1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

Animal Enterotoxigenic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: J. Daniel Dubreuil1, Richard E. Isaacson2, and Dieter M. Schifferli3
  • Editor: Michael S. Donnenberg4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada; 2: Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108; 3: School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; 4: University of Maryland, School of Medicine, Baltimore, MD
  • Received 16 March 2016 Accepted 20 April 2016 Published 08 September 2016
  • Address correspondence to Dieter M. Schifferli: dmschiff@vet.upenn.edu
image of Animal Enterotoxigenic <span class="jp-italic">Escherichia coli</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    Animal Enterotoxigenic , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/7/1/ESP-0006-2016-1.gif /docserver/preview/fulltext/ecosalplus/7/1/ESP-0006-2016-2.gif
  • Abstract:

    Enterotoxigenic (ETEC) is the most common cause of diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.

  • Citation: Dubreuil J, Isaacson R, Schifferli D. 2016. Animal Enterotoxigenic , EcoSal Plus 2016; doi:10.1128/ecosalplus.ESP-0006-2016

Key Concept Ranking

Bacterial Virulence Factors
0.44386822
0.44386822

Article Version

This article is an updated version of the following content:

References

1. Nagy B, Fekete PZ. 2005. Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol 295:443–454. [PubMed][CrossRef]
2. Kopic S, Geibel JP. 2010. Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins (Basel) 2:2132–2157. [PubMed][CrossRef]
3. Dubreuil JD. 2012. The whole Shebang: the gastrointestinal tract, Escherichia coli enterotoxins and secretion. Curr Issues Mol Biol 14:71–82. [PubMed]
4. van Beers-Schreurs HM, Vellenga L, Wensing T, Breukink HJ. 1992. The pathogenesis of the post-weaning syndrome in weaned piglets: a review. Vet Q 14:29–34. [PubMed][CrossRef]
5. Fairbrother JM, Nadeau E, Gyles CL. 2005. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 6:17–39. [PubMed][CrossRef]
6. Tacket CO, Reid RH, Boedeker EC, Losonsky G, Nataro JP, Bhagat H, Edelman R. 1994. Enteral immunization and challenge of volunteers given enterotoxigenic E. coli CFA/II encapsulated in biodegradable microspheres. Vaccine 12:1270–1274. [PubMed][CrossRef]
7. Berberov EM, Zhou Y, Francis DH, Scott MA, Kachman SD, Moxley RA. 2004. Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect Immun 72:3914–3924. [PubMed][CrossRef]
8. Liu W, Yuan C, Meng X, Du Y, Gao R, Tang J, Shi D. 2014. Frequency of virulence factors in Escherichia coli isolated from suckling pigs with diarrhoea in China. Vet J 199:286–289. [PubMed][CrossRef]
9. Duan Q, Yao F, Zhu G. 2012. Major virulence factors of enterotoxigenic Escherichia coli in pigs. Ann Microbiol 62:7–14. [CrossRef]
10. Foster DM, Smith GW. 2009. Pathophysiology of diarrhea in calves. Vet Clin North Am Food Anim Pract 25:13–36, xi. [PubMed][CrossRef]
11. Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H. 2010. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect 12:89–98. [PubMed][CrossRef]
12. Nagy B, Casey TA, Moon HW. 1990. Phenotype and genotype of Escherichia coli isolated from pigs with postweaning diarrhea in Hungary. J Clin Microbiol 28:651–653. [PubMed]
13. Wittig W, Fabricius C. 1992. Escherichia coli types isolated from porcine E. coli infections in Saxony from 1963 to 1990. Zentralbl Bakteriol 277:389–402. [PubMed][CrossRef]
14. Post KW, Bosworth BT, Knoth JL. 2000. Frequency of virulence factors in Escherichia coli isolated from pigs with postweaning diarrhea and edema disease in North Carolina. Swine Health Prod 8:119–120.
15. Aarestrup FM, Jorsal SE, Ahrens P, Jensen NE, Meyling A. 1997. Molecular characterization of Escherichia coli strains isolated from pigs with edema disease. J Clin Microbiol 35:20–24. [PubMed]
16. da Silva AS, Valadares GF, Penatti MP, Brito BG, da Silva Leite D. 2001. Escherichia coli strains from edema disease: O serogroups, and genes for Shiga toxin, enterotoxins, and F18 fimbriae. Vet Microbiol 80:227–233. [PubMed][CrossRef]
17. Osek J. 1999. Prevalence of virulence factors of Escherichia coli strains isolated from diarrheic and healthy piglets after weaning. Vet Microbiol 68:209–217. [PubMed][CrossRef]
18. Moon HW, Hoffman LJ, Cornick NA, Booher SL, Bosworth BT. 1999. Prevalences of some virulence genes among Escherichia coli isolates from swine presented to a diagnostic laboratory in Iowa. J Vet Diagn Invest 11:557–560. [PubMed][CrossRef]
19. Dean-Nystrom EA, Burkhardt D, Bosworth BT, Welter MW. 1997. Presence of F18ac (2134P) fimbriae on 4P- Escherichia coli isolates from weaned pigs with diarrhea. J Vet Diagn Invest 9:77–79. [PubMed][CrossRef]
20. Gyles CL, Fairbrother JM. 2010. Escherichia coli, p 267–308. In Gyles CL, Prescott JF, Songer JG, Thoen CO (ed), Pathogenesis of Bacterial Infections in Animals. Wiley-Blackwell, New York, NY. [CrossRef]
21. Mainil JG, Jacquemin E, Pohl P, Kaeckenbeeck A, Benz I. 2002. DNA sequences coding for the F18 fimbriae and AIDA adhesin are localised on the same plasmid in Escherichia coli isolates from piglets. Vet Microbiol 86:303–311. [PubMed][CrossRef]
22. Ngeleka M, Pritchard J, Appleyard G, Middleton DM, Fairbrother JM. 2003. Isolation and association of Escherichia coli AIDA-I/STb, rather than EAST1 pathotype, with diarrhea in piglets and antibiotic sensitivity of isolates. J Vet Diagn Invest 15:242–252. [PubMed][CrossRef]
23. Drolet R, Fairbrother JM, Vaillancourt D. 1994. Attaching and effacing Escherichia coli in a goat with diarrhea. Can Vet J 35:122–123. [PubMed]
24. Hammermueller J, Kruth S, Prescott J, Gyles C. 1995. Detection of toxin genes in Escherichia coli isolated from normal dogs and dogs with diarrhea. Can J Vet Res 59:265–270. [PubMed]
25. US Department of Agriculture: Animal and Plant Health Inspection Service: Veterinary Services (USDA.APHIS:VS). 2001. Swine 2000. Part I: Reference of Swine Health and Management in the United States, 2000, NAHMS. 555 South Howes, Fort Collins, CO 80521. (970) 490-8000. E-mail: NAHMSweb@aphis.usda.gov.
26. USDA.APHIS:VS. 1997. Swine ‘95 Study, Part III: 1990-1995 Changes in the U.S. Pork Industry. 555 South Howes, Fort Collins, CO 80521. (970) 490-8000. Internet: NAHMS_INFO@aphis.usda.gov
27. USDA.APHIS:VS. 1992. National Swine Survey. Morbidity/Mortality and Health Management of Swine in the United States. 555 South Howes, Fort Collins, CO 80521. (970) 490-8000. Internet: NAHMS_INFO@aphis.usda.gov
28. Zhang W, Zhao M, Ruesch L, Omot A, Francis D. 2007. Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Vet Microbiol 123:145–152. [PubMed][CrossRef]
29. Smith MG, Jordan D, Chapman TA, Chin JJ, Barton MD, Do TN, Fahy VA, Fairbrother JM, Trott DJ. 2010. Antimicrobial resistance and virulence gene profiles in multi-drug resistant enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea. Vet Microbiol 145:299–307. [PubMed][CrossRef]
30. Madoroba E, Van Driessche E, De Greve H, Mast J, Ncube I, Read J, Beeckmans S. 2009. Prevalence of enterotoxigenic Escherichia coli virulence genes from scouring piglets in Zimbabwe. Trop Anim Health Prod 41:1539–1547. [PubMed][CrossRef]
31. Moredo FA, Piñeyro PE, Márquez GC, Sanz M, Colello R, Etcheverría A, Padola NL, Quiroga MA, Perfumo CJ, Galli L, Leotta GA. 2015. Enterotoxigenic Escherichia coli subclinical infection in pigs: bacteriological and genotypic characterization and antimicrobial resistance profiles. Foodborne Pathog Dis 12:704–711. [PubMed][CrossRef]
32. Moon HW, Bunn TO. 1993. Vaccines for preventing enterotoxigenic Escherichia coli infections in farm animals. Vaccine 11:213–200. [PubMed][CrossRef]
33. Fairbrother JM. 1999. Neonatal Escherichia coli diarrhea, p 433–441. In Straw BE, D’Allaire S, Mengeling WL, Taylor DJ (ed), Diseases of Swine, 8th ed. Iowa State University Press, Ames, IA.
34. Vu Khac H, Holoda E, Pilipcinec E, Blanco M, Blanco JE, Mora A, Dahbi G, López C, González EA, Blanco J. 2006. Serotypes, virulence genes, and PFGE profiles of Escherichia coli isolated from pigs with postweaning diarrhoea in Slovakia. BMC Vet Res 2:10. doi:10.1186/1746-6148-2-10. [CrossRef]
35. Chan G, Farzan A, DeLay J, McEwen B, Prescott JF, Friendship RM. 2013. A retrospective study on the etiological diagnoses of diarrhea in neonatal piglets in Ontario, Canada, between 2001 and 2010. Can J Vet Res 77:254–260. [PubMed]
36. Okello E, Moonens K, Erume J, De Greve H. 2015. Enterotoxigenic Escherichia coli strains are highly prevalent in Ugandan piggeries but disease outbreaks are masked by antibiotic prophylaxis. Trop Anim Health Prod 47:117–122. [PubMed][CrossRef]
37. Goswami PS, Friendship RM, Gyles CL, Poppe C, Boerlin P. 2011. Preliminary investigations of the distribution of Escherichia coli O149 in sows, piglets, and their environment. Can J Vet Res 75:57–60. [PubMed]
38. Sarrazin E, Fritzsche C, Bertschinger HU. 2000. Hauptvirulenzfaktoren bei Escherichia coli-Isolaten von über zwei Wochen alten Schweinen mit Odemkrankheit und/oder Colidiarrhöe. Schweiz Arch Tierheilkd 142:625–630. [PubMed]
39. Westerman RB, Mills KW, Phillips RM, Fortner GW, Greenwood JM. 1988. Predominance of the ac variant in K88-positive Escherichia coli isolates from swine. J Clin Microbiol 26:149–150. [PubMed]
40. González EA, Vázquez F, Ignacio Garabal J, Blanco J. 1995. Isolation of K88 antigen variants (ab, ac, ad) from porcine enterotoxigenic Escherichia coli belonging to different serotypes. Microbiol Immunol 39:937–942. [PubMed][CrossRef]
41. Frydendahl K. 2002. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Vet Microbiol 85:169–182. [CrossRef]
42. Abraham S, Chin J, Brouwers HJ, Zhang R, Chapman TA. 2012. Molecular serogrouping of porcine enterotoxigenic Escherichia coli from Australia. J Microbiol Methods 88:73–76. [PubMed][CrossRef]
43. Osek J. 2000. Clonal analysis of Escherichia coli strains isolated from pigs with post-weaning diarrhea by pulsed-field gel electrophoresis. FEMS Microbiol Lett 186:327–331. [PubMed][CrossRef]
44. Orskov I, Orskov F, Sojka WJ, Leach JM. 1961. Simultaneous occurrence of E. coli B and Lantigens in strains from diseased swine. Influence of cultivation temperature. Two new E. coli Kantigens: K 87 and K 88. Acta Pathol Microbiol Scand 53:404–422. [PubMed][CrossRef]
45. Stirm S, Orskov I, Orskov F. 1966. K88, an episome-determined protein antigen of Escherichia coli. Nature 209:507–508. [PubMed][CrossRef]
46. Stirm S, Orskov F, Orskov I, Birch-Andersen A. 1967. Episome-carried surface antigen K88 of Escherichia coli. 3. Morphology. J Bacteriol 93:740–748. [PubMed]
47. Duguid JP, Anderson ES. 1967. Terminology of bacterial fimbriae, or pili, and their types. Nature 215:89–90. [PubMed][CrossRef]
48. Kraus R, Ludwig S. 1902. Ueber Bakteriohaemagglutinine und Antihaemagglutinine. Wien Klin Wochenschr 5:120–121.
49. Guyot G. 1908. Ueber die bakterielle Haemagglutination (Bakterio-Haemoagglutination). Centralbl f Bakt Abt I Orig XLVII:640–653.
