1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 5:

Responding to the Environment

Periplasmic Chaperones and Prolyl Isomerases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Frederick Stull1, Jean-Michel Betton2, and James C.A. Bardwell3
  • Editors: James M. Slauch4, Michael Ehrmann5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109; 2: Unité de Repliement et Modélisation des Protéines, Institut Pasteur–CNRS URA2185, 75724 Paris cedex 15, France; 3: Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109; 4: The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL; 5: Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
  • Received 05 March 2018 Accepted 30 April 2018 Published 03 July 2018
  • Address correspondence to James C.A. Bardwell, jbardwel@umich.edu
image of Periplasmic Chaperones and Prolyl Isomerases
    Preview this reference work article:
    Zoom in
    Zoomout

    Periplasmic Chaperones and Prolyl Isomerases, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/8/1/ESP-0005-2018-1.gif /docserver/preview/fulltext/ecosalplus/8/1/ESP-0005-2018-2.gif
  • Abstract:

    The biogenesis of periplasmic and outer membrane proteins (OMPs) in is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein’s final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with and periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.

  • Citation: Stull F, Betton J, Bardwell J. 2018. Periplasmic Chaperones and Prolyl Isomerases, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0005-2018

References

1. Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. 2004. X-ray structure of a protein-conducting channel. Nature 427:36–44. [PubMed]
2. Danese PN, Silhavy TJ. 1998. Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu Rev Genet 32:59–94. [PubMed]
3. Mogensen JE, Otzen DE. 2005. Interactions between folding factors and bacterial outer membrane proteins. Mol Microbiol 57:326–346. [PubMed]
4. Szewczyk J, Collet JF. 2016. The journey of lipoproteins through the cell: one birthplace, multiple destinations. Adv Microb Physiol 69:1–50. [PubMed]
5. Liu Y, Fu X, Shen J, Zhang H, Hong W, Chang Z. 2004. Periplasmic proteins of Escherichia coli are highly resistant to aggregation: reappraisal for roles of molecular chaperones in periplasm. Biochem Biophys Res Commun 316:795–801. [PubMed]
6. Park C, Zhou S, Gilmore J, Marqusee S. 2007. Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis. J Mol Biol 368:1426–1437. [PubMed]
7. Wülfing C, Plückthun A. 1994. Protein folding in the periplasm of Escherichia coli. Mol Microbiol 12:685–692. [PubMed]
8. Vertommen D, Depuydt M, Pan J, Leverrier P, Szikora J, Messens J, Bardwell JC, Collet JF. 2008. The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. Mol Microbiol 67:336–349.
9. Bardwell JC, McGovern K, Beckwith J. 1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67:581–589. [PubMed]
10. Shao F, Bader MW, Jakob U, Bardwell JC. 2000. DsbG, a protein disulfide isomerase with chaperone activity. J Biol Chem 275:13349–13352. [PubMed]
11. Chen J, Song JL, Zhang S, Wang Y, Cui DF, Wang CC. 1999. Chaperone activity of DsbC. J Biol Chem 274:19601–19605. [PubMed]
12. Moon CP, Zaccai NR, Fleming PJ, Gessmann D, Fleming KG. 2013. Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. Proc Natl Acad Sci USA 110:4285–4290. [PubMed]
13. Quan S, Koldewey P, Tapley T, Kirsch N, Ruane KM, Pfizenmaier J, Shi R, Hofmann S, Foit L, Ren G, Jakob U, Xu Z, Cygler M, Bardwell JCA. 2011. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat Struct Mol Biol 18:262–269. [PubMed]
14. Bury-Moné S, Nomane Y, Reymond N, Barbet R, Jacquet E, Imbeaud S, Jacq A, Bouloc P. 2009. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet 5:e1000651. [PubMed]
15. Leblanc SKD, Oates CW, Raivio TL. 2011. Characterization of the induction and cellular role of the BaeSR two-component envelope stress response of Escherichia coli. J Bacteriol 193:3367–3375. [PubMed]
