conjugative resistance plasmid R1. Microbiology 159:2481–2491. [PubMed]
16. Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ, Peto T, Crook D, Woodford N, Walker AS, Phan H, Sheppard AE. 2017. Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology. Front Microbiol 8:182. doi:10.3389/fmicb.2017.00182. [PubMed]
17. Lane HED. 1981. Replication and incompatibility of F and plasmids in the IncFI group. Plasmid 5:100–126. [PubMed]
18. Masson L, Ray DS. 1988. Mechanism of autonomous control of the Escherichia coli F plasmid: purification and characterization of the repE gene product. Nucleic Acids Res 16:413–424. [PubMed]
19. Rajewska M, Wegrzyn K, Konieczny I. 2012. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 36:408–434. [PubMed]
20. Zzaman S, Abhyankar MM, Bastia D. 2004. Reconstitution of F factor DNA replication in vitro with purified proteins. J Biol Chem 279:17404–17410. [PubMed]
21. Nakamura A, Wada C, Miki K. 2007. Structural basis for regulation of bifunctional roles in replication initiator protein. Proc Natl Acad Sci USA 104:18484–18489. [PubMed]
22. Nordström K. 2006. Plasmid R1--replication and its control. Plasmid 55:1–26. [PubMed]
23. Stougaard P, Molin S, Nordström K. 1981. RNAs involved in copy-number control and incompatibility of plasmid R1. Proc Natl Acad Sci USA 78:6008–6012. [PubMed]
24. Riise E, Molin S. 1986. Purification and characterization of the CopB replication control protein, and precise mapping of its target site in the R1 plasmid. Plasmid 15:163–171. [PubMed]
25. Blomberg P, Nordström K, Wagner EGH. 1992. Replication control of plasmid R1: RepA synthesis is regulated by CopA RNA through inhibition of leader peptide translation. EMBO J 11:2675–2683. [PubMed]
26. de la Cueva-Méndez G, Pimentel B. 2007. Gene and cell survival: lessons from prokaryotic plasmid R1. EMBO Rep 8:458–464. [PubMed]
27. Leimbach A, Poehlein A, Witten A, Scheutz F, Schukken Y, Daniel R, Dobrindt U. 2015. Complete genome sequences of Escherichia coli strains 1303 and ECC-1470 isolated from bovine mastitis. Genome Announc 3:e00182-15. doi:10.1128/genomeA.00182-15. [PubMed]
28. Orlek A, Phan H, Sheppard AE, Doumith M, Ellington M, Peto T, Crook D, Walker AS, Woodford N, Anjum MF, Stoesser N. 2017. Ordering the mob: insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids. Plasmid 91:42–52. [PubMed]
29. Villa L, García-Fernández A, Fortini D, Carattoli A. 2010. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 65:2518–2529. [PubMed]
30. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. [PubMed]
31. Fernandez-Lopez R, Redondo S, Garcillan-Barcia MP, de la Cruz F. 2017. Towards a taxonomy of conjugative plasmids. Curr Opin Microbiol 38:106–113. [PubMed]
32. Thomas CM, Thomson NR, Cerdeño-Tárraga AM, Brown CJ, Top EM, Frost LS. 2017. Annotation of plasmid genes. Plasmid 91:61–67. [PubMed]
33. Baxter JC, Funnell BE. 2014. Plasmid Partition Mechanisms. Microbiol Spectr 2:2. doi:10.1128/microbiolspec.PLAS-0023-2014. [PubMed]
34. Brooks AC, Hwang LC. 2017. Reconstitutions of plasmid partition systems and their mechanisms. Plasmid 91:37–41. [PubMed]
35. Ringgaard S, van Zon J, Howard M, Gerdes K. 2009. Movement and equipositioning of plasmids by ParA filament disassembly. Proc Natl Acad Sci USA 106:19369–19374. [PubMed]
36. Vecchiarelli AG, Hwang LC, Mizuuchi K. 2013. Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism. Proc Natl Acad Sci USA 110:E1390–E1397. [PubMed]
37. McLeod BN, Allison-Gamble GE, Barge MT, Tonthat NK, Schumacher MA, Hayes F, Barillà D. 2017. A three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation. Nucleic Acids Res 45:3158–3171. [PubMed]
38. Salje J, Gayathri P, Löwe J. 2010. The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nat Rev Microbiol 8:683–692. [PubMed]
39. Møller-Jensen J, Jensen RB, Löwe J, Gerdes K. 2002. Prokaryotic DNA segregation by an actin-like filament. EMBO J 21:3119–3127. [PubMed]
40. Gayathri P, Fujii T, Møller-Jensen J, van den Ent F, Namba K, Löwe J. 2012. A bipolar spindle of antiparallel ParM filaments drives bacterial plasmid segregation. Science 338:1334–1337. [PubMed]
41. Bharat TA, Murshudov GN, Sachse C, Löwe J. 2015. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles. Nature 523:106–110. [PubMed]
42. Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA. 2007. Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection. Mol Microbiol 63:1588–1605. [PubMed]
43. Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157:539–548. [PubMed]