50. Duguid JP, Smith IW, Dempster G, Edmunds PN. 1955. Non-flagellar filamentous appendages (fimbriae) and haemagglutinating activity in Bacterium coli. J Pathol Bacteriol 70:335–348. [PubMed][CrossRef]
51. Smith T, Orcutt ML. 1925. The bacteriology of the intestinal tract of young calves with special reference to the early diarrhea (“scours”). J Exp Med 41:89–106. [PubMed][CrossRef]
52. Smith HW, Halls S. 1968. The production of oedema disease and diarrhoea in weaned pigs by the oral administration of Escherichia coli: factors that influence the course of the experimental disease. J Med Microbiol 1:45–59. [PubMed][CrossRef]
53. Smith HW, Linggood MA. 1971. Observations on the pathogenic properties of the K88, Hly and Ent plasmids of Escherichia coli with particular reference to porcine diarrhoea. J Med Microbiol 4:467–485. [PubMed][CrossRef]
54. Falkow S. 1988. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10(Suppl 2):S274–S276. [PubMed][CrossRef]
55. Jones GW, Rutter JM. 1972. Role of the K88 antigen in the pathogenesis of neonatal diarrhea caused by Escherichia coli in piglets. Infect Immun 6:918–927. [PubMed]
56. Rutter JM, Jones GW. 1973. The K88 antigen of Escherichia coli--a model for vaccination with a virulence factor? J Med Microbiol 6:8–9. [PubMed]
57. Mooi FR, de Graaf FK, van Embden JD. 1979. Cloning, mapping and expression of the genetic determinant that encodes for the K88ab antigen. Nucleic Acids Res 6:849–865. [PubMed][CrossRef]
58. Kehoe M, Sellwood R, Shipley P, Dougan G. 1981. Genetic analysis of K88-mediated adhesion of enterotoxigenic Escherichia coli. Nature 291:122–126. [PubMed][CrossRef]
59. Mooi FR, Harms N, Bakker D, de Graaf FK. 1981. Organization and expression of genes involved in the production of the K88ab antigen. Infect Immun 32:1155–1163. [PubMed]
60. Hull RA, Gill RE, Hsu P, Minshew BH, Falkow S. 1981. Construction and expression of recombinant plasmids encoding type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun 33:933–938. [PubMed]
61. Normark S, Lark D, Hull R, Norgren M, Båga M, O’Hanley P, Schoolnik G, Falkow S. 1983. Genetics of digalactoside-binding adhesin from a uropathogenic Escherichia coli strain. Infect Immun 41:942–949. [PubMed]
62. Orndorff PE, Falkow S. 1984. Organization and expression of genes responsible for type 1 piliation in Escherichia coli. J Bacteriol 159:736–744. [PubMed]
63. Moon HW, Isaacson RE, Pohlenz J. 1979. Mechanisms of association of enteropathogenic Escherichia coli with intestinal epithelium. Am J Clin Nutr 32:119–127. [PubMed]
64. Isaacson RE, Nagy B, Moon HW. 1977. Colonization of porcine small intestine by Escherichia coli: colonization and adhesion factors of pig enteropathogens that lack K88. J Infect Dis 135:531–539. [PubMed][CrossRef]
65. Nagy B, Moon HW, Isaacson RE. 1977. Colonization of porcine intestine by enterotoxigenic Escherichia coli: selection of piliated forms in vivo, adhesion of piliated forms to epithelial cells in vitro, and incidence of a pilus antigen among porcine enteropathogenic E. coli. Infect Immun 16:344–352. [PubMed]
66. Isaacson RE, Fusco PC, Brinton CC, Moon HW. 1978. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors. Infect Immun 21:392–397. [PubMed]
67. Isaacson RE, Dean EA, Morgan RL, Moon HW. 1980. Immunization of suckling pigs against enterotoxigenic Escherichia coli-induced diarrheal disease by vaccinating dams with purified K99 or 987P pili: antibody production in response to vaccination. Infect Immun 29:824–826. [PubMed]
68. Morgan RL, Isaacson RE, Moon HW, Brinton CC, To CC. 1978. Immunization of suckling pigs against enterotoxigenic Escherichia coli-induced diarrheal disease by vaccinating dams with purified 987 or K99 pili: protection correlates with pilus homology of vaccine and challenge. Infect Immun 22:771–777. [PubMed]
69. Nagy B, Moon HW, Isaacson RE, To C-C, Brinton CC. 1978. Immunization of suckling pigs against enteric enterotoxigenic Escherichia coli infection by vaccinating dams with purified pili. Infect Immun 21:269–274. [PubMed]
70. Casey TA, Schneider RA, Dean-Nystrom EA. 1993. Identification of plasmid and chromosomal copies of 987P pilus genes in enterotoxigenic Escherichia coli 987. Infect Immun 61:2249–2252. [PubMed]
71. Morris JA, Wells GAH, Scott AC, Sojka WJ. 1983. Colonisation of the small intestine of lambs by an enterotoxigenic Escherichia coli producing F41 fimbriae. Vet Rec 113:471–471. [PubMed][CrossRef]
72. Morris JA, Thorns CJ, Wells GA, Scott AC, Sojka WJ. 1983. The production of F41 fimbriae by piglet strains of enterotoxigenic Escherichia coli that lack K88, K99 and 987P fimbriae. J Gen Microbiol 129:2753–2759. [PubMed][CrossRef]
73. Runnels PL, Moseley SL, Moon HW. 1987. F41 pili as protective antigens of enterotoxigenic Escherichia coli that produce F41, K99, or both pilus antigens. Infect Immun 55:555–558. [PubMed]
74. To SC. 1984. Prevention of colibacillosis in neonatal swine with a 4-pilus E coli bacterin. Mod Vet Pract 65:39–41. [PubMed]
75. To SC. 1984. F41 antigen among porcine enterotoxigenic Escherichia coli strains lacking K88, K99, and 987P pili. Infect Immun 43:549–554. [PubMed]
76. Nagy B. 1980. Vaccination of cows with a K99 extract to protect newborn calves against experimental enterotoxic colibacillosis. Infect Immun 27:21–24. [PubMed]
77. Moon HW, Kohler EM, Schneider RA, Whipp SC. 1980. Prevalence of pilus antigens, enterotoxin types, and enteropathogenicity among K88-negative enterotoxigenic Escherichia coli from neonatal pigs. Infect Immun 27:222–230. [PubMed]
78. Moon HW. 1990. Colonization factor antigens of enterotoxigenic Escherichia coli in animals. Curr Top Microbiol Immunol 151:147–165. [PubMed][CrossRef]
79. Imberechts H, Bertschinger HU, Nagy B, Deprez P, Pohl P. 1997. Fimbrial colonisation factors F18ab and F18ac of Escherichia coli isolated from pigs with postweaning diarrhea and edema disease. Adv Exp Med Biol 412:175–183. [PubMed][CrossRef]
80. Zúñiga A, Yokoyama H, Albicker-Rippinger P, Eggenberger E, Bertschinger HU. 1997. Reduced intestinal colonisation with F18-positive enterotoxigenic Escherichia coli in weaned pigs fed chicken egg antibody against the fimbriae. FEMS Immunol Med Microbiol 18:153–161. [PubMed][CrossRef]
81. Contrepois MG, Girardeau JP. 1985. Additive protective effects of colostral antipili antibodies in calves experimentally infected with enterotoxigenic Escherichia coli. Infect Immun 50:947–949. [PubMed]
82. Bertin Y, Martin C, Oswald E, Girardeau JP. 1996. Rapid and specific detection of F17-related pilin and adhesin genes in diarrheic and septicemic Escherichia coli strains by multiplex PCR. J Clin Microbiol 34:2921–2928. [PubMed]
83. Le Bouguénec C, Bertin Y. 1999. AFA and F17 adhesins produced by pathogenic Escherichia coli strains in domestic animals. Vet Res 30:317–342. [PubMed]
84. Dezfulian H, Batisson I, Fairbrother JM, Lau PC, Nassar A, Szatmari G, Harel J. 2003. Presence and characterization of extraintestinal pathogenic Escherichia coli virulence genes in F165-positive E. coli strains isolated from diseased calves and pigs. J Clin Microbiol 41:1375–1385. [PubMed][CrossRef]
85. Bihannic M, Ghanbarpour R, Auvray F, Cavalié L, Châtre P, Boury M, Brugère H, Madec JY, Oswald E. 2014. Identification and detection of three new F17 fimbrial variants in Escherichia coli strains isolated from cattle. Vet Res 45:76. doi:10.1186/s13567-014-0076-9. [PubMed][CrossRef]
86. Harel J, Lapointe H, Fallara A, Lortie LA, Bigras-Poulin M, Larivière S, Fairbrother JM. 1991. Detection of genes for fimbrial antigens and enterotoxins associated with Escherichia coli serogroups isolated from pigs with diarrhea. J Clin Microbiol 29:745–752. [PubMed]
87. Broes A, Fairbrother JM, Jacques M, Lariviere S. 1988. Isolation and characterization of a new fimbrial antigen (Cs1541) from a porcine entero-toxigenic Escherichia-coli O8 - Kx105 strain. FEMS Microbiol Lett 55:341–347. [CrossRef]
88. Broes A, Fairbrother JM, Jacques M, Larivière S. 1989. Requirement for capsular antigen KX105 and fimbrial antigen CS1541 in the pathogenicity of porcine enterotoxigenic Escherichia coli O8:KX105 strains. Can J Vet Res 53:43–47. [PubMed]
89. Fairbrother JM, Broes A, Jacques M, Larivière S. 1989. Pathogenicity of Escherichia coli O115:K“V165” strains isolated from pigs with diarrhea. Am J Vet Res 50:1029–1036. [PubMed]
90. Woodward MJ, Wray C. 1990. Nine DNA probes for detection of toxin and adhesin genes in Escherichia coli isolated from diarrhoeal disease in animals. Vet Microbiol 25:55–65. [PubMed][CrossRef]
91. Contrepois M, Fairbrother JM, Kaura YK, Girardeau JP. 1989. Prevalence of CS31A and F165 surface antigens in Escherichia coli isolates from animals in France, Canada and India. FEMS Microbiol Lett 50:319–323. [PubMed][CrossRef]
92. Bertin Y, Martin C, Girardeau JP, Pohl P, Contrepois M. 1998. Association of genes encoding P fimbriae, CS31A antigen and EAST 1 toxin among CNF1-producing Escherichia coli strains from cattle with septicemia and diarrhea. FEMS Microbiol Lett 162:235–239. [PubMed][CrossRef]
93. Valat C, Forest K, Auvray F, Métayer V, Méheut T, Polizzi C, Gay E, Haenni M, Oswald E, Madec JY. 2014. Assessment of adhesins as an indicator of pathovar-associated virulence factors in bovine Escherichia coli. Appl Environ Microbiol 80:7230–7234. [PubMed][CrossRef]
94. Girardeau JP, Der Vartanian M, Ollier JL, Contrepois M. 1988. CS31A, a new K88-related fimbrial antigen on bovine enterotoxigenic and septicemic Escherichia coli strains. Infect Immun 56:2180–2188. [PubMed]
95. Mercado EC, Rodríguez SM, D’Antuono AL, Cipolla AL, Elizondo AM, Rossetti CA, Malena R, Méndez MA. 2003. Occurrence and characteristics of CS31A antigen-producing Escherichia coli in calves with diarrhoea and septicaemia in Argentina. J Vet Med B Infect Dis Vet Public Health 50:8–13. [PubMed][CrossRef]