16. Zoetendal EG, Smith AH, Sundset MA, Mackie RI. 2008. The BaeSR two-component regulatory system mediates resistance to condensed tannins in Escherichia coli. Appl Environ Microbiol 74:535–539. [PubMed]
17. Hong W, Wu YE, Fu X, Chang Z. 2012. Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends Microbiol 20:328–335. [PubMed]
18. Freire E, Schön A, Hutchins BM, Brown RK. 2013. Chemical denaturation as a tool in the formulation optimization of biologics. Drug Discov Today 18:1007–1013. [PubMed]
19. Raivio TL. 2005. Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 56:1119–1128. [PubMed]
20. Raffa RG, Raivio TL. 2002. A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol 45:1599–1611. [PubMed]
21. Raivio TL. 2014. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim Biophys Acta 1843:1529–1541. [PubMed]
22. Vogt SL, Nevesinjac AZ, Humphries RM, Donnenberg MS, Armstrong GD, Raivio TL. 2010. The Cpx envelope stress response both facilitates and inhibits elaboration of the enteropathogenic Escherichia coli bundle-forming pilus. Mol Microbiol 76:1095–1110. [PubMed]
23. Weatherspoon-Griffin N, Yang D, Kong W, Hua Z, Shi Y. 2014. The CpxR/CpxA two-component regulatory system up-regulates the multidrug resistance cascade to facilitate Escherichia coli resistance to a model antimicrobial peptide. J Biol Chem 289:32571–32582. [PubMed]
24. Macritchie DM, Raivio TL. 2009. Envelope Stress Responses. Ecosal Plus 3:3. [PubMed]
25. Fleischer R, Heermann R, Jung K, Hunke S. 2007. Purification, reconstitution, and characterization of the CpxRAP envelope stress system of Escherichia coli. J Biol Chem 282:8583–8593. [PubMed]
26. Thede GL, Arthur DC, Edwards RA, Buelow DR, Wong JL, Raivio TL, Glover JNM. 2011. Structure of the periplasmic stress response protein CpxP. J Bacteriol 193:2149–2157. [PubMed]
27. Appia-Ayme C, Hall A, Patrick E, Rajadurai S, Clarke TA, Rowley G. 2012. ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR. Biochem J 442:85–93. [PubMed]
28. Surmann K, Ćudić E, Hammer E, Hunke S. 2016. Molecular and proteome analyses highlight the importance of the Cpx envelope stress system for acid stress and cell wall stability in Escherichia coli. MicrobiologyOpen 5:582–596. [PubMed]
29. Zhao B, Houry WA. 2010. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem Cell Biol 88:301–314. [PubMed]
30. Mates AK, Sayed AK, Foster JW. 2007. Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance. J Bacteriol 189:2759–2768. [PubMed]
31. Link AJ, Robison K, Church GM. 1997. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18:1259–1313. [PubMed]
32. Malki A, Le HT, Milles S, Kern R, Caldas T, Abdallah J, Richarme G. 2008. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB. J Biol Chem 283:13679–13687. [PubMed]
33. Ding J, Yang C, Niu X, Hu Y, Jin C. 2015. HdeB chaperone activity is coupled to its intrinsic dynamic properties. Sci Rep 5:16856. doi:10.1038/srep16856. [PubMed]
34. Dahl J-U, Koldewey P, Salmon L, Horowitz S, Bardwell JCA, Jakob U. 2015. HdeB functions as an acid-protective chaperone in bacteria. J Biol Chem 290:65–75. [PubMed]
35. Zhang S, He D, Yang Y, Lin S, Zhang M, Dai S, Chen PR. 2016. Comparative proteomics reveal distinct chaperone-client interactions in supporting bacterial acid resistance. Proc Natl Acad Sci USA 113:10872–10877. [PubMed]
36. Yang F, Gustafson KR, Boyd MR, Wlodawer A. 1998. Crystal structure of Escherichia coli HdeA. Nat Struct Biol 5:763–764. [PubMed]
37. Salmon L, Stull F, Sayle S, Cato C, Akgül S, Foit L, Ahlstrom LS, Eisenmesser EZ, Al-Hashimi HM, Bardwell JCA, Horowitz S. 2018. The mechanism of HdeA unfolding and chaperone activation. J Mol Biol 430:33–40. [PubMed]
38. Hong W, Jiao W, Hu J, Zhang J, Liu C, Fu X, Shen D, Xia B, Chang Z. 2005. Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. J Biol Chem 280:27029–27034. [PubMed]
39. Foit L, George JS, Zhang BW, Brooks CL III, Bardwell JCA. 2013. Chaperone activation by unfolding. Proc Natl Acad Sci USA 110:E1254–E1262. [PubMed]