44. Page R, Peti W. 2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12:208–214. [PubMed]
45. Harms A, Fino C, Sørensen MA, Semsey S, Gerdes K. 2017. Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. MBio 8:e01964-17. doi:10.1128/mBio.01964-17. [PubMed]
46. Yang QE, Walsh TR. 2017. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiol Rev 41:343–353. [PubMed]
47. Lee KY, Lee BJ. 2016. Structure, biology, and therapeutic application of toxin-antitoxin systems in pathogenic bacteria. Toxins (Basel) 8:305. doi:10.3390/toxins8100305. [PubMed]
48. Gerdes K, Rasmussen PB, Molin S. 1986. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci USA 83:3116–3120. [PubMed]
49. Thisted T, Nielsen AK, Gerdes K. 1994. Mechanism of post-segregational killing: translation of Hok, SrnB and Pnd mRNAs of plasmids R1, F and R483 is activated by 3′-end processing. EMBO J 13:1950–1959. [PubMed]
50. Ogura T, Hiraga S. 1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc Natl Acad Sci USA 80:4784–4788. [PubMed]
51. Dao-Thi M-H, Van Melderen L, De Genst E, Afif H, Buts L, Wyns L, Loris R. 2005. Molecular basis of gyrase poisoning by the addiction toxin CcdB. J Mol Biol 348:1091–1102. [PubMed]
52. Van Melderen L, Bernard P, Couturier M. 1994. Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Mol Microbiol 11:1151–1157. [PubMed]
53. Zhang J, Zhang Y, Zhu L, Suzuki M, Inouye M. 2004. Interference of mRNA function by sequence-specific endoribonuclease PemK. J Biol Chem 279:20678–20684. [PubMed]
54. Pimentel B, Madine MA, de la Cueva-Méndez G. 2005. Kid cleaves specific mRNAs at UUACU sites to rescue the copy number of plasmid R1. EMBO J 24:3459–3469. [PubMed]
55. López-Villarejo J, Lobato-Márquez D, Díaz-Orejas R. 2015. Coupling between the basic replicon and the Kis-Kid maintenance system of plasmid R1: modulation by Kis antitoxin levels and involvement in control of plasmid replication. Toxins (Basel) 7:478–492. [PubMed]
56. Winther KS, Gerdes K. 2011. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc Natl Acad Sci USA 108:7403–7407. [PubMed]
57. Lobato-Márquez D, Moreno-Córdoba I, Figueroa V, Díaz-Orejas R, García-del Portillo F. 2015. Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci Rep 5:9374. doi:10.1038/srep09374. [PubMed]
58. Lobato-Márquez D, Molina-García L, Moreno-Córdoba I, García-Del Portillo F, Díaz-Orejas R. 2016. Stabilization of the virulence plasmid pSLT of Salmonella Typhimurium by three maintenance systems and its evaluation by using a new stability test. Front Mol Biosci 3:66. doi:10.3389/fmolb.2016.00066. [PubMed]
59. Wen Y, Behiels E, Devreese B. 2014. Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 70:240–249. [PubMed]
60. Cox KEL, Schildbach JF. 2017. Sequence of the R1 plasmid and comparison to F and R100. Plasmid 91:53–60. [PubMed]
61. Christie PJ. 2016. The mosaic type IV secretion systems. Ecosal Plus 7:7. doi:10.1128/ecosalplus.ESP-0020-2015. [PubMed]
62. Lawley TD, Klimke WA, Gubbins MJ, Frost LS. 2003. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224:1–15. [PubMed]
63. Wilkins BM. 2002. Plasmid promiscuity: meeting the challenge of DNA immigration control. Environ Microbiol 4:495–500. [PubMed]
64. Serfiotis-Mitsa D, Herbert AP, Roberts GA, Soares DC, White JH, Blakely GW, Uhrín D, Dryden DTF. 2010. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro. Nucleic Acids Res 38:1723–1737. [PubMed]
65. Manwaring NP, Skurray RA, Firth N. 1999. Nucleotide sequence of the F plasmid leading region. Plasmid 41:219–225. [PubMed]
66. Masai H, Arai K. 1997. Frpo: a novel single-stranded DNA promoter for transcription and for primer RNA synthesis of DNA replication. Cell 89:897–907. [PubMed]
67. Nasim MT, Eperon IC, Wilkins BM, Brammar WJ. 2004. The activity of a single-stranded promoter of plasmid ColIb-P9 depends on its secondary structure. Mol Microbiol 53:405–417. [PubMed]
68. Bagdasarian M, Bailone A, Angulo JF, Scholz P, Bagdasarian M, Devoret R. 1992. PsiB, and anti-SOS protein, is transiently expressed by the F sex factor during its transmission to an Escherichia coli K-12 recipient. Mol Microbiol 6:885–893. [PubMed]
69. Petrova V, Chitteni-Pattu S, Drees JC, Inman RB, Cox MM. 2009. An SOS inhibitor that binds to free RecA protein: the PsiB protein. Mol Cell 36:121–130. [PubMed]
70. Meyer RR, Laine PS. 1990. The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev 54:342–380. [PubMed]