96. Mainil JG, Jacquemin E, Pohl P, Fairbrother JM, Ansuini A, Le Bouguénec C, Ball HJ, De Rycke J, Oswald E. 1999. Comparison of necrotoxigenic Escherichia coli isolates from farm animals and from humans. Vet Microbiol 70:123–135. [PubMed][CrossRef]
97. Nuccio SP, Bäumler AJ. 2007. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71:551–575. [PubMed][CrossRef]
98. Franklin A, Söderlind O, Möllby R. 1981. Plasmids coding for enterotoxins, K88 antigen and colicins in porcine Escherichia coli strains of O-group 149. Med Microbiol Immunol (Berl) 170:63–72. [PubMed][CrossRef]
99. Isaacson RE, Start GL. 1992. Analysis of K99 plasmids from enterotoxigenic Escherichia coli. FEMS Microbiol Lett 69:141–146. [PubMed][CrossRef]
100. Bertin A. 1992. Plasmid content and localisation of the STaI (STaP) gene in enterotoxigenic Escherichia coli with a non-radioactive polynucleotide gene probe. J Med Microbiol 37:141–147. [PubMed][CrossRef]
101. Mainil JG, Bex F, Dreze P, Kaeckenbeeck A, Couturier M. 1992. Replicon typing of virulence plasmids of enterotoxigenic Escherichia coli isolates from cattle. Infect Immun 60:3376–3380. [PubMed]
102. Mainil JG, Daube G, Jacquemin E, Pohl P, Kaeckenbeeck A. 1998. Virulence plasmids of enterotoxigenic Escherichia coli isolates from piglets. Vet Microbiol 62:291–301. [PubMed][CrossRef]
103. Fekete PZ, Gerardin J, Jacquemin E, Mainil JG, Nagy B. 2002. Replicon typing of F18 fimbriae encoding plasmids of enterotoxigenic and verotoxigenic Escherichia coli strains from porcine postweaning diarrhoea and oedema disease. Vet Microbiol 85:275–284. [PubMed][CrossRef]
104. Schifferli DM, Beachey EH, Taylor RK. 1990. The 987P fimbrial gene cluster of enterotoxigenic Escherichia coli is plasmid encoded. Infect Immun 58:149–156. [PubMed]
105. Klaasen P, Woodward MJ, van Zijderveld FG, de Graaf FK. 1990. The 987P gene cluster in enterotoxigenic Escherichia coli contains an STpa transposon that activates 987P expression. Infect Immun 58:801–807. [PubMed]
106. Schifferli DM, Beachey EH, Taylor RK. 1991. 987P fimbrial gene identification and protein characterization by T7 RNA polymerase-induced transcription and TnphoA mutagenesis. Mol Microbiol 5:61–70. [PubMed][CrossRef]
107. Boerlin P, Travis R, Gyles CL, Reid-Smith R, Janecko N, Lim H, Nicholson V, McEwen SA, Friendship R, Archambault M. 2005. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl Environ Microbiol 71:6753–6761. [PubMed][CrossRef]
108. Fekete PZ, Brzuszkiewicz E, Blum-Oehler G, Olasz F, Szabó M, Gottschalk G, Hacker J, Nagy B. 2012. DNA sequence analysis of the composite plasmid pTC conferring virulence and antimicrobial resistance for porcine enterotoxigenic Escherichia coli. Int J Med Microbiol 302:4–9. [PubMed][CrossRef]
109. Johnson TJ, Shepard SM, Rivet B, Danzeisen JL, Carattoli A. 2011. Comparative genomics and phylogeny of the IncI1 plasmids: a common plasmid type among porcine enterotoxigenic Escherichia coli. Plasmid 66:144–151. [PubMed][CrossRef]
110. Zav’yalov V, Zavialov A, Zav’yalova G, Korpela T. 2010. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol Rev 34:317–378. [PubMed][CrossRef]
111. Werneburg GT, Henderson NS, Portnoy EB, Sarowar S, Hultgren SJ, Li H, Thanassi DG. 2015. The pilus usher controls protein interactions via domain masking and is functional as an oligomer. Nat Struct Mol Biol 22:540–546. [PubMed][CrossRef]
112. Duchet-Suchaux M, Bertin A, Dubray G. 1988. Morphological description of surface structures on strain B41 of bovine enterotoxigenic Escherichia coli bearing both K99 and F41 antigens. J Gen Microbiol 134:983–995. [PubMed][CrossRef]
113. Simons BL, Mol O, van Breemen JF, Oudega B. 1994. Morphological appearances of K88ab fimbriae and optical diffraction analysis of K88 paracrystalline structures. FEMS Microbiol Lett 118:83–88. [PubMed][CrossRef]
114. Bertin Y, Girardeau JP, Darfeuille-Michaud A, Contrepois M. 1996. Characterization of 20K fimbria, a new adhesin of septicemic and diarrhea-associated Escherichia coli strains, that belongs to a family of adhesins with N-acetyl-D-glucosamine recognition. Infect Immun 64:332–342. [PubMed]
115. Hahn E, Wild P, Schraner EM, Bertschinger HU, Häner M, Müller SA, Aebi U. 2000. Structural analysis of F18 fimbriae expressed by porcine toxigenic Escherichia coli. J Struct Biol 132:241–250. [PubMed][CrossRef]
116. Brinton CC, Jr. 1965. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci 27(8 Series II):1003–1054.
117. Abraham SN, Land M, Ponniah S, Endres R, Hasty DL, Babu JP. 1992. Glycerol-induced unraveling of the tight helical conformation of Escherichia coli type 1 fimbriae. J Bacteriol 174:5145–5148. [PubMed]
118. Mortezaei N, Epler CR, Shao PP, Shirdel M, Singh B, McVeigh A, Uhlin BE, Savarino SJ, Andersson M, Bullitt E. 2015. Structure and function of enterotoxigenic Escherichia coli fimbriae from differing assembly pathways. Mol Microbiol 95:116–126. [PubMed][CrossRef]
119. Smyth CJ, Marron MB, Twohig JM, Smith SG. 1996. Fimbrial adhesins: similarities and variations in structure and biogenesis. FEMS Immunol Med Microbiol 16:127–139. [PubMed][CrossRef]
120. Brooks DE, Cavanagh J, Jayroe D, Janzen J, Snoek R, Trust TJ. 1989. Involvement of the MN blood group antigen in shear-enhanced hemagglutination induced by the Escherichia coli F41 adhesin. Infect Immun 57:377–383. [PubMed]
121. Le Trong I, Aprikian P, Kidd BA, Forero-Shelton M, Tchesnokova V, Rajagopal P, Rodriguez V, Interlandi G, Klevit R, Vogel V, Stenkamp RE, Sokurenko EV, Thomas WE. 2010. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 141:645–655. [PubMed][CrossRef]
122. Bakker D, Willemsen PT, Willems RH, Huisman TT, Mooi FR, Oudega B, Stegehuis F, de Graaf FK. 1992. Identification of minor fimbrial subunits involved in biosynthesis of K88 fimbriae. J Bacteriol 174:6350–6358. [PubMed]
123. Cao J, Khan AS, Bayer ME, Schifferli DM. 1995. Ordered translocation of 987P fimbrial subunits through the outer membrane of Escherichia coli. J Bacteriol 177:3704–3713. [PubMed]
124. Ponniah S, Endres RO, Hasty DL, Abraham SN. 1991. Fragmentation of Escherichia coli type 1 fimbriae exposes cryptic D-mannose-binding sites. J Bacteriol 173:4195–4202. [PubMed]
125. Li Q, Ng TW, Dodson KW, So SS, Bayle KM, Pinkner JS, Scarlata S, Hultgren SJ, Thanassi DG. 2010. The differential affinity of the usher for chaperone-subunit complexes is required for assembly of complete pili. Mol Microbiol 76:159–172. [PubMed][CrossRef]
126. Morrissey B, Leney AC, Toste Rego A, Phan G, Allen WJ, Verger D, Waksman G, Ashcroft AE, Radford SE. 2012. The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS. Mol Cell Proteomics 11:M111 015289. [PubMed]
127. Luo Y, Van Nguyen U, de la Fe Rodriguez PY, Devriendt B, Cox E. 2015. F4+ ETEC infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response. Vet Res 46:121. doi:10.1186/s13567-015-0264-2. [PubMed][CrossRef]
128. Gao Y, Han F, Huang X, Rong Y, Yi H, Wang Y. 2013. Changes in gut microbial populations, intestinal morphology, expression of tight junction proteins, and cytokine production between two pig breeds after challenge with Escherichia coli K88: a comparative study. J Anim Sci 91:5614–5625. [PubMed][CrossRef]
129. McLamb BL, Gibson AJ, Overman EL, Stahl C, Moeser AJ. 2013. Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS One 8:e59838. doi:10.1371/journal.pone.0059838. [CrossRef]
130. Edwards RA, Puente JL. 1998. Fimbrial expression in enteric bacteria: a critical step in intestinal pathogenesis. Trends Microbiol 6:282–287. [PubMed][CrossRef]
131. Edwards RA, Schifferli DM. 1997. Differential regulation of fasA and fasH expression of Escherichia coli 987P fimbriae by environmental cues. Mol Microbiol 25:797–809. [CrossRef]
132. Burrows MR, Sellwood R, Gibbons RA. 1976. Haemagglutinating and adhesive properties associated with the K99 antigen of bovine strains of Escherichia coli. J Gen Microbiol 96:269–275. [PubMed][CrossRef]
133. Guinée PA, Jansen WH. 1979. Behavior of Escherichia coli K antigens K88ab, K88ac, and K88ad in immunoelectrophoresis, double diffusion, and hemagglutination. Infect Immun 23:700–705. [PubMed]
134. Bijlsma IG, Frik JF. 1987. Haemagglutination patterns of the different variants of Escherichia coli K88 antigen with porcine, bovine, guinea pig, chicken, ovine and equine erythrocytes. Res Vet Sci 43:122–123. [PubMed]
135. Ike K, Nakazawa M, Tsuchimoto M, Ide S, Kashiwazaki M. 1987. Hemagglutination by pilus antigen 987P of enterotoxigenic Escherichia coli. Microbiol Immunol 31:1255–1258. [PubMed][CrossRef]
136. Conway PL, Welin A, Cohen PS. 1990. Presence of K88-specific receptors in porcine ileal mucus is age dependent. Infect Immun 58:3178–3182. [PubMed]
137. Willemsen PT, de Graaf FK. 1992. Age and serotype dependent binding of K88 fimbriae to porcine intestinal receptors. Microb Pathog 12:367–375. [PubMed][CrossRef]
138. Runnels PL, Moon HW, Schneider RA. 1980. Development of resistance with host age to adhesion of K99+ Escherichia coli to isolated intestinal epithelial cells. Infect Immun 28:298–300. [PubMed]
139. Teneberg S, Willemsen P, de Graaf FK, Karlsson KA. 1990. Receptor-active glycolipids of epithelial cells of the small intestine of young and adult pigs in relation to susceptibility to infection with Escherichia coli K99. FEBS Lett 263:10–14. [CrossRef]
140. Yuyama Y, Yoshimatsu K, Ono E, Saito M, Naiki M. 1993. Postnatal change of pig intestinal ganglioside bound by Escherichia coli with K99 fimbriae. J Biochem 113:488–492. [PubMed]
141. Dean EA. 1990. Comparison of receptors for 987P pili of enterotoxigenic Escherichia coli in the small intestines of neonatal and older pig. Infect Immun 58:4030–4035. [PubMed]
142. Dean-Nystrom EA, Samuel JE. 1994. Age-related resistance to 987P fimbria-mediated colonization correlates with specific glycolipid receptors in intestinal mucus in swine. Infect Immun 62:4789–4794. [PubMed]