40. Ahlstrom LS, Law SM, Dickson A, Brooks CL III. 2015. Multiscale modeling of a conditionally disordered pH-sensing chaperone. J Mol Biol 427:1670–1680. [PubMed]
41. Zhang BW, Brunetti L, Brooks CL III. 2011. Probing pH-dependent dissociation of HdeA dimers. J Am Chem Soc 133:19393–19398. [PubMed]
42. Ahlstrom LS, Dickson A, Brooks CL III. 2013. Binding and folding of the small bacterial chaperone HdeA. J Phys Chem B 117:13219–13225. [PubMed]
43. Garrison MA, Crowhurst KA. 2014. NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation. Protein Sci 23:167–178. [PubMed]
44. Wang W, Rasmussen T, Harding AJ, Booth NA, Booth IR, Naismith JH. 2012. Salt bridges regulate both dimer formation and monomeric flexibility in HdeB and may have a role in periplasmic chaperone function. J Mol Biol 415:538–546. [PubMed]
45. Hagenmaier S, Stierhof YD, Henning U. 1997. A new periplasmic protein of Escherichia coli which is synthesized in spheroplasts but not in intact cells. J Bacteriol 179:2073–2076. [PubMed]
46. Kwon E, Kim DY, Gross CA, Gross JD, Kim KK. 2010. The crystal structure Escherichia coli Spy. Protein Sci 19:2252–2259. [PubMed]
47. Srivastava SK, Lambadi PR, Ghosh T, Pathania R, Navani NK. 2014. Genetic regulation of spy gene expression in Escherichia coli in the presence of protein unfolding agent ethanol. Gene 548:142–148. [PubMed]
48. Wang D, Fierke CA. 2013. The BaeSR regulon is involved in defense against zinc toxicity in E. coli. Metallomics 5:372–383. [PubMed]
49. Horowitz S, Salmon L, Koldewey P, Ahlstrom LS, Martin R, Quan S, Afonine PV, van den Bedem H, Wang L, Xu Q, Trievel RC, Brooks CL III, Bardwell JCA. 2016. Visualizing chaperone-assisted protein folding. Nat Struct Mol Biol 23:691–697. [PubMed]
50. Koldewey P, Stull F, Horowitz S, Martin R, Bardwell JCA. 2016. Forces driving chaperone action. Cell 166:369–379. [PubMed]
51. Stull F, Koldewey P, Humes JR, Radford SE, Bardwell JCA. 2016. Substrate protein folds while it is bound to the ATP-independent chaperone Spy. Nat Struct Mol Biol 23:53–58. [PubMed]
52. Schiffrin B, Calabrese AN, Higgins AJ, Humes JR, Ashcroft AE, Kalli AC, Brockwell DJ, Radford SE. 2017. Effects of periplasmic chaperones and membrane thickness on BamA-catalyzed outer-membrane protein folding. J Mol Biol 429:3776–3792. [PubMed]
53. Thome BM, Müller M. 1991. Skp is a periplasmic Escherichia coli protein requiring SecA and SecY for export. Mol Microbiol 5:2815–2821. [PubMed]
54. Chen R, Henning U. 1996. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol Microbiol 19:1287–1294. [PubMed]
55. Missiakas D, Betton JM, Raina S. 1996. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21:871–884. [PubMed]
56. Denoncin K, Schwalm J, Vertommen D, Silhavy TJ, Collet JF. 2012. Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics. Proteomics 12:1391–1401. [PubMed]
57. Weski J, Ehrmann M. 2012. Genetic analysis of 15 protein folding factors and proteases of the Escherichia coli cell envelope. J Bacteriol 194:3225–3233. [PubMed]
58. Schäfer U, Beck K, Müller M. 1999. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J Biol Chem 274:24567–24574. [PubMed]
59. Schwalm J, Mahoney TF, Soltes GR, Silhavy TJ. 2013. Role for Skp in LptD assembly in Escherichia coli. J Bacteriol 195:3734–3742. [PubMed]
60. Jarchow S, Lück C, Görg A, Skerra A. 2008. Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp. Proteomics 8:4987–4994. [PubMed]
61. Bothmann H, Plückthun A. 1998. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat Biotechnol 16:376–380. [PubMed]
62. Narayanan N, Chou CP. 2008. Physiological improvement to enhance Escherichia coli cell-surface display via reducing extracytoplasmic stress. Biotechnol Prog 24:293–301. [PubMed]
63. Patel GJ, Behrens-Kneip S, Holst O, Kleinschmidt JH. 2009. The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential. Biochemistry 48:10235–10245. [PubMed]
64. Bulieris PV, Behrens S, Holst O, Kleinschmidt JH. 2003. Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide. J Biol Chem 278:9092–9099. [PubMed]