71. Porter RD, Black S. 1991. The single-stranded-DNA-binding protein encoded by the Escherichia coli F factor can complement a deletion of the chromosomal ssb gene. J Bacteriol 173:2720–2723. [PubMed]
72. Shmakov SA, Sitnik V, Makarova KS, Wolf YI, Severinov KV, Koonin EV. 2017. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. MBio 8:e01397-17. doi:10.1128/mBio.01397-17. [PubMed]
73. Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845. [PubMed]
74. Gophna U, Kristensen DM, Wolf YI, Popa O, Drevet C, Koonin EV. 2015. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales. ISME J 9:2021–2027. [PubMed]
75. Partridge SR, Tsafnat G, Coiera E, Iredell JR. 2009. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33:757–784. [PubMed]
76. Stokes HW, Gillings MR. 2011. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 35:790–819. [PubMed]
77. Liebert CA, Hall RM, Summers AO. 1999. Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63:507–522. [PubMed]
78. Nakaya R, Nakamura A, Murata Y. 1960. Resistance transfer agents in Shigella. Biochem Biophys Res Commun 3:654–659. [PubMed]
79. Nicolas E, Lambin M, Dandoy D, Galloy C, Nguyen N, OgerCA, Hallet B. 2015. The Tn3-family of Replicative Transposons. Microbiol Spectr 3:3. doi:10.1128/microbiolspec.MDNA3-0060-2014. [PubMed]
80. Harmer CJ, Hall RM. 2016. IS26-mediated formation of transposons carrying antibiotic resistance genes. MSphere 1:1–8. [PubMed]
81. He S, Hickman AB, Varani AM, Siguier P, Chandler M, Dekker JP, Dyda F. 2015. Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition. MBio 6:e00762. doi:10.1128/mBio.00762-15. [PubMed]
82. Wachino J, Shibayama K, Kurokawa H, Kimura K, Yamane K, Suzuki S, Shibata N, Ike Y, Arakawa Y. 2007. Novel plasmid-mediated 16S rRNA m1A1408 methyltransferase, NpmA, found in a clinically isolated Escherichia coli strain resistant to structurally diverse aminoglycosides. Antimicrob Agents Chemother 51:4401–4409. [PubMed]
83. Willyard C. 2017. The drug-resistant bacteria that pose the greatest health threats. Nature 543:15–15. [PubMed]
84. Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. [PubMed]
85. Perry J, Waglechner N, Wright G. 2016. The prehistory of antibiotic resistance. Cold Spring Harb Perspect Med 6:a025197. doi:10.1101/cshperspect.a025197. [PubMed]
86. Perry JA, Wright GD. 2013. The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front Microbiol 4:138. doi:10.3389/fmicb.2013.00138. [PubMed]
87. McCollister B, Kotter CV, Frank DN, Washburn T, Jobling MG. 2016. Whole-genome sequencing identifies in vivo acquisition of a blaCTX-M-27-carrying IncFII transmissible plasmid as the cause of ceftriaxone treatment failure for an invasive Salmonella enterica serovar typhimurium infection. Antimicrob Agents Chemother 60:7224–7235. [PubMed]
88. McGann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, Hinkle M, Whitman T, Lesho E, Schaecher KE. 2016. Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States. Antimicrob Agents Chemother 60:4420–4421. [PubMed]
89. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu L-F, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu J-H, Shen J. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168.
90. Crofts TS, Gasparrini AJ, Dantas G. 2017. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 15:422–434. [PubMed]
91. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. 2015. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16:964. doi:10.1186/s12864-015-2153-5. [PubMed]
92. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. 2007. Colicin biology. Microbiol Mol Biol Rev 71:158–229. [PubMed]
93. Nedialkova LP, Sidstedt M, Koeppel MB, Spriewald S, Ring D, Gerlach RG, Bossi L, Stecher B. 2016. Temperate phages promote colicin-dependent fitness of Salmonella enterica serovar Typhimurium. Environ Microbiol 18:1591–1603. [PubMed]
94. van Raay K, Kerr B. 2016. Toxins go viral: phage-encoded lysis releases group B colicins. Environ Microbiol 18:1308–1311. [PubMed]
95. Duquesne S, Petit V, Peduzzi J, Rebuffat S. 2007. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J Mol Microbiol Biotechnol 13:200–209. [PubMed]
96. Zhang LH, Fath MJ, Mahanty HK, Tai PC, Kolter R. 1995. Genetic analysis of the colicin V secretion pathway. Genetics 141:25–32. [PubMed]
97. Haiko J, Suomalainen M, Ojala T, Lähteenmäki K, Korhonen TK. 2009. Invited review: breaking barriers--attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun 15:67–80. [PubMed]
98. Matsuo E, Sampei G, Mizobuchi K, Ito K. 1999. The plasmid F OmpP protease, a homologue of OmpT, as a potential obstacle to E. coli-based protein production. FEBS Lett 461:6–8. [PubMed]