143. Dean EA, Whipp SC, Moon HW. 1989. Age-specific colonization of porcine intestinal epithelium by 987P-piliated enterotoxigenic Escherichia coli. Infect Immun 57:82–87. [PubMed]
144. Madar Johansson M, Coddens A, Benktander J, Cox E, Teneberg S. 2014. Porcine intestinal glycosphingolipids recognized by F6-fimbriated enterotoxigenic Escherichia coli. Microb Pathog 76:51–60. [PubMed][CrossRef]
145. Nagy B, Casey TA, Whipp SC, Moon HW. 1992. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age. Infect Immun 60:1285–1294. [PubMed]
146. Mouricout M, Milhavet M, Durié C, Grange P. 1995. Characterization of glycoprotein glycan receptors for Escherichia coli F17 fimbrial lectin. Microb Pathog 18:297–306. [PubMed][CrossRef]
147. Bakker D, Willemsen PT, Simons LH, van Zijderveld FG, de Graaf FK. 1992. Characterization of the antigenic and adhesive properties of FaeG, the major subunit of K88 fimbriae. Mol Microbiol 6:247–255. [PubMed][CrossRef]
148. Sun R, Anderson TJ, Erickson AK, Nelson EA, Francis DH. 2000. Inhibition of adhesion of Escherichia coli k88ac fimbria to its receptor, intestinal mucin-type glycoproteins, by a monoclonal antibody directed against a variable domain of the fimbria. Infect Immun 68:3509–3515. [PubMed][CrossRef]
149. Jacobs AA, Venema J, Leeven R, van Pelt-Heerschap H, de Graaf FK. 1987. Inhibition of adhesive activity of K88 fibrillae by peptides derived from the K88 adhesin. J Bacteriol 169:735–741. [PubMed]
150. Jacobs AA, Roosendaal B, van Breemen JF, de Graaf FK. 1987. Role of phenylalanine 150 in the receptor-binding domain of the K88 fibrillar subunit. J Bacteriol 169:4907–4911. [PubMed]
151. Van Molle I, Joensuu JJ, Buts L, Panjikar S, Kotiaho M, Bouckaert J, Wyns L, Niklander-Teeri V, De Greve H. 2007. Chloroplasts assemble the major subunit FaeG of Escherichia coli F4 (K88) fimbriae to strand-swapped dimers. J Mol Biol 368:791–799. [PubMed][CrossRef]
152. Joensuu JJ, Kotiaho M, Riipi T, Snoeck V, Palva ET, Teeri TH, Lång H, Cox E, Goddeeris BM, Niklander-Teeri V. 2004. Fimbrial subunit protein FaeG expressed in transgenic tobacco inhibits the binding of F4ac enterotoxigenic Escherichia coli to porcine enterocytes. Transgenic Res 13:295–298. [PubMed][CrossRef]
153. Zhang W, Fang Y, Francis DH. 2009. Characterization of the binding specificity of K88ac and K88ad fimbriae of enterotoxigenic Escherichia coli by constructing K88ac/K88ad chimeric FaeG major subunits. Infect Immun 77:699–706. [PubMed][CrossRef]
154. Jin LZ, Zhao X. 2000. Intestinal receptors for adhesive fimbriae of enterotoxigenic Escherichia coli (ETEC) K88 in swine--a review. Appl Microbiol Biotechnol 54:311–318. [PubMed][CrossRef]
155. Billey LO, Erickson AK, Francis DH. 1998. Multiple receptors on porcine intestinal epithelial cells for the three variants of Escherichia coli K88 fimbrial adhesin. Vet Microbiol 59:203–212. [PubMed][CrossRef]
156. Van den Broeck W, Cox E, Oudega B, Goddeeris BM. 2000. The F4 fimbrial antigen of Escherichia coli and its receptors. Vet Microbiol 71:223–244. [PubMed][CrossRef]
157. Yan X, Huang X, Ren J, Zou Z, Yang S, Ouyang J, Zeng W, Yang B, Xiao S, Huang L. 2009. Distribution of Escherichia coli F4 adhesion phenotypes in pigs of 15 Chinese and Western breeds and a White DurocxErhualian intercross. J Med Microbiol 58:1112–1117. [PubMed][CrossRef]
158. Rampoldi A, Bertschinger HU, Bürgi E, Dolf G, Sidler X, Bratus A, Vögeli P, Neuenschwander S. 2014. Inheritance of porcine receptors for enterotoxigenic Escherichia coli with fimbriae F4ad and their relation to other F4 receptors. Animal 8:859–866. [PubMed][CrossRef]
159. Grange PA, Mouricout MA, Levery SB, Francis DH, Erickson AK. 2002. Evaluation of receptor binding specificity of Escherichia coli K88 (F4) fimbrial adhesin variants using porcine serum transferrin and glycosphingolipids as model receptors. Infect Immun 70:2336–2343. [PubMed][CrossRef]
160. Melkebeek V, Rasschaert K, Bellot P, Tilleman K, Favoreel H, Deforce D, De Geest BG, Goddeeris BM, Cox E. 2012. Targeting aminopeptidase N, a newly identified receptor for F4ac fimbriae, enhances the intestinal mucosal immune response. Mucosal Immunol 5:635–645. [PubMed][CrossRef]
161. Goetstouwers T, Van Poucke M, Nguyen VU, Melkebeek V, Coddens A, Deforce D, Cox E, Peelman LJ. 2014. F4-related mutation and expression analysis of the aminopeptidase N gene in pigs. J Anim Sci 92:1866–1873. [PubMed][CrossRef]
162. Coddens A, Valis E, Benktander J, Ångström J, Breimer ME, Cox E, Teneberg S. 2011. Erythrocyte and porcine intestinal glycosphingolipids recognized by F4 fimbriae of enterotoxigenic Escherichia coli. PLoS One 6:e23309. doi:10.1371/journal.pone.0023309. [CrossRef]
163. Moonens K, Van den Broeck I, De Kerpel M, Deboeck F, Raymaekers H, Remaut H, De Greve H. 2015. Structural and functional insight into the carbohydrate receptor binding of F4 fimbriae-producing enterotoxigenic Escherichia coli. J Biol Chem 290:8409–8419. [PubMed][CrossRef]
164. Payne D, O’Reilly M, Williamson D. 1993. The K88 fimbrial adhesin of enterotoxigenic Escherichia coli binds to beta 1-linked galactosyl residues in glycosphingolipids. Infect Immun 61:3673–3677. [PubMed]
165. Khan AS, Johnston NC, Goldfine H, Schifferli DM. 1996. Porcine 987P glycolipid receptors on intestinal brush borders and their cognate bacterial ligands. Infect Immun 64:3688–3693. [PubMed]
166. Karlsson K-A. 1989. Animal glycosphingolipids as membrane attachment sites for bacteria. Annu Rev Biochem 58:309–350. [PubMed][CrossRef]
167. Python P, Jörg H, Neuenschwander S, Hagger C, Stricker C, Bürgi E, Bertschinger HU, Stranzinger G, Vögeli P. 2002. Fine-mapping of the intestinal receptor locus for enterotoxigenic Escherichia coli F4ac on porcine chromosome 13. Anim Genet 33:441–447. [PubMed][CrossRef]
168. Jørgensen CB, Cirera S, Anderson SI, Archibald AL, Raudsepp T, Chowdhary B, Edfors-Lilja I, Andersson L, Fredholm M. 2003. Linkage and comparative mapping of the locus controlling susceptibility towards E. COLI F4ab/ac diarrhoea in pigs. Cytogenet Genome Res 102:157–162. [PubMed][CrossRef]
169. Peng QL, Ren J, Yan XM, Huang X, Tang H, Wang YZ, Zhang B, Huang LS. 2007. The g.243A>G mutation in intron 17 of MUC4 is significantly associated with susceptibility/resistance to ETEC F4ab/ac infection in pigs. Anim Genet 38:397–400. [PubMed][CrossRef]
170. Joller D, Jørgensen CB, Bertschinger HU, Python P, Edfors I, Cirera S, Archibald AL, Bürgi E, Karlskov-Mortensen P, Andersson L, Fredholm M, Vögeli P. 2009. Refined localization of the Escherichiacoli F4ab/F4ac receptor locus on pig chromosome 13. Anim Genet 40:749–752. [PubMed][CrossRef]
171. Jacobsen M, Kracht SS, Esteso G, Cirera S, Edfors I, Archibald AL, Bendixen C, Andersson L, Fredholm M, Jørgensen CB. 2010. Refined candidate region specified by haplotype sharing for Escherichia coli F4ab/F4ac susceptibility alleles in pigs. Anim Genet 41:21–25. [PubMed][CrossRef]
172. Nguyen VU, Goetstouwers T, Coddens A, Van Poucke M, Peelman L, Deforce D, Melkebeek V, Cox E. 2013. Differentiation of F4 receptor profiles in pigs based on their mucin 4 polymorphism, responsiveness to oral F4 immunization and in vitro binding of F4 to villi. Vet Immunol Immunopathol 152:93–100. [PubMed][CrossRef]
173. Zhang B, Ren J, Yan X, Huang X, Ji H, Peng Q, Zhang Z, Huang L. 2008. Investigation of the porcine MUC13 gene: isolation, expression, polymorphisms and strong association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Anim Genet 39:258–266. [PubMed][CrossRef]
174. Rampoldi A, Jacobsen MJ, Bertschinger HU, Joller D, Bürgi E, Vögeli P, Andersson L, Archibald AL, Fredholm M, Jørgensen CB, Neuenschwander S. 2011. The receptor locus for Escherichia coli F4ab/F4ac in the pig maps distal to the MUC4-LMLN region. Mamm Genome 22:122–129. [PubMed][CrossRef]
175. Ren J, Yan X, Ai H, Zhang Z, Huang X, Ouyang J, Yang M, Yang H, Han P, Zeng W, Chen Y, Guo Y, Xiao S, Ding N, Huang L. 2012. Susceptibility towards enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs. PLoS One 7:e44573. doi:10.1371/journal.pone.0044573. [CrossRef]
176. Ji H, Ren J, Yan X, Huang X, Zhang B, Zhang Z, Huang L. 2011. The porcine MUC20 gene: molecular characterization and its association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Mol Biol Rep 38:1593–1601. [PubMed][CrossRef]
177. Schroyen M, Stinckens A, Verhelst R, Geens M, Cox E, Niewold T, Buys N. 2012. Susceptibility of piglets to enterotoxigenic Escherichia coli is not related to the expression of MUC13 and MUC20. Anim Genet 43:324–327. [PubMed][CrossRef]
178. Goetstouwers T, Van Poucke M, Coppieters W, Nguyen VU, Melkebeek V, Coddens A, Van Steendam K, Deforce D, Cox E, Peelman LJ. 2014. Refined candidate region for F4ab/ac enterotoxigenic Escherichia coli susceptibility situated proximal to MUC13 in pigs. PLoS One 9:e105013. doi:10.1371/journal.pone.0105013. [CrossRef]
179. Goetstouwers T, Van Poucke M, Coddens A, Nguyen VU, Melkebeek V, Deforce D, Cox E, Peelman LJ. 2014. Variation in 12 porcine genes involved in the carbohydrate moiety assembly of glycosphingolipids does not account for differential binding of F4 Escherichia coli and their fimbriae. BMC Genet 15:103. doi:10.1186/s12863-014-0103-x. [CrossRef]
180. Yan XM, Ren J, Huang X, Zhang ZY, Ouyang J, Zeng WH, Zou ZZ, Yang SJ, Yang B, Huang LS. 2009. Comparison of production traits between pigs with and without the Escherichia coli F4 receptors in a White Duroc x Erhualian intercross F2 population. J Anim Sci 87:334–339. [PubMed][CrossRef]
181. Moseley SL, Dougan G, Schneider RA, Moon HW. 1986. Cloning of chromosomal DNA encoding the F41 adhesin of enterotoxigenic Escherichia coli and genetic homology between adhesins F41 and K88. J Bacteriol 167:799–804. [PubMed]
182. Anderson DG, Moseley SL. 1988. Escherichia coli F41 adhesin: genetic organization, nucleotide sequence, and homology with the K88 determinant. J Bacteriol 170:4890–4896. erratum appears in J Bacteriol 1989 Feb;171(2:1233).