65. De Cock H, Schäfer U, Potgeter M, Demel R, Müller M, Tommassen J. 1999. Affinity of the periplasmic chaperone Skp of Escherichia coli for phospholipids, lipopolysaccharides and non-native outer membrane proteins. Role of Skp in the biogenesis of outer membrane protein. Eur J Biochem 259:96–103. [PubMed]
66. Qu J, Mayer C, Behrens S, Holst O, Kleinschmidt JH. 2007. The trimeric periplasmic chaperone Skp of Escherichia coli forms 1:1 complexes with outer membrane proteins via hydrophobic and electrostatic interactions. J Mol Biol 374:91–105. [PubMed]
67. Harms N, Koningstein G, Dontje W, Muller M, Oudega B, Luirink J, de Cock H. 2001. The early interaction of the outer membrane protein phoe with the periplasmic chaperone Skp occurs at the cytoplasmic membrane. J Biol Chem 276:18804–18811. [PubMed]
68. Entzminger KC, Chang C, Myhre RO, McCallum KC, Maynard JA. 2012. The Skp chaperone helps fold soluble proteins in vitro by inhibiting aggregation. Biochemistry 51:4822–4834. [PubMed]
69. Walton TA, Sousa MC. 2004. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol Cell 15:367–374. [PubMed]
70. Korndörfer IP, Dommel MK, Skerra A. 2004. Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat Struct Mol Biol 11:1015–1020. [PubMed]
71. McMorran LM, Bartlett AI, Huysmans GHM, Radford SE, Brockwell DJ. 2013. Dissecting the effects of periplasmic chaperones on the in vitro folding of the outer membrane protein PagP. J Mol Biol 425:3178–3191. [PubMed]
72. Lyu ZX, Shao Q, Gao YQ, Zhao XS. 2012. Direct observation of the uptake of outer membrane proteins by the periplasmic chaperone Skp. PLoS One 7:e46068. doi:10.1371/journal.pone.0046068. [PubMed]
73. Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE, Brockwell DJ, Radford SE. 2016. Skp is a multivalent chaperone of outer-membrane proteins. Nat Struct Mol Biol 23:786–793. [PubMed]
74. Zaccai NR, Sandlin CW, Hoopes JT, Curtis JE, Fleming PJ, Fleming KG, Krueger S. 2016. Deuterium labeling together with contrast variation small-angle neutron scattering suggests how Skp captures and releases unfolded outer membrane proteins. Methods Enzymol 566:159–210. [PubMed]
75. Burmann BM, Wang C, Hiller S. 2013. Conformation and dynamics of the periplasmic membrane-protein-chaperone complexes OmpX-Skp and tOmpA-Skp. Nat Struct Mol Biol 20:1265–1272. [PubMed]
76. Thoma J, Burmann BM, Hiller S, Müller DJ. 2015. Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins. Nat Struct Mol Biol 22:795–802. [PubMed]
77. Tormo A, Almirón M, Kolter R. 1990. surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol 172:4339–4347. [PubMed]
78. Lazar SW, Kolter R. 1996. SurA assists the folding of Escherichia coli outer membrane proteins. J Bacteriol 178:1770–1773. [PubMed]
79. Rouvière PE, Gross CA. 1996. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev 10:3170–3182. [PubMed]
80. Behrens-Kneip S. 2010. The role of SurA factor in outer membrane protein transport and virulence. Int J Med Microbiol 300:421–428. [PubMed]
81. Justice SS, Lauer SR, Hultgren SJ, Hunstad DA. 2006. Maturation of intracellular Escherichia coli communities requires SurA. Infect Immun 74:4793–4800. [PubMed]
82. Weirich J, Bräutigam C, Mühlenkamp M, Franz-Wachtel M, Macek B, Meuskens I, Skurnik M, Leskinen K, Bohn E, Autenrieth I, Schütz M. 2017. Identifying components required for OMP biogenesis as novel targets for antiinfective drugs. Virulence 8:1170–1188. [PubMed]
83. Vertommen D, Ruiz N, Leverrier P, Silhavy TJ, Collet JF. 2009. Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics. Proteomics 9:2432–2443. [PubMed]
84. Rizzitello AE, Harper JR, Silhavy TJ. 2001. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. J Bacteriol 183:6794–6800. [PubMed]
85. Sklar JG, Wu T, Kahne D, Silhavy TJ. 2007. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21:2473–2484. [PubMed]