99. Kukkonen M, Korhonen TK. 2004. The omptin family of enterobacterial surface proteases/adhesins: from housekeeping in Escherichia coli to systemic spread of Yersinia pestis. Int J Med Microbiol 294:7–14. [PubMed]
100. Hejair HMA, Ma J, Zhu Y, Sun M, Dong W, Zhang Y, Pan Z, Zhang W, Yao H. 2017. Role of outer membrane protein T in pathogenicity of avian pathogenic Escherichia coli. Res Vet Sci 115:109–116. [PubMed]
101. Brannon JR, Thomassin J-L, Gruenheid S, Le Moual H. 2015. Antimicrobial peptide conformation as a structural determinant of omptin protease specificity. J Bacteriol 197:3583–3591. [PubMed]
102. Lawrenz MB, Pennington J, Miller VL. 2013. Acquisition of omptin reveals cryptic virulence function of autotransporter YapE in Yersinia pestis. Mol Microbiol 89:276–287. [PubMed]
103. Leo JC, Grin I, Linke D. 2012. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 367:1088–1101. [PubMed]
104. Sukupolvi S, O’Connor CD. 1990. TraT lipoprotein, a plasmid-specified mediator of interactions between gram-negative bacteria and their environment. Microbiol Rev 54:331–341. [PubMed]
105. Troxell B, Hassan HM. 2013. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 3:59. doi:10.3389/fcimb.2013.00059. [PubMed]
106. Johnson TJ, Johnson SJ, Nolan LK. 2006. Complete DNA sequence of a ColBM plasmid from avian pathogenic Escherichia coli suggests that it evolved from closely related ColV virulence plasmids. J Bacteriol 188:5975–5983. [PubMed]
107. Moran RA, Holt KE, Hall RM. 2016. pCERC3 from a commensal ST95 Escherichia coli: A ColV virulence-multiresistance plasmid carrying a sul3-associated class 1 integron. Plasmid 84-85:11–19. [PubMed]
108. Peigne C, Bidet P, Mahjoub-Messai F, Plainvert C, Barbe V, Médigue C, Frapy E, Nassif X, Denamur E, Bingen E, Bonacorsi S. 2009. The plasmid of Escherichia coli strain S88 (O45:K1:H7) that causes neonatal meningitis is closely related to avian pathogenic E. coli plasmids and is associated with high-level bacteremia in a neonatal rat meningitis model. Infect Immun 77:2272–2284. [PubMed]
109. Morales C, Lee MD, Hofacre C, Maurer JJ. 2004. Detection of a novel virulence gene and a Salmonella virulence homologue among Escherichia coli isolated from broiler chickens. Foodborne Pathog Dis 1:160–165. [PubMed]
110. Murase K, Martin P, Porcheron G, Houle S, Helloin E, Pénary M, Nougayrède J-P, Dozois CM, Hayashi T, Oswald E. 2016. HlyF produced by extraintestinal pathogenic Escherichia coli is a virulence factor that regulates outer membrane vesicle biogenesis. J Infect Dis 213:856–865. [PubMed]
111. Wijetunge DSS, Karunathilake KHEM, Chaudhari A, Katani R, Dudley EG, Kapur V, DebRoy C, Kariyawasam S. 2014. Complete nucleotide sequence of pRS218, a large virulence plasmid, that augments pathogenic potential of meningitis-associated Escherichia coli strain RS218. BMC Microbiol 14:203. doi:10.1186/s12866-014-0203-9. [PubMed]
112. Cusumano CK, Hung CS, Chen SL, Hultgren SJ. 2010. Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 78:1457–1467. [PubMed]
113. Croxen MA, Finlay BB. 2010. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8:26–38. [PubMed]
114. Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H. 2010. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect 12:89–98. [PubMed]
115. Ochi S, Shimizu T, Ohtani K, Ichinose Y, Arimitsu H, Tsukamoto K, Kato M, Tsuji T. 2009. Nucleotide sequence analysis of the enterotoxigenic Escherichia coli Ent plasmid. DNA Res 16:299–309. [PubMed]
116. Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M, Cunningham AF, Petty NK, Mahon V, Brinkley C, Hobman JL, Savarino SJ, Turner SM, Pallen MJ, Penn CW, Parkhill J, Turner AK, Johnson TJ, Thomson NR, Smith SGJ, Henderson IR. 2010. A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. J Bacteriol 192:5822–5831. [PubMed]
117. Shepard SM, Danzeisen JL, Isaacson RE, Seemann T, Achtman M, Johnson TJ. 2012. Genome sequences and phylogenetic analysis of K88- and F18-positive porcine enterotoxigenic Escherichia coli. J Bacteriol 194:395–405. [PubMed]
118. Chaudhuri RR, Sebaihia M, Hobman JL, Webber MA, Leyton DL, Goldberg MD, Cunningham AF, Scott-Tucker A, Ferguson PR, Thomas CM, Frankel G, Tang CM, Dudley EG, Roberts IS, Rasko DA, Pallen MJ, Parkhill J, Nataro JP, Thomson NR, Henderson IR. 2010. Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One 5:e8801. doi:10.1371/journal.pone.0008801. [PubMed]