183. Lindahl M, Wadstrom T. 1986. Binding to erythrocyte membrane glycoproteins and carbohydrate specificity of F41 fimbriae of enterotoxigenic Escherichia coli. FEMS Microbiol Lett 34:297–300. [CrossRef]
184. Yang B, Huang X, Yan X, Ren J, Yang S, Zou Z, Zeng W, Ou Y, Huang W, Huang L. 2009. Detection of quantitative trait loci for porcine susceptibility to enterotoxigenic Escherichia coli F41 in a White Duroc × Chinese Erhualian resource population. Animal 3:946–950. [PubMed][CrossRef]
185. Jacobs AA, Simons BH, de Graaf FK. 1987. The role of lysine-132 and arginine-136 in the receptor-binding domain of the K99 fibrillar subunit. EMBO J 6:1805–1808. [PubMed]
186. Jacobs AA, van den Berg PA, Bak HJ, de Graaf FK. 1986. Localization of lysine residues in the binding domain of the K99 fibrillar subunit of enterotoxigenic Escherichia coli. Biochim Biophys Acta 872:92–97. [PubMed][CrossRef]
187. Ono E, Abe K, Nakazawa M, Naiki M. 1989. Ganglioside epitope recognized by K99 fimbriae from enterotoxigenic Escherichia coli. Infect Immun 57:907–911. [PubMed]
188. Smit H, Gaastra W, Kamerling JP, Vliegenthart JF, de Graaf FK. 1984. Isolation and structural characterization of the equine erythrocyte receptor for enterotoxigenic Escherichia coli K99 fimbrial adhesin. Infect Immun 46:578–584. [PubMed]
189. Teneberg S, Willemsen PT, de Graaf FK, Karlsson KA. 1993. Calf small intestine receptors for K99 fimbriated enterotoxigenic Escherichia coli. FEMS Microbiol Lett 109:107–112. [PubMed][CrossRef]
190. Kyogashima M, Ginsburg V, Krivan HC. 1989. Escherichia coli K99 binds to N-glycolylsialoparagloboside and N-glycolyl-GM3 found in piglet small intestine. Arch Biochem Biophys 270:391–397. [PubMed][CrossRef]
191. Teneberg S, Willemsen PT, de Graaf FK, Stenhagen G, Pimlott W, Jovall PA, Angström J, Karlsson KA. 1994. Characterization of gangliosides of epithelial cells of calf small intestine, with special reference to receptor-active sequences for enteropathogenic Escherichia coli K99. J Biochem 116:560–574. [PubMed]
192. Dean EA, Isaacson RE. 1982. In vitro adhesion of piliated Escherichia coli to small intestinal villous epithelial cells from rabbits and the identification of a soluble 987P pilus receptor-containing fraction. Infect Immun 36:1192–1198. [PubMed]
193. Dean EA, Isaacson RE. 1985. Purification and characterization of a receptor for the 987P pilus of Escherichia coli. Infect Immun 47:98–105. [PubMed]
194. Dean EA, Isaacson RE. 1985. Location and distribution of a receptor for the 987P pilus of Escherichia coli in small intestines. Infect Immun 47:345–348. [PubMed]
195. Khan AS, Schifferli DM. 1994. A minor 987P protein different from the structural fimbrial subunit is the adhesin. Infect Immun 62:4233–4243. [PubMed]
196. Zhu G, Chen H, Choi BK, Del Piero F, Schifferli DM. 2005. Histone H1 proteins act as receptors for the 987P fimbriae of enterotoxigenic Escherichia coli. J Biol Chem 280:23057–23065. [PubMed][CrossRef]
197. Choi BK, Schifferli DM. 1999. Lysine residue 117 of the FasG adhesin of enterotoxigenic Escherichia coli is essential for binding of 987P fimbriae to sulfatide. Infect Immun 67:5755–5761. [PubMed]
198. Choi BK, Schifferli DM. 2001. Characterization of FasG segments required for 987P fimbria-mediated binding to piglet glycoprotein receptors. Infect Immun 69:6625–6632. [PubMed][CrossRef]
199. Imberechts H, Wild P, Charlier G, De Greve H, Lintermans P, Pohl P. 1996. Characterization of F18 fimbrial genes fedE and fedF involved in adhesion and length of enterotoxemic Escherichia coli strain 107/86. Microb Pathog 21:183–192. [PubMed][CrossRef]
200. Smeds A, Hemmann K, Jakava-Viljanen M, Pelkonen S, Imberechts H, Palva A. 2001. Characterization of the adhesin of Escherichia coli F18 fimbriae. Infect Immun 69:7941–7945. [PubMed][CrossRef]
201. Smeds A, Pertovaara M, Timonen T, Pohjanvirta T, Pelkonen S, Palva A. 2003. Mapping the binding domain of the F18 fimbrial adhesin. Infect Immun 71:2163–2172. [PubMed][CrossRef]
202. Tiels P, Verdonck F, Smet A, Goddeeris B, Cox E. 2005. The F18 fimbrial adhesin FedF is highly conserved among F18(+)Escherichia coli isolates. Vet Microbiol 110:277–283. [PubMed][CrossRef]
203. Rippinger P, Bertschinger HU, Imberechts H, Nagy B, Sorg I, Stamm M, Wild P, Wittig W. 1995. Designations F18ab and F18ac for the related fimbrial types F107, 2134P and 8813 of Escherichia coli isolated from porcine postweaning diarrhoea and from oedema disease. Vet Microbiol 45:281–295. [PubMed][CrossRef]
204. Vögeli P, Bertschinger HU, Stamm M, Stricker C, Hagger C, Fries R, Rapacz J, Stranzinger G. 1996. Genes specifying receptors for F18 fimbriated Escherichia coli, causing oedema disease and postweaning diarrhoea in pigs, map to chromosome 6. Anim Genet 27:321–328. [PubMed]
205. Meijerink E, Neuenschwander S, Fries R, Dinter A, Bertschinger HU, Stranzinger G, Vögeli P. 2000. A DNA polymorphism influencing alpha(1,2)fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion. Immunogenetics 52:129–136. [PubMed][CrossRef]
206. Meijerink E, Fries R, Vögeli P, Masabanda J, Wigger G, Stricker C, Neuenschwander S, Bertschinger HU, Stranzinger G. 1997. Two alpha(1,2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mamm Genome 8:736–741. [PubMed][CrossRef]
207. Snoeck V, Verdonck F, Cox E, Goddeeris BM. 2004. Inhibition of adhesion of F18+ Escherichia coli to piglet intestinal villous enterocytes by monoclonal antibody against blood group H-2 antigen. Vet Microbiol 100:241–246. [PubMed][CrossRef]
208. Coddens A, Diswall M, Angström J, Breimer ME, Goddeeris B, Cox E, Teneberg S. 2009. Recognition of blood group ABH type 1 determinants by the FedF adhesin of F18-fimbriated Escherichia coli. J Biol Chem 284:9713–9726. [PubMed][CrossRef]
209. Moonens K, Bouckaert J, Coddens A, Tran T, Panjikar S, De Kerpel M, Cox E, Remaut H, De Greve H. 2012. Structural insight in histo-blood group binding by the F18 fimbrial adhesin FedF. Mol Microbiol 86:82–95. [PubMed][CrossRef]
210. Lonardi E, Moonens K, Buts L, de Boer AR, Olsson JD, Weiss MS, Fabre E, Guérardel Y, Deelder AM, Oscarson S, Wuhrer M, Bouckaert J. 2013. Structural sampling of glycan interaction profiles reveals mucosal receptors for fimbrial adhesins of enterotoxigenic Escherichia coli. Biology (Basel) 2:894–917. [PubMed][CrossRef]
211. Zhao Q, Liu Y, Dong W, Zhu S, Huo Y, Wu S, Bao W. 2014. Genetic variations of TAP1 gene exon 3 affects gene expression and Escherichia coli F18 resistance in piglets. Int J Mol Sci 15:11161–11171. [PubMed][CrossRef]
212. Wang SJ, Liu WJ, Yang LG, Sargent CA, Liu HB, Wang C, Liu XD, Zhao SH, Affara NA, Liang AX, Zhang SJ. 2012. Effects of FUT1 gene mutation on resistance to infectious disease. Mol Biol Rep 39:2805–2810. [PubMed][CrossRef]
213. Bao WB, Ye L, Zhu J, Pan ZY, Zhu GQ, Huang XG, Wu SL. 2011. Polymorphism of M307 of the FUT1 gene and its relationship with some immune indexes in Sutai pigs (Duroc x Meishan). Biochem Genet 49:665–673. [PubMed][CrossRef]
214. Bao WB, Wu SL, Musa HH, Zhu GQ, Chen GH. 2008. Genetic variation at the alpha-1-fucosyltransferase (FUT1) gene in Asian wild boar and Chinese and Western commercial pig breeds. J Anim Breed Genet 125:427–430. [PubMed][CrossRef]
215. Lintermans PF, Bertels A, Schlicker C, Deboeck F, Charlier G, Pohl P, Norgren M, Normark S, van Montagu M, De Greve H. 1991. Identification, characterization, and nucleotide sequence of the F17-G gene, which determines receptor binding of Escherichia coli F17 fimbriae. J Bacteriol 173:3366–3373. [PubMed]
216. Sanchez R, Kanarek L, Koninkx J, Hendriks H, Lintermans P, Bertels A, Charlier G, Van Driessche E. 1993. Inhibition of adhesion of enterotoxigenic Escherichia coli cells expressing F17 fimbriae to small intestinal mucus and brush-border membranes of young calves. Microb Pathog 15:207–219. [PubMed][CrossRef]
217. Buts L, Bouckaert J, De Genst E, Loris R, Oscarson S, Lahmann M, Messens J, Brosens E, Wyns L, De Greve H. 2003. The fimbrial adhesin F17-G of enterotoxigenic Escherichia coli has an immunoglobulin-like lectin domain that binds N-acetylglucosamine. Mol Microbiol 49:705–715. [PubMed][CrossRef]
218. Merckel MC, Tanskanen J, Edelman S, Westerlund-Wikström B, Korhonen TK, Goldman A. 2003. The structural basis of receptor-binding by Escherichia coli associated with diarrhea and septicemia. J Mol Biol 331:897–905. [CrossRef]
219. Geibel S, Waksman G. 2014. The molecular dissection of the chaperone-usher pathway. Biochim Biophys Acta 1843:1559–1567. [PubMed][CrossRef]
220. Lycklama A Nijeholt JA, Driessen AJ. 2012. The bacterial Sec-translocase: structure and mechanism. Philos Trans R Soc Lond B Biol Sci 367:1016–1028. [PubMed][CrossRef]
221. Mooi FR, Wijfjes A, de Graaf FK. 1983. Identification and characterization of precursors in the biosynthesis of the K88ab fimbria of Escherichia coli. J Bacteriol 154:41–49. [PubMed]
222. Sauer FG, Fütterer K, Pinkner JS, Dodson KW, Hultgren SJ, Waksman G. 1999. Structural basis of chaperone function and pilus biogenesis. Science 285:1058–1061. [PubMed][CrossRef]
223. Jacob-Dubuisson F, Striker R, Hultgren SJ. 1994. Chaperone-assisted self-assembly of pili independent of cellular energy. J Biol Chem 269:12447–12455. [PubMed]
224. Palomino C, Marín E, Fernández LA. 2011. The fimbrial usher FimD follows the SurA-BamB pathway for its assembly in the outer membrane of Escherichia coli. J Bacteriol 193:5222–5230. [PubMed][CrossRef]