86. Goemans C, Denoncin K, Collet J-F. 2014. Folding mechanisms of periplasmic proteins. Biochim Biophys Acta 1843:1517–1528. [PubMed]
87. Watts KM, Hunstad DA. 2008. Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli. PLoS One 3:e3359. [PubMed]
88. Soltes GR, Schwalm J, Ricci DP, Silhavy TJ. 2016. The activity of Escherichia coli chaperone SurA is regulated by conformational changes involving a parvulin domain. J Bacteriol 198:921–929. [PubMed]
89. Ricci DP, Schwalm J, Gonzales-Cope M, Silhavy TJ. 2013. The activity and specificity of the outer membrane protein chaperone SurA are modulated by a proline isomerase domain. MBio 4:1–9. [PubMed]
90. Bitto E, McKay DB. 2002. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10:1489–1498.
91. Bitto E, McKay DB. 2003. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J Biol Chem 278:49316–49322. [PubMed]
92. Hennecke G, Nolte J, Volkmer-Engert R, Schneider-Mergener J, Behrens S. 2005. The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J Biol Chem 280:23540–23548. [PubMed]
93. Xu X, Wang S, Hu YX, McKay DB. 2007. The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. J Mol Biol 373:367–381. [PubMed]
94. Zhong M, Ferrell B, Lu W, Chai Q, Wei Y. 2013. Insights into the function and structural flexibility of the periplasmic molecular chaperone SurA. J Bacteriol 195:1061–1067. [PubMed]
95. Wu S, Ge X, Lv Z, Zhi Z, Chang Z, Zhao XS. 2011. Interaction between bacterial outer membrane proteins and periplasmic quality control factors: a kinetic partitioning mechanism. Biochem J 438:505–511. [PubMed]
96. Justice SS, Hunstad DA, Harper JR, Duguay AR, Pinkner JS, Bann J, Frieden C, Silhavy TJ, Hultgren SJ. 2005. Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J Bacteriol 187:7680–7686. [PubMed]
97. Pogliano J, Lynch AS, Belin D, Lin EC, Beckwith J. 1997. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev 11:1169–1182. [PubMed]
98. Kleerebezem M, Heutink M, Tommassen J. 1995. Characterization of an Escherichia coli rotA mutant, affected in periplasmic peptidyl-prolyl cis/trans isomerase. Mol Microbiol 18:313–320. [PubMed]
99. Behrens S, Maier R, de Cock H, Schmid FX, Gross CA. 2001. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J 20:285–294. [PubMed]
100. Geitner AJ, Varga E, Wehmer M, Schmid FX. 2013. Generation of a highly active folding enzyme by combining a parvulin-type prolyl isomerase from SurA with an unrelated chaperone domain. J Mol Biol 425:4089–4098. [PubMed]
101. Ramm K, Plückthun A. 2000. The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. II. Isomerase-independent chaperone activity in vitro. J Biol Chem 275:17106–17113. [PubMed]
102. Bothmann H, Plückthun A. 2000. The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J Biol Chem 275:17100–17105. [PubMed]
103. Dwyer RS, Malinverni JC, Boyd D, Beckwith J, Silhavy TJ. 2014. Folding LacZ in the periplasm of Escherichia coli. J Bacteriol 196:3343–3350. [PubMed]
104. Helbig S, Patzer SI, Schiene-Fischer C, Zeth K, Braun V. 2011. Activation of colicin M by the FkpA prolyl cis-trans isomerase/chaperone. J Biol Chem 286:6280–6290. [PubMed]
105. Ge X, Lyu ZX, Liu Y, Wang R, Zhao XS, Fu X, Chang Z. 2014. Identification of FkpA as a key quality control factor for the biogenesis of outer membrane proteins under heat shock conditions. J Bacteriol 196:672–680. [PubMed]
106. Weininger U, Jakob RP, Kovermann M, Balbach J, Schmid FX. 2010. The prolyl isomerase domain of PpiD from Escherichia coli shows a parvulin fold but is devoid of catalytic activity. Protein Sci 19:6–18. [PubMed]
107. Sachelaru I, Petriman NA, Kudva R, Koch HG. 2014. Dynamic interaction of the sec translocon with the chaperone PpiD. J Biol Chem 289:21706–21715. [PubMed]
108. Antonoaea R, Fürst M, Nishiyama K, Müller M. 2008. The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. Biochemistry 47:5649–5656. [PubMed]
109. Matern Y, Barion B, Behrens-Kneip S. 2010. PpiD is a player in the network of periplasmic chaperones in Escherichia coli. BMC Microbiol 10:251. [PubMed]