119. Guiney DG, Fierer J. 2011. The role of the spv genes in Salmonella pathogenesis. Front Microbiol 2:129. doi:10.3389/fmicb.2011.00129. [PubMed]
120. Bäumler AJ, Tsolis RM, Bowe FA, Kusters JG, Hoffmann S, Heffron F. 1996. The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect Immun 64:61–68. [PubMed]
121. Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L. 2017. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun 8:1689. doi:10.1038/s41467-017-01532-1. [PubMed]
122. Koraimann G, Koraimann C, Koronakis V, Schlager S, Högenauer G. 1991. Repression and derepression of conjugation of plasmid R1 by wild-type and mutated finP antisense RNA. Mol Microbiol 5:77–87. [PubMed]
123. van Biesen T, Frost LS. 1994. The FinO protein of IncF plasmids binds FinP antisense RNA and its target, traJ mRNA, and promotes duplex formation. Mol Microbiol 14:427–436. [PubMed]
124. Olejniczak M, Storz G. 2017. ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers? Mol Microbiol 104:905–915. [PubMed]
125. Mark Glover JN, Chaulk SG, Edwards RA, Arthur D, Lu J, Frost LS. 2015. The FinO family of bacterial RNA chaperones. Plasmid 78:79–87. [PubMed]
126. Wong JJW, Lu J, Glover JNM. 2012. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Mol Microbiol 85:602–617. [PubMed]
127. Strohmaier H, Noiges R, Kotschan S, Sawers G, Högenauer G, Zechner ELL, Koraimann G. 1998. Signal transduction and bacterial conjugation: characterization of the role of ArcA in regulating conjugative transfer of the resistance plasmid R1. J Mol Biol 277:309–316. [PubMed]
128. Taki K, Abo T, Ohtsubo E. 1998. Regulatory mechanisms in expression of the traY-I operon of sex factor plasmid R100: involvement of traJ and traY gene products. Genes Cells 3:331–345. [PubMed]
129. Silverman PM, Wickersham E, Rainwater S, Harris R. 1991. Regulation of the F plasmid traY promoter in Escherichia coli K12 as a function of sequence context. J Mol Biol 220:271–279. [PubMed]
130. Beutin L, Achtman M. 1979. Two Escherichia coli chromosomal cistrons, sfrA and sfrB, which are needed for expression of F factor tra functions. J Bacteriol 139:730–737. [PubMed]
131. Beutin L, Manning PA, Achtman M, Willetts N. 1981. sfrA and sfrB products of Escherichia coli K-12 are transcriptional control factors. J Bacteriol 145:840–844. [PubMed]
132. Will WR, Frost LS. 2006. Characterization of the opposing roles of H-NS and TraJ in transcriptional regulation of the F-plasmid tra operon. J Bacteriol 188:507–514. [PubMed]
133. Serna A, Espinosa E, Camacho EM, Casadesús J. 2010. Regulation of bacterial conjugation in microaerobiosis by host-encoded functions ArcAB and sdhABCD. Genetics 184:947–958. [PubMed]
134. Lu J, Wu R, Adkins JN, Joachimiak A, Glover JNM. 2014. Crystal structures of the F and pSLT plasmid TraJ N-terminal regions reveal similar homodimeric PAS folds with functional interchangeability. Biochemistry 53:5810–5819. [PubMed]
135. Lu J, Peng Y, Arutyunov D, Frost LS, Glover JNM. 2012. Error-prone PCR mutagenesis reveals functional domains of a bacterial transcriptional activator, TraJ. J Bacteriol 194:3670–3677. [PubMed]
136. Pölzleitner E, Zechner EL, Renner W, Fratte R, Jauk B, Högenauer G, Koraimann G. 1997. TraM of plasmid R1 controls transfer gene expression as an integrated control element in a complex regulatory network. Mol Microbiol 25:495–507. [PubMed]
137. Belogurov GA, Mooney RA, Svetlov V, Landick R, Artsimovitch I. 2009. Functional specialization of transcription elongation factors. EMBO J 28:112–122. [PubMed]
138. Sevostyanova A, Belogurov GA, Mooney RA, Landick R, Artsimovitch I. 2011. The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol Cell 43:253–262. [PubMed]
139. Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA, Landick R, Artsimovitch I, Rösch P. 2012. An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 150:291–303. [PubMed]
140. Ham LM, Cram D, Skurray R. 1989. Transcriptional analysis of the F plasmid surface exclusion region: mapping of traS, traT, and traD transcripts. Plasmid 21:1–8. [PubMed]
141. Nuk MR, Reisner A, Zechner EL. 2011. The transfer operon of plasmid R1 extends beyond finO into the downstream replication genes. Plasmid 65:150–158. [PubMed]
142. Madrid C, Balsalobre C, García J, Juárez A. 2007. The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. Mol Microbiol 63:7–14. [PubMed]
143. Solórzano C, Srikumar S, Canals R, Juárez A, Paytubi S, Madrid C. 2015. Hha has a defined regulatory role that is not dependent upon H-NS or StpA. Front Microbiol 6:773. doi:10.3389/fmicb.2015.00773. [PubMed]