225. Hagan CL, Silhavy TJ, Kahne D. 2011. β-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 80:189–210. [PubMed][CrossRef]
226. Barnhart MM, Sauer FG, Pinkner JS, Hultgren SJ. 2003. Chaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly. J Bacteriol 185:2723–2730. [PubMed][CrossRef]
227. Van Molle I, Moonens K, Garcia-Pino A, Buts L, De Kerpel M, Wyns L, Bouckaert J, De Greve H. 2009. Structural and thermodynamic characterization of pre- and postpolymerization states in the F4 fimbrial subunit FaeG. J Mol Biol 394:957–967. [PubMed][CrossRef]
228. Thanassi DG, Saulino ET, Lombardo MJ, Roth R, Heuser J, Hultgren SJ. 1998. The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc Natl Acad Sci USA 95:3146–3151. [PubMed][CrossRef]
229. Huang Y, Smith BS, Chen LX, Baxter RH, Deisenhofer J. 2009. Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. Proc Natl Acad Sci USA 106:7403–7407. [PubMed][CrossRef]
230. Saulino ET, Bullitt E, Hultgren SJ. 2000. Snapshots of usher-mediated protein secretion and ordered pilus assembly. Proc Natl Acad Sci USA 97:9240–9245. [PubMed][CrossRef]
231. Lowe MA, Holt SC, Eisenstein BI. 1987. Immunoelectron microscopic analysis of elongation of type 1 fimbriae in Escherichia coli. J Bacteriol 169:157–163. [PubMed]
232. Verdonck F, Cox E, Schepers E, Imberechts H, Joensuu J, Goddeeris BM. 2004. Conserved regions in the sequence of the F4 (K88) fimbrial adhesin FaeG suggest a donor strand mechanism in F4 assembly. Vet Microbiol 102:215–225. [PubMed][CrossRef]
233. Bakker D. 1991. Studies on the K88 fimbriae of enteropathogenic Escherichia coli. Vrije Universiteit, Amsterdam, The Netherlands.
234. Bakker D, Vader CE, Roosendaal B, Mooi FR, Oudega B, de Graaf FK. 1991. Structure and function of periplasmic chaperone-like proteins involved in the biosynthesis of K88 and K99 fimbriae in enterotoxigenic Escherichia coli. Mol Microbiol 5:875–886. [PubMed][CrossRef]
235. Mol O, Visschers RW, de Graff FK, Oudega B. 1994. Escherichia coli periplasmic chaperone FaeE is a homodimer and the chaperone-K88 subunit complex is a heterotrimer. Mol Microbiol 11:391–402. [PubMed][CrossRef]
236. Mol O, Oudhuis WC, Fokkema H, Oudega B. 1996. The N-terminal beta-barrel domain of the Escherichia coli K88 periplasmic chaperone FaeE determines fimbrial subunit recognition and dimerization. Mol Microbiol 22:379–388. [PubMed][CrossRef]
237. Mol O, Oud RP, de Graaf FK, Oudega B. 1995. The Escherichia coli K88 periplasmic chaperone FaeE forms a heterotrimeric complex with the minor fimbrial component FaeH and with the minor fimbrial component FaeI. Microb Pathog 18:115–128. [PubMed][CrossRef]
238. Van Molle I, Moonens K, Buts L, Garcia-Pino A, Panjikar S, Wyns L, De Greve H, Bouckaert J. 2009. The F4 fimbrial chaperone FaeE is stable as a monomer that does not require self-capping of its pilin-interactive surfaces. Acta Crystallogr D Biol Crystallogr 65:411–420. [PubMed][CrossRef]
239. Mooi FR, Claassen I, Bakker D, Kuipers H, de Graaf FK. 1986. Regulation and structure of an Escherichia coli gene coding for an outer membrane protein involved in export of K88ab fimbrial subunits. Nucleic Acids Res 14:2443–2457. [PubMed][CrossRef]
240. Valent QA, Zaal J, de Graaf FK, Oudega B. 1995. Subcellular localization and topology of the K88 usher FaeD in Escherichia coli. Mol Microbiol 16:1243–1257. [PubMed][CrossRef]
241. Harms N, Oudhuis WC, Eppens EA, Valent QA, Koster M, Luirink J, Oudega B. 1999. Epitope tagging analysis of the outer membrane folding of the molecular usher FaeD involved in K88 fimbriae biosynthesis in Escherichia coli. J Mol Microbiol Biotechnol 1:319–325. [PubMed]
242. Mooi FR, Wouters C, Wijfjes A, de Graaf FK. 1982. Construction and characterization of mutants impaired in the biosynthesis of the K88ab antigen. J Bacteriol 150:512–521. [PubMed]
243. van Doorn J, Oudega B, Mooi FR, de Graaf FK. 1982. Subcellular localization of polypeptides involved in the biosynthesis of K88ab fimbriae. FEMS Microbiol Lett 13:99–104. [CrossRef]
244. Dougan G, Dowd G, Kehoe M. 1983. Organization of K88ac-encoded polypeptides in the Escherichia coli cell envelope: use of minicells and outer membrane protein mutants for studying assembly of pili. J Bacteriol 153:364–370. [PubMed]
245. Mol O, Oudhuis WC, Oud RP, Sijbrandi R, Luirink J, Harms N, Oudega B. 2001. Biosynthesis of K88 fimbriae in Escherichia coli: interaction of tip-subunit FaeC with the periplasmic chaperone FaeE and the outer membrane usher FaeD. J Mol Microbiol Biotechnol 3:135–142. [PubMed]
246. Oudega B, de Graaf M, de Boer L, Bakker D, Vader CE, Mooi FR, de Graaf FK. 1989. Detection and identification of FaeC as a minor component of K88 fibrillae of Escherichia coli. Mol Microbiol 3:645–652. [PubMed][CrossRef]
247. Mooi FR, van Buuren M, Koopman G, Roosendaal B, de Graaf FK. 1984. K88ab gene of Escherichia coli encodes a fimbria-like protein distinct from the K88ab fimbrial adhesin. J Bacteriol 159:482–487. [PubMed]
248. Mol O, Oudega B. 1996. Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiol Rev 19:25–52. [PubMed][CrossRef]
249. Korth MJ, Apostol JM Jr, Moseley SL. 1992. Functional expression of heterologous fimbrial subunits mediated by the F41, K88, and CS31A determinants of Escherichia coli. Infect Immun 60:2500–2505. [PubMed]
250. Mol O, Fokkema H, Oudega B. 1996. The Escherichia coli K99 periplasmic chaperone FanE is a monomeric protein. FEMS Microbiol Lett 138:185–189. [PubMed][CrossRef]
251. de Graaf FK, Krenn BE, Klaasen P. 1984. Organization and expression of genes involved in the biosynthesis of K99 fimbriae. Infect Immun 43:508–514. [PubMed]
252. Simons BL, Willemsen PT, Bakker D, Roosendaal B, De Graaf FK, Oudega B. 1990. Structure, localization and function of FanF, a minor component of K99 fibrillae of enterotoxigenic Escherichia coli. Mol Microbiol 4:2041–2050. [PubMed][CrossRef]
253. Roosendaal E, Jacobs AA, Rathman P, Sondermeyer C, Stegehuis F, Oudega B, de Graaf FK. 1987. Primary structure and subcellular localization of two fimbrial subunit-like proteins involved in the biosynthesis of K99 fibrillae. Mol Microbiol 1:211–217. [PubMed][CrossRef]
254. Simons LH, Willemsen PT, Bakker D, de Graaf FK, Oudega B. 1991. Localization and function of FanH and FanG, minor components of K99 fimbriae of enterotoxigenic Escherichia coli. Microb Pathog 11:325–336. [PubMed][CrossRef]
255. Schifferli DM, Beachey EH, Taylor RK. 1991. Genetic analysis of 987P adhesion and fimbriation of Escherichia coli: the fas genes link both phenotypes. J Bacteriol 173:1230–1240. [PubMed]
256. Schifferli DM, Alrutz MA. 1994. Permissive linker insertion sites in the outer membrane protein of 987P fimbriae of Escherichia coli. J Bacteriol 176:1099–1110. [PubMed]
257. Edwards RA, Cao J, Schifferli DM. 1996. Identification of major and minor chaperone proteins involved in the export of 987P fimbriae. J Bacteriol 178:3426–3433. [PubMed]
258. Imberechts H, Van Pelt N, De Greve H, Lintermans P. 1994. Sequences related to the major subunit gene fedA of F107 fimbriae in porcine Escherichia coli strains that express adhesive fimbriae. FEMS Microbiol Lett 119:309–314. [PubMed][CrossRef]
259. Kennan RM, Moncktor RP, McDougall BM, Conway PL. 1995. Confirmation that DNA encoding the major fimbrial subunit of Av24 fimbriae is homologous to DNA encoding the major fimbrial subunit of F107 fimbriae. Microb Pathog 18:67–72. [PubMed][CrossRef]
260. Bosworth BT, Dean-Nystrom EA, Casey TA, Neibergs HL. 1998. Differentiation of F18ab+ from F18ac+ Escherichia coli by single-strand conformational polymorphism analysis of the major fimbrial subunit gene (fedA). Clin Diagn Lab Immunol 5:299–302. [PubMed]
261. Byun JW, Jung BY, Kim HY, Fairbrother JM, Lee MH, Lee WK. 2013. Real-time PCR for differentiation of F18 variants among enterotoxigenic and Shiga toxin-producing Escherichia coli from piglets with diarrhoea and oedema disease. Vet J 198:538–540. [PubMed][CrossRef]
262. Lee JH, Isaacson RE. 1995. Expression of the gene cluster associated with the Escherichia coli pilus adhesin K99. Infect Immun 63:4143–4149. [PubMed]
263. Yang Y, Yao F, Zhou M, Zhu J, Zhang X, Bao W, Wu S, Hardwidge PR, Zhu G. 2013. F18ab Escherichia coli flagella expression is regulated by acyl-homoserine lactone and contributes to bacterial virulence. Vet Microbiol 165:378–383. [PubMed][CrossRef]
264. Sturbelle RT, de Avila LF, Roos TB, Borchardt JL, da Conceição RC, Dellagostin OA, Leite FP. 2015. The role of quorum sensing in Escherichia coli (ETEC) virulence factors. Vet Microbiol 180:245–252. [PubMed][CrossRef]
265. Bak G, Lee J, Suk S, Kim D, Young Lee J, Kim KS, Choi BS, Lee Y. 2015. Identification of novel sRNAs involved in biofilm formation, motility, and fimbriae formation in Escherichia coli. Sci Rep 5:15287. [PubMed][CrossRef]
266. Khandige S, Kronborg T, Uhlin BE, Møller-Jensen J. 2015. sRNA-mediated regulation of P-fimbriae phase variation in uropathogenic Escherichia coli. PLoS Pathog 11:e1005109. doi:10.1371/journal.ppat.1005109. [PubMed][CrossRef]
267. Huisman TT, Bakker D, Klaasen P, de Graaf FK. 1994. Leucine-responsive regulatory protein, IS1 insertions, and the negative regulator FaeA control the expression of the fae (K88) operon in Escherichia coli. Mol Microbiol 11:525–536. [PubMed][CrossRef]
268. van der Woude MW, Braaten BA, Low DA. 1992. Evidence for global regulatory control of pilus expression in Escherichia coli by Lrp and DNA methylation: model building based on analysis of pap. Mol Microbiol 6:2429–2435. [PubMed][CrossRef]