110. Spiess C, Beil A, Ehrmann M. 1999. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347.
111. Krojer T, Sawa J, Schäfer E, Saibil HR, Ehrmann M, Clausen T. 2008. Structural basis for the regulated protease and chaperone function of DegP. Nature 453:885–890. [PubMed]
112. Kim S, Sauer RT. 2012. Cage assembly of DegP protease is not required for substrate-dependent regulation of proteolytic activity or high-temperature cell survival. Proc Natl Acad Sci USA 109:7263–7268. [PubMed]
113. Kim S, Sauer RT. 2014. Distinct regulatory mechanisms balance DegP proteolysis to maintain cellular fitness during heat stress. Genes Dev 28:902–911. [PubMed]
114. Shen Q-T, Bai X-C, Chang L-F, Wu Y, Wang H-W, Sui S-F. 2009. Bowl-shaped oligomeric structures on membranes as DegP’s new functional forms in protein quality control. Proc Natl Acad Sci USA 106:4858–4863. [PubMed]
115. Misra R, CastilloKeller M, Deng M. 2000. Overexpression of protease-deficient DegP(S210A) rescues the lethal phenotype of Escherichia coli OmpF assembly mutants in a degP background. J Bacteriol 182:4882–4888. [PubMed]
116. CastilloKeller M, Misra R. 2003. Protease-deficient DegP suppresses lethal effects of a mutant OmpC protein by its capture. J Bacteriol 185:148–154. [PubMed]
117. Braselmann E, Chaney JL, Champion MM, Clark PL. 2016. DegP chaperone suppresses toxic inner membrane translocation intermediates. PLoS One 11:e0162922. [PubMed]
118. Ezemaduka AN, Yu J, Shi X, Zhang K, Yin CC, Fu X, Chang Z. 2014. A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50°C conceivably by maintaining cell envelope integrity. J Bacteriol 196:2004–2011. [PubMed]
119. Costello SM, Plummer AM, Fleming PJ, Fleming KG. 2016. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins. Proc Natl Acad Sci USA 113:E4794–E4800. [PubMed]
120. Elsholz AKW, Birk MS, Charpentier E, Turgay K. 2017. Functional diversity of AAA+ protease complexes in Bacillus subtilis. Front Mol Biosci 4:44. [PubMed]
121. Kim DY, Kim KK. 2005. Structure and function of HtrA family proteins, the key players in protein quality control. J Biochem Mol Biol 38:266–274.