144. Blankschien MD, Potrykus K, Grace E, Choudhary A, Vinella D, Cashel M, Herman C. 2009. TraR, a homolog of a RNAP secondary channel interactor, modulates transcription. PLoS Genet 5:e1000345. doi:10.1371/journal.pgen.1000345. [PubMed]
145. Gopalkrishnan S, Ross W, Chen AY, Gourse RL. 2017. TraR directly regulates transcription initiation by mimicking the combined effects of the global regulators DksA and ppGpp. Proc Natl Acad Sci USA 114:E5539–E5548. [PubMed]
146. Grace ED, Gopalkrishnan S, Girard ME, Blankschien MD, Ross W, Gourse RL, Herman C. 2015. Activation of the σE-dependent stress pathway by conjugative TraR may anticipate conjugational stress. J Bacteriol 197:924–931. [PubMed]
147. Zahrl D, Wagner M, Bischof K, Koraimann G. 2006. Expression and assembly of a functional type IV secretion system elicit extracytoplasmic and cytoplasmic stress responses in Escherichia coli. J Bacteriol 188:6611–6621. [PubMed]
148. Fronzes R, Christie PJ, Waksman G. 2009. The structural biology of type IV secretion systems. Nat Rev Microbiol 7:703–714. [PubMed]
149. Waksman G, Orlova EV. 2014. Structural organisation of the type IV secretion systems. Curr Opin Microbiol 17:24–31. [PubMed]
150. Fronzes R, Schäfer E, Wang L, Saibil HR, Orlova EV, Waksman G. 2009. Structure of a type IV secretion system core complex. Science 323:266–268. [PubMed]
151. Rivera-Calzada A, Fronzes R, Savva CG, Chandran V, Lian PW, Laeremans T, Pardon E, Steyaert J, Remaut H, Waksman G, Orlova EV. 2013. Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J 32:1195–1204. [PubMed]
152. Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S, Dujeancourt A, Lu F, Redzej A, Fronzes R, Orlova EV, Waksman G. 2014. Structure of a type IV secretion system. Nature 508:550–553. [PubMed]
153. Redzej A, Ukleja M, Connery S, Trokter M, Felisberto-Rodrigues C, Cryar A, Thalassinos K, Hayward RD, Orlova EV, Waksman G. 2017. Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. EMBO J 36:3080–3095. [PubMed]
154. Harris RL, Hombs V, Silverman PM. 2001. Evidence that F-plasmid proteins TraV, TraK and TraB assemble into an envelope-spanning structure in Escherichia coli. Mol Microbiol 42:757–766. [PubMed]
155. Harris RL, Silverman PM. 2004. Tra proteins characteristic of F-like type IV secretion systems constitute an interaction group by yeast two-hybrid analysis. J Bacteriol 186:5480–5485. [PubMed]
156. Clarke M, Maddera L, Harris RL, Silverman PM. 2008. F-pili dynamics by live-cell imaging. Proc Natl Acad Sci USA 105:17978–17981. [PubMed]
157. Silverman PM, Clarke MB. 2010. New insights into F-pilus structure, dynamics, and function. Integr Biol 2:25–31. [PubMed]
158. Arutyunov D, Frost LS. 2013. F conjugation: back to the beginning. Plasmid 70:18–32. [PubMed]
159. Lang S, Kirchberger PC, Gruber CJ, Redzej A, Raffl S, Zellnig G, Zangger K, Zechner EL. 2011. An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol Microbiol 82:1071–1085. [PubMed]
160. Costa TRD, Ilangovan A, Ukleja M, Redzej A, Santini JM, Smith TK, Egelman EH, Waksman G. 2016. Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166:1436–1444.e10. [PubMed]
161. Manchak J, Anthony KG, Frost LS. 2002. Mutational analysis of F-pilin reveals domains for pilus assembly, phage infection and DNA transfer. Mol Microbiol 43:195–205. [PubMed]
162. Audette GF, Manchak J, Beatty P, Klimke WA, Frost LS. 2007. Entry exclusion in F-like plasmids requires intact TraG in the donor that recognizes its cognate TraS in the recipient. Microbiology 153:442–451. [PubMed]
163. Anthony KG, Klimke WA, Manchak J, Frost LS. 1999. Comparison of proteins involved in pilus synthesis and mating pair stabilization from the related plasmids F and R100-1: insights into the mechanism of conjugation. J Bacteriol 181:5149–5159. [PubMed]
164. Dürrenberger MB, Villiger W, Bächi T. 1991. Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. J Struct Biol 107:146–156.
165. Babic A, Lindner AB, Vulic M, Stewart EJ, Radman M. 2008. Direct visualization of horizontal gene transfer. Science 319:1533–1536. [PubMed]
166. Harrington LC, Rogerson AC. 1990. The F pilus of Escherichia coli appears to support stable DNA transfer in the absence of wall-to-wall contact between cells. J Bacteriol 172:7263–7264. [PubMed]
167. Garcillán-Barcia MP, de la Cruz F. 2008. Why is entry exclusion an essential feature of conjugative plasmids? Plasmid 60:1–18. [PubMed]
168. Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I. 2015. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 39:81–95. [PubMed]
169. Kingsman A, Willetts N. 1978. The requirements for conjugal DNA synthesis in the donor strain during flac transfer. J Mol Biol 122:287–300. [PubMed]
170. Panicker MM, Minkley EG Jr. 1985. DNA transfer occurs during a cell surface contact stage of F sex factor-mediated bacterial conjugation. J Bacteriol 162:584–590. [PubMed]
171. Disqué-Kochem C, Dreiseikelmann B. 1997. The cytoplasmic DNA-binding protein TraM binds to the inner membrane protein TraD in vitro. J Bacteriol 179:6133–6137. [PubMed]
172. Beranek A, Zettl M, Lorenzoni K, Schauer A, Manhart M, Koraimann G. 2004. Thirty-eight C-terminal amino acids of the coupling protein TraD of the F-like conjugative resistance plasmid R1 are required and sufficient to confer binding to the substrate selector protein TraM. J Bacteriol 186:6999–7006. [PubMed]
173. Wong JJW, Lu J, Edwards RA, Frost LS, Glover JN. 2011. Structural basis of cooperative DNA recognition by the plasmid conjugation factor, TraM. Nucleic Acids Res 39:6775–6788. [PubMed]
174. Abo T, Inamoto S, Ohtsubo E. 1991. Specific DNA binding of the TraM protein to the oriT region of plasmid R100. J Bacteriol 173:6347–6354. [PubMed]
175. Schwab M, Reisenzein H, Högenauer G. 1993. TraM of plasmid R1 regulates its own expression. Mol Microbiol 7:795–803. [PubMed]
176. Fekete RA, Frost LS. 2002. Characterizing the DNA contacts and cooperative binding of F plasmid TraM to its cognate sites at oriT. J Biol Chem 277:16705–16711. [PubMed]
177. Mihajlovic S, Lang S, Sut MV, Strohmaier H, Gruber CJ, Koraimann G, Cabezón E, Moncalián G, de la Cruz F, Zechner EL, Cabezón E, Moncalián G, de la Cruz F, Zechner EL. 2009. Plasmid r1 conjugative DNA processing is regulated at the coupling protein interface. J Bacteriol 191:6877–6887. [PubMed]
178. Sut MV, Mihajlovic S, Lang S, Gruber CJ, Zechner EL. 2009. Protein and DNA effectors control the TraI conjugative helicase of plasmid R1. J Bacteriol 191:6888–6899. [PubMed]
179. Ragonese H, Haisch D, Villareal E, Choi J-H, Matson SW. 2007. The F plasmid-encoded TraM protein stimulates relaxosome-mediated cleavage at oriT through an interaction with TraI. Mol Microbiol 63:1173–1184. [PubMed]
180. Datta S, Larkin C, Schildbach JF. 2003. Structural insights into single-stranded DNA binding and cleavage by F factor TraI. Structure 11:1369–1379. [PubMed]
181. Dostál L, Schildbach JF. 2010. Single-stranded DNA binding by F TraI relaxase and helicase domains is coordinately regulated. J Bacteriol 192:3620–3628. [PubMed]
182. Guogas LM, Kennedy SA, Lee JH, Redinbo MR. 2009. A novel fold in the TraI relaxase-helicase c-terminal domain is essential for conjugative DNA transfer. J Mol Biol 386:554–568. [PubMed]
183. Lang S, Gruber K, Mihajlovic S, Arnold R, Gruber CJ, Steinlechner S, Jehl M-A, Rattei T, Fröhlich K-U, Zechner EL. 2010. Molecular recognition determinants for type IV secretion of diverse families of conjugative relaxases. Mol Microbiol 78:1539–1555. [PubMed]
184. Dostál L, Shao S, Schildbach JF. 2011. Tracking F plasmid TraI relaxase processing reactions provides insight into F plasmid transfer. Nucleic Acids Res 39:2658–2670. [PubMed]
185. Ilangovan A, Kay CWM, Roier S, El Mkami H, Salvadori E, Zechner EL, Zanetti G, Waksman G. 2017. Cryo-EM structure of a relaxase reveals the molecular basis of DNA unwinding during bacterial conjugation. Cell 169:708–721.e12. [PubMed]
186. Ruiz-Masó JA, Machón C, Bordanaba-Ruiseco L, Espinosa M, Coll M, Del Solar G. 2015. Plasmid rolling-circle replication. Microbiol Spectr 3:PLAS-0035-2014. doi:10.1128/microbiolspec.PLAS-0035-2014. [PubMed]
187. Sikora B, Eoff RL, Matson SW, Raney KD. 2006. DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor. J Biol Chem 281:36110–36116. [PubMed]
188. Matson SW, Sampson JK, Byrd DR. 2001. F plasmid conjugative DNA transfer: the TraI helicase activity is essential for DNA strand transfer. J Biol Chem 276:2372–2379. [PubMed]
189. Cabezón E, de la Cruz F, Arechaga I. 2017. Conjugation inhibitors and their potential use to prevent dissemination of antibiotic resistance genes in bacteria. Front Microbiol 8:2329. doi:10.3389/fmicb.2017.02329. [PubMed]
190. Baquero F, Coque TM, de la Cruz F. 2011. Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother 55:3649–3660. [PubMed]
Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0003-2018
2018-07-17
2018-11-19