269. Huisman TT, de Graaf FK. 1995. Negative control of fae (K88) expression by the ‘global’ regulator Lrp is modulated by the ‘local’ regulator FaeA and affected by DNA methylation. Mol Microbiol 16:943–953. [PubMed][CrossRef]
270. van der Woude MW, Braster M, van Verseveld HW, de Graaf FK. 1990. Control of temperature-dependent synthesis of K99 fimbriae. FEMS Microbiol Lett 56:183–188. [PubMed][CrossRef]
271. de Graaf FK, Roorda I. 1982. Production, purification, and characterization of the fimbrial adhesive antigen F41 isolated from calf enteropathogenic Escherichia coli strain B41M. Infect Immun 36:751–758. [PubMed]
272. Isaacson RE. 1980. Factors affecting expression of the Escherichia coli pilus K99. Infect Immun 28:190–194. [PubMed]
273. White-Ziegler CA, Villapakkam A, Ronaszeki K, Young S. 2000. H-NS controls pap and daa fimbrial transcription in Escherichia coli in response to multiple environmental cues. J Bacteriol 182:6391–6400. [PubMed][CrossRef]
274. Francis DH, Ryan CJ, Fritzemeier JD. 1983. Effect of sodium acetate on expression of K99 pili by Escherichia coli. Infect Immun 41:1368–1369. [PubMed]
275. Isaacson RE. 1983. Regulation of expression of Escherichia coli pilus K99. Infect Immun 40:633–639. [PubMed]
276. Girardeau JP, Dubourguier HC, Gouet P. 1982. Effect of glucose and amino acids on expression of K99 antigen in Escherichia coli. J Gen Microbiol 128:2243–2249. [PubMed][CrossRef]
277. Roosendaal E, Boots M, de Graaf FK. 1987. Two novel genes, fanA and fanB, involved in the biogenesis of K99 fimbriae. Nucleic Acids Res 15:5973–5984. [PubMed][CrossRef]
278. Roosendaal B, Damoiseaux J, Jordi W, de Graaf FK. 1989. Transcriptional organization of the DNA region controlling expression of the K99 gene cluster. Mol Gen Genet 215:250–256. [PubMed][CrossRef]
279. Braaten BA, Platko JV, van der Woude MW, Simons BH, de Graaf FK, Calvo JM, Low DA. 1992. Leucine-responsive regulatory protein controls the expression of both the pap and fan pili operons in Escherichia coli. Proc Natl Acad Sci USA 89:4250–4254. [PubMed][CrossRef]
280. de Graaf FK, Klaasen-Boor P, van Hees JE. 1980. Biosynthesis of the K99 surface antigen is repressed by alanine. Infect Immun 30:125–128. [PubMed]
281. Inoue OJ, Lee JH, Isaacson RE. 1993. Transcriptional organization of the Escherichia coli pilus adhesin K99. Mol Microbiol 10:607–613. [PubMed][CrossRef]
282. van der Woude MW, de Graaf FK, van Verseveld HW. 1989. Production of the fimbrial adhesin 987P by enterotoxigenic Escherichia coli during growth under controlled conditions in a chemostat. J Gen Microbiol 135:3421–3429. [CrossRef]
283. Honarvar S, Choi BK, Schifferli DM. 2003. Phase variation of the 987P-like CS18 fimbriae of human enterotoxigenic Escherichia coli is regulated by site-specific recombinases. Mol Microbiol 48:157–171. [PubMed][CrossRef]
284. Edwards RA, Keller LH, Schifferli DM. 1998. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207:149–157. [PubMed][CrossRef]
285. Abraham JM, Freitag CS, Clements JR, Eisenstein BI. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci USA 82:5724–5727. [PubMed][CrossRef]
286. van der Woude M, Braaten B, Low D. 1996. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol 4:5–9. [PubMed][CrossRef]
287. Klaasen P, de Graaf FK. 1990. Characterization of FapR, a positive regulator of expression of the 987P operon in enterotoxigenic Escherichia coli. Mol Microbiol 4:1779–1783. [PubMed][CrossRef]
288. Munson GP, Holcomb LG, Scott JR. 2001. Novel group of virulence activators within the AraC family that are not restricted to upstream binding sites. Infect Immun 69:186–193. [PubMed][CrossRef]
289. Nagy B, Whipp SC, Imberechts H, Bertschinger HU, Dean-Nystrom EA, Casey TA, Salajka E. 1997. Biological relationship between F18ab and F18ac fimbriae of enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs with oedema disease or diarrhoea. Microb Pathog 22:1–11. [PubMed][CrossRef]
290. Cantey JR, Blake RK, Williford JR, Moseley SL. 1999. Characterization of the Escherichia coli AF/R1 pilus operon: novel genes necessary for transcriptional regulation and for pilus-mediated adherence. Infect Immun 67:2292–2298. [PubMed]
291. Shepard SM, Danzeisen JL, Isaacson RE, Seemann T, Achtman M, Johnson TJ. 2012. Genome sequences and phylogenetic analysis of K88- and F18-positive porcine enterotoxigenic Escherichia coli. J Bacteriol 194:395–405. [PubMed][CrossRef]
292. Zhang W, Berberov EM, Freeling J, He D, Moxley RA, Francis DH. 2006. Significance of heat-stable and heat-labile enterotoxins in porcine colibacillosis in an additive model for pathogenicity studies. Infect Immun 74:3107–3114. [PubMed][CrossRef]
293. Savarino SJ, Fasano A, Robertson DC, Levine MM. 1991. Enteroaggregative Escherichia coli elaborate a heat-stable enterotoxin demonstrable in an in vitro rabbit intestinal model. J Clin Invest 87:1450–1455. [PubMed][CrossRef]
294. Ménard LP, Dubreuil JD. 2002. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1): a new toxin with an old twist. Crit Rev Microbiol 28:43–60. [PubMed][CrossRef]
295. Dubreuil JD. 2015. Escherichia coli heat-stable enterotoxins, p 874–910. In Alouf J, Ladant D, Popoff MR (ed), The Comprehensive Sourcebook of Bacterial Protein Toxins, 4th ed. Elsevier, Amsterdam, The Netherlands
296. De SN, Bhattacharya K, Sarkar JK. 1956. A study of the pathogenicity of strains of Bacterium coli from acute and chronic enteritis. J Pathol Bacteriol 71:201–209.
297. Ochi S, Shimizu T, Ohtani K, Ichinose Y, Arimitsu H, Tsukamoto K, Kato M, Tsuji T. 2009. Nucleotide sequence analysis of the enterotoxigenic Escherichia coli Ent plasmid. DNA Res 16:299–309. [PubMed][CrossRef]
298. Scotland SM, Day NP, Rowe B. 1983. Acquisition and maintenance of enterotoxin plasmids in wild-type strains of Escherichia coli. J Gen Microbiol 129:3111–3120. [PubMed][CrossRef]
299. Zhang C, Rausch D, Zhang W. 2009. Little heterogeneity among genes encoding heat-labile and heat-stable toxins of enterotoxigenic Escherichia coli strains isolated from diarrheal pigs. Appl Environ Microbiol 75:6402–6405. [PubMed][CrossRef]
300. Guth BE, Twiddy EM, Trabulsi LR, Holmes RK. 1986. Variation in chemical properties and antigenic determinants among type II heat-labile enterotoxins of Escherichia coli. Infect Immun 54:529–536. [PubMed]
301. Nawar HF, Berenson CS, Hajishengallis G, Takematsu H, Mandell L, Clare RL, Connell TD. 2010. Binding to gangliosides containing N-acetylneuraminic acid is sufficient to mediate the immunomodulatory properties of the nontoxic mucosal adjuvant LT-IIb(T13I). Clin Vaccine Immunol 17:969–978. [PubMed][CrossRef]
302. Casey TA, Connell TD, Holmes RK, Whipp SC. 2012. Evaluation of heat-labile enterotoxins type IIa and type IIb in the pathogenicity of enterotoxigenic Escherichia coli for neonatal pigs. Vet Microbiol 159:83–89. [PubMed][CrossRef]
303. Connell TD. 2007. Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Rev Vaccines 6:821–834. [PubMed][CrossRef]
304. Mekalanos JJ, Sublett RD, Romig WR. 1979. Genetic mapping of toxin regulatory mutations in Vibrio cholerae. J Bacteriol 139:859–865. [PubMed]
305. Pickett CL, Twiddy EM, Belisle BW, Holmes RK. 1986. Cloning of genes that encode a new heat-labile enterotoxin of Escherichia coli. J Bacteriol 165:348–352. [PubMed]
306. Connell TD, Holmes RK. 1992. Characterization of hybrid toxins produced in Escherichia coli by assembly of A and B polypeptides from type I and type II heat-labile enterotoxins. Infect Immun 60:1653–1661. [PubMed]
307. Dorsey FC, Fischer JF, Fleckenstein JM. 2006. Directed delivery of heat-labile enterotoxin by enterotoxigenic Escherichia coli. Cell Microbiol 8:1516–1527. [PubMed][CrossRef]
308. Johnson AM, Kaushik RS, Francis DH, Fleckenstein JM, Hardwidge PR. 2009. Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells. J Bacteriol 191:178–186. [PubMed][CrossRef]
309. Wijemanne P, Moxley RA. 2014. Glucose significantly enhances enterotoxigenic Escherichia coli adherence to intestinal epithelial cells through its effects on heat-labile enterotoxin production. PLoS One 9:e113230. doi:10.1371/journal.pone.0113230. [CrossRef]
310. Lasaro MA, Rodrigues JF, Mathias-Santos C, Guth BE, Régua-Mangia A, Piantino Ferreira AJ, Takagi M, Cabrera-Crespo J, Sbrogio-Almeida ME, de Souza Ferreira LC. 2006. Production and release of heat-labile toxin by wild-type human-derived enterotoxigenic Escherichia coli. FEMS Immunol Med Microbiol 48:123–131. [PubMed][CrossRef]
311. Rodighiero C, Aman AT, Kenny MJ, Moss J, Lencer WI, Hirst TR. 1999. Structural basis for the differential toxicity of cholera toxin and Escherichia coli heat-labile enterotoxin. Construction of hybrid toxins identifies the A2-domain as the determinant of differential toxicity. J Biol Chem 274:3962–3969. [PubMed][CrossRef]
312. Goins B, Freire E. 1988. Thermal stability and intersubunit interactions of cholera toxin in solution and in association with its cell-surface receptor ganglioside GM1. Biochemistry 27:2046–2052. [PubMed][CrossRef]
313. Surewicz WK, Leddy JJ, Mantsch HH. 1990. Structure, stability, and receptor interaction of cholera toxin as studied by Fourier-transform infrared spectroscopy. Biochemistry 29:8106–8111. [PubMed][CrossRef]
314. Hegde A, Bhat GK, Mallya S. 2009. Effect of stress on production of heat labile enterotoxin by Escherichia coli. Indian J Med Microbiol 27:325–328. [PubMed][CrossRef]
315. Mekalanos JJ, Collier RJ, Romig WR. 1979. Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 254:5855–5861. [PubMed]
316. Gonzales L, Ali ZB, Nygren E, Wang Z, Karlsson S, Zhu B, Quiding-Järbrink M, Sjöling Å. 2013. Alkaline pH Is a signal for optimal production and secretion of the heat labile toxin, LT in enterotoxigenic Escherichia coli (ETEC). PLoS One 8:e74069. doi:10.1371/journal.pone.0074069. [CrossRef]
317. Pande AH, Scaglione P, Taylor M, Nemec KN, Tuthill S, Moe D, Holmes RK, Tatulian SA, Teter K. 2007. Conformational instability of the cholera toxin A1 polypeptide. J Mol Biol 374:1114–1128. [PubMed][CrossRef]
318. Merritt EA, Pronk SE, Sixma TK, Kalk KH, van Zanten BA, Hol WG. 1994. Structure of partially-activated E. coli heat-labile enterotoxin (LT) at 2.6 A resolution. FEBS Lett 337:88–92. [PubMed][CrossRef]
319. Sixma TK, Stein PE, Hol WG, Read RJ. 1993. Comparison of the B-pentamers of heat-labile enterotoxin and verotoxin-1: two structures with remarkable similarity and dissimilarity. Biochemistry 32:191–198. [PubMed][CrossRef]
320. Clements JD, Finkelstein RA. 1979. Isolation and characterization of homogeneous heat-labile enterotoxins with high specific activity from Escherichia coli cultures. Infect Immun 24:760–769. [PubMed]
321. Heggelund JE, Haugen E, Lygren B, Mackenzie A, Holmner Å, Vasile F, Reina JJ, Bernardi A, Krengel U. 2012. Both El Tor and classical cholera toxin bind blood group determinants. Biochem Biophys Res Commun 418:731–735. [PubMed][CrossRef]
322. Mandal PK, Branson TR, Hayes ED, Ross JF, Gavín JA, Daranas AH, Turnbull WB. 2012. Towards a structural basis for the relationship between blood group and the severity of El Tor cholera. Angew Chem Int Ed Engl 51:5143–5146. [PubMed][CrossRef]
323. Vasile F, Reina JJ, Potenza D, Heggelund JE, Mackenzie A, Krengel U, Bernardi A. 2014. Comprehensive analysis of blood group antigen binding to classical and El Tor cholera toxin B-pentamers by NMR. Glycobiology 24:766–778. [PubMed][CrossRef]
324. Guidry JJ, Cárdenas L, Cheng E, Clements JD. 1997. Role of receptor binding in toxicity, immunogenicity, and adjuvanticity of Escherichia coli heat-labile enterotoxin. Infect Immun 65:4943–4950. [PubMed]
325. Sonnino S, Mauri L, Chigorno V, Prinetti A. 2007. Gangliosides as components of lipid membrane domains. Glycobiology 17:1R–13R. [PubMed][CrossRef]
326. Ahmed T, Lundgren A, Arifuzzaman M, Qadri F, Teneberg S, Svennerholm AM. 2009. Children with the Le(a+b-) blood group have increased susceptibility to diarrhea caused by enterotoxigenic Escherichia coli expressing colonization factor I group fimbriae. Infect Immun 77:2059–2064. [PubMed][CrossRef]
327. Horstman AL, Kuehn MJ. 2002. Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem 277:32538–32545. [PubMed][CrossRef]
328. Horstman AL, Kuehn MJ. 2000. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 275:12489–12496. [PubMed][CrossRef]
329. Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700. [PubMed][CrossRef]
330. Kesty NC, Kuehn MJ. 2004. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J Biol Chem 279:2069–2076. [PubMed][CrossRef]
331. Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ. 2004. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 23:4538–4549. [PubMed][CrossRef]
332. Horstman AL, Bauman SJ, Kuehn MJ. 2004. Lipopolysaccharide 3-deoxy-D-manno-octulosonic acid (Kdo) core determines bacterial association of secreted toxins. J Biol Chem 279:8070–8075. [PubMed][CrossRef]
333. Bonnington KE, Kuehn MJ. 2014. Protein selection and export via outer membrane vesicles. Biochim Biophys Acta 1843:1612–1619. [PubMed][CrossRef]
334. Kuehn MJ, Kesty NC. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645–2655. [PubMed][CrossRef]
335. Chatterjee D, Chaudhuri K. 2011. Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells. FEBS Lett 585:1357–1362. [PubMed][CrossRef]
336. Schlör S, Riedl S, Blass J, Reidl J. 2000. Genetic rearrangements of the regions adjacent to genes encoding heat-labile enterotoxins (eltAB) of enterotoxigenic Escherichia coli strains. Appl Environ Microbiol 66:352–358. [PubMed][CrossRef]
337. Yamamoto T, Gojobori T, Yokota T. 1987. Evolutionary origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae O1. J Bacteriol 169:1352–1357. [PubMed]
338. Yang J, Tauschek M, Strugnell R, Robins-Browne RM. 2005. The H-NS protein represses transcription of the eltAB operon, which encodes heat-labile enterotoxin in enterotoxigenic Escherichia coli, by binding to regions downstream of the promoter. Microbiology 151:1199–1208. [PubMed][CrossRef]
339. Takashi K, Fujita I, Kobari K. 1989. Effects of short chain fatty acids on the production of heat-labile enterotoxin from enterotoxigenic Escherichia coli. Jpn J Pharmacol 50:495–498. [PubMed][CrossRef]
340. Wülfing C, Rappuoli R. 1997. Efficient production of heat-labile enterotoxin mutant proteins by overexpression of dsbA in a degP-deficient Escherichia coli strain. Arch Microbiol 167:280–283. [PubMed][CrossRef]
341. Streatfield SJ, Sandkvist M, Sixma TK, Bagdasarian M, Hol WG, Hirst TR. 1992. Intermolecular interactions between the A and B subunits of heat-labile enterotoxin from Escherichia coli promote holotoxin assembly and stability in vivo. Proc Natl Acad Sci USA 89:12140–12144. [PubMed][CrossRef]
342. Chung WY, Carter R, Hardy T, Sack M, Hirst TR, James RF. 2006. Inhibition of Escherichia coli heat-labile enterotoxin B subunit pentamer (EtxB5) assembly in vitro using monoclonal antibodies. J Biol Chem 281:39465–39470. [PubMed][CrossRef]
343. Grant CC, Messer RJ, Cieplak W Jr. 1994. Role of trypsin-like cleavage at arginine 192 in the enzymatic and cytotonic activities of Escherichia coli heat-labile enterotoxin. Infect Immun 62:4270–4278. [PubMed]
344. Tauschek M, Gorrell RJ, Strugnell RA, Robins-Browne RM. 2002. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci USA 99:7066–7071. [PubMed][CrossRef]
345. Johnson TL, Abendroth J, Hol WG, Sandkvist M. 2006. Type II secretion: from structure to function. FEMS Microbiol Lett 255:175–186. [PubMed][CrossRef]
346. Yang J, Baldi DL, Tauschek M, Strugnell RA, Robins-Browne RM. 2007. Transcriptional regulation of the yghJ-pppA-yghG-gspCDEFGHIJKLM cluster, encoding the type II secretion pathway in enterotoxigenic Escherichia coli. J Bacteriol 189:142–150. [PubMed][CrossRef]
347. Hirst TR, Sanchez J, Kaper JB, Hardy SJ, Holmgren J. 1984. Mechanism of toxin secretion by Vibrio cholerae investigated in strains harboring plasmids that encode heat-labile enterotoxins of Escherichia coli. Proc Natl Acad Sci USA 81:7752–7756. [PubMed][CrossRef]
348. Brown EA, Hardwidge PR. 2007. Biochemical characterization of the enterotoxigenic Escherichia coli LeoA protein. Microbiology 153:3776–3784. [PubMed][CrossRef]
349. Fleckenstein JM, Lindler LE, Elsinghorst EA, Dale JB. 2000. Identification of a gene within a pathogenicity island of enterotoxigenic Escherichia coli H10407 required for maximal secretion of the heat-labile enterotoxin. Infect Immun 68:2766–2774. [PubMed][CrossRef]
350. Michie KA, Boysen A, Low HH, Møller-Jensen J, Löwe J. 2014. LeoA, B and C from enterotoxigenic Escherichia coli (ETEC) are bacterial dynamins. PLoS One 9:e107211. doi:10.1371/journal.pone.0107211. [PubMed][CrossRef]
351. Spangler BD. 1992. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647. [PubMed]
352. Iglesias-Bartolomé R, Trenchi A, Comín R, Moyano AL, Nores GA, Daniotti JL. 2009. Differential endocytic trafficking of neuropathy-associated antibodies to GM1 ganglioside and cholera toxin in epithelial and neural cells. Biochim Biophys Acta 1788:2526–2540. [PubMed][CrossRef]
353. Wernick NL, Chinnapen DJ, Cho JA, Lencer WI. 2010. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins (Basel) 2:310–325. [PubMed][CrossRef]
354. Majoul I, Ferrari D, Söling HD. 1997. Reduction of protein disulfide bonds in an oxidizing environment. The disulfide bridge of cholera toxin A-subunit is reduced in the endoplasmic reticulum. FEBS Lett 401:104–108. [CrossRef]
355. O’Neal CJ, Jobling MG, Holmes RK, Hol WG. 2005. Structural basis for the activation of cholera toxin by human ARF6-GTP. Science 309:1093–1096. [PubMed][CrossRef]
356. Hug MJ, Tamada T, Bridges RJ. 2003. CFTR and bicarbonate secretion by [correction of to] epithelial cells. News Physiol Sci 18:38–42. [PubMed]
357. Kunzelmann K, Hübner M, Schreiber R, Levy-Holzman R, Garty H, Bleich M, Warth R, Slavik M, von Hahn T, Greger R. 2001. Cloning and function of the rat colonic epithelial K+ channel KVLQT1. J Membr Biol 179:155–164. [PubMed][CrossRef]
358. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201. [PubMed]
359. Mourad FH, O’Donnell LJ, Dias JA, Ogutu E, Andre EA, Turvill JL, Farthing MJ. 1995. Role of 5-hydroxytryptamine type 3 receptors in rat intestinal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins. Gut 37:340–345. [PubMed][CrossRef]
360. De Haan L, Hirst TR. 2004. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol 21:77–92. [PubMed][CrossRef]
361. Berkes J, Viswanathan VK, Savkovic SD, Hecht G. 2003. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 52:439–451. [PubMed][CrossRef]
362. Kreisberg RB, Harper J, Strauman MC, Marohn M, Clements JD, Nataro JP. 2011. Induction of increased permeability of polarized enterocyte monolayers by enterotoxigenic Escherichia coli heat-labile enterotoxin. Am J Trop