122. Jiang J, Zhang X, Chen Y, Wu Y, Zhou ZH, Chang Z, Sui S-F. 2008. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc Natl Acad Sci USA 105:11939–11944. [PubMed]
123. Kim S, Grant RA, Sauer RT. 2011. Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages. Cell 145:67–78. [PubMed]
124. Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T. 2002. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416:455–459. [PubMed]
125. Malet H, Canellas F, Sawa J, Yan J, Thalassinos K, Ehrmann M, Clausen T, Saibil HR. 2012. Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ. Nat Struct Mol Biol 19:152–157. [PubMed]
126. Plummer AM, Fleming KG. 2016. From chaperones to the membrane with a BAM! Trends Biochem Sci 41:872–882. [PubMed]
127. Jeong SM, Lee HJ, Park YM, Kim JS, Lee SD, Bang IS. 2017. Inducible spy transcription acts as a sensor for envelope stress of Salmonella typhimurium. Korean J Food Sci Anim Resour 37:134–138. [PubMed]
128. Lennon CW, Thamsen M, Friman ET, Cacciaglia A, Sachsenhauser V, Sorgenfrei FA, Wasik MA, Bardwell JCA. 2015. Folding optimization in vivo uncovers new chaperones. J Mol Biol 427:2983–2994. [PubMed]
129. Klepsch MM, Kovermann M, Löw C, Balbach J, Permentier HP, Fusetti F, de Gier JW, Slotboom DJ, Berntsson RPA. 2011. Escherichia coli peptide binding protein OppA has a preference for positively charged peptides. J Mol Biol 414:75–85. [PubMed]
130. Matsuzaki M, Kiso Y, Yamamoto I, Satoh T. 1998. Isolation of a periplasmic molecular chaperone-like protein of Rhodobacter sphaeroides f. sp. denitrificans that is homologous to the dipeptide transport protein DppA of Escherichia coli. J Bacteriol 180:2718–2722. [PubMed]
131. Champion KM, Nishihara JC, Aldor IS, Moreno GT, Andersen D, Stults KL, Vanderlaan M. 2003. Comparison of the Escherichia coli proteomes for recombinant human growth hormone producing and nonproducing fermentations. Proteomics 3:1365–1373. [PubMed]
132. Van Gerven N, Klein RD, Hultgren SJ, Remaut H. 2015. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 23:693–706. [PubMed]
133. Bian Z, Normark S. 1997. Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J 16:5827–5836. [PubMed]
134. Hung C, Zhou Y, Pinkner JS, Dodson KW, Crowley JR, Heuser J, Chapman MR, Hadjifrangiskou M, Henderson JP, Hultgren SJ. 2013. Escherichia coli biofilms have an organized and complex extracellular matrix structure. MBio 4:e00645-13. doi:10.1128/mBio.00645-13. [PubMed]
135. Taylor JD, Hawthorne WJ, Lo J, Dear A, Jain N, Meisl G, Andreasen M, Fletcher C, Koch M, Darvill N, Scull N, Escalera-Maurer A, Sefer L, Wenman R, Lambert S, Jean J, Xu Y, Turner B, Kazarian SG, Chapman MR, Bubeck D, de Simone A, Knowles TPJ, Matthews SJ. 2016. Electrostatically-guided inhibition of Curli amyloid nucleation by the CsgC-like family of chaperones. Sci Rep 6:24656. doi:10.1038/srep24656.
136. Evans ML, Chorell E, Taylor JD, Åden J, Götheson A, Li F, Koch M, Sefer L, Matthews SJ, Wittung- Stafshede P, Almqvist F, Chapman MR. 2015. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol Cell 57:445–455. [PubMed]
137. Evans ML, Schmidt JC, Ilbert M, Doyle SM, Quan S, Bardwell JCA, Jakob U, Wickner S, Chapman MR. 2011. E. coli chaperones DnaK, Hsp33 and Spy inhibit bacterial functional amyloid assembly. Prion 5:323–334. [PubMed]
138. Shu Q, Krezel AM, Cusumano ZT, Pinkner JS, Klein R, Hultgren SJ, Frieden C. 2016. Solution NMR structure of CsgE: structural insights into a chaperone and regulator protein important for functional amyloid formation. Proc Natl Acad Sci USA 113:7130–7135. [PubMed]
139. Nenninger AA, Robinson LS, Hultgren SJ. 2009. Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc Natl Acad Sci USA 106:900–905. [PubMed]
140. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. [PubMed]
141. Shriver-Lake LC, Goldman ER, Zabetakis D, Anderson GP. 2017. Improved production of single domain antibodies with two disulfide bonds by co-expression of chaperone proteins in the Escherichia coli periplasm. J Immunol Methods 443:64–67. [PubMed]
142. Sun P, Tropea JE, Waugh DS. 2011. Enhancing the solubility of recombinant proteins in Escherichia coli by using hexahistidine-tagged maltose-binding protein as a fusion partner. Methods Mol Biol 705:259–274. [PubMed]
Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0005-2018
2018-07-03
2018-07-18

Abstract:

The biogenesis of periplasmic and outer membrane proteins (OMPs) in is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein’s final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with and periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

An overview of the chaperones and folding factors affecting protein folding in the periplasm of .

Citation: Stull F, Betton J, Bardwell J. 2018. Periplasmic Chaperones and Prolyl Isomerases, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0005-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error