Abstract:

The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBA group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBA plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBA group of conjugative plasmids.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/ecosalplus/8/1/ESP-0003-2018.html?itemId=/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0003-2018&mimeType=html&fmt=ahah
Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1

Click to view

Figure 1

DNA backbone of F and F-like plasmids from the MOBA group is characterized by the presence of the indicated functional modules. Replication (turquoise): RepFIA, RepFIB, and RepFII (disrupted by Tn, also termed RepFIC). Partitioning (dark blue): genes encode a type I ATPase partitioning system. Toxin-antitoxin (TA) modules (pink): Two type I (I) and two type II (II) TA systems are indicated. DNA transfer region: DNA transfer genes represent the largest (approximately 30 kbp) part of the backbone. For a detailed and complete representation of DNA transfer genes, see Fig. 2 . : origin of DNA transfer. Leading region (yellow): Genes with known functions for the establishment of the plasmid in a new host are indicated. Cargo genes: Three cargo genes with known or inferred virulence functions are shown (, , ). IS sequences and transposons are indicated. Note that is disrupted by an IS element. In all other MOBA plasmids known so far, has remained intact. This map was drawn according to the DNA sequence, accession number AP001918, with SnapGene software.

Citation: Koraimann G. 2018. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0003-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2

Click to view

Figure 2

(A) DNA transfer genes and important sequence elements encoded by the F plasmid are shown. genes are indicated by capital letters, whereas genes are indicated by small initial letters. Genes encoding relaxosomal components and those involved in transfer gene regulation are colored blue or red, respectively. (B) Conserved T4S genes that are present in the prototypical P-type T4SS () are indicated at the positions corresponding to the F-type T4S genes. (C) F-pilus assembly genes that are characteristic for MOBA plasmids are shown. Except for (), they are not present in P-type T4SS. (D) Genes encoding mating pair stabilization and surface/entry exclusion are shown. as well as (a TA system) have also been shown to encode virulence factors.

Citation: Koraimann G. 2018. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0003-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3

Click to view

Figure 3

In both cases, this resistance gene region is dominated by the composite transposon Tn that is flanked by IS elements carrying a gene. Contained within this transposon are mercury resistance genes as well as a class I integron. The basic structure shown is from plasmid R100. R1 does not contain IS in the integron, but additionally has a Tn inserted in the gene. Thus, this region encodes resistance to chloramphenicol (), sulfonamides (), streptomycin () in both plasmids, and in R1 additionally to ampicillin (TEM-1).

Citation: Koraimann G. 2018. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0003-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4

Click to view

Figure 4

The overall structure, shape, and dimensions are drawn according to a published P-type T4S structure ( 152 ). Protein components as determined for the P-type T4SS are indicated and labeled according to the VirB protein nomenclature. Positions of the indicated F-type T4S proteins are inferred from sequence similarity and experimental data (see text). The attached F-pilus is drawn according to a recently published high-resolution cryo-EM structure ( 160 ). The F-pilus has a diameter of 8.7 nm and an inner lumen of 2.8 nm. For each pilin, there is a phosphatidylglycerol (PG) molecule in the polymeric pilus filament. Whereas the pilus could be assembled and disassembled through the periplasm as indicated by two black arrows, TraI and the covalently attached ssDNA are transported via the coupling protein, TraD (pink arrow). OMC: outer membrane complex; IMC: inner membrane complex.

Citation: Koraimann G. 2018. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0003-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

Table 1

TraJ amino acid sequence diversity defines subgroups in the MOBA family of F-like plasmids

Citation: Koraimann G. 2018. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0003-2018
Generic image for table

Click to view

Table 2

List of DNA transfer genes and their functions encoded on F and F-like plasmids from the MOBA group

Citation: Koraimann G. 2018. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0003-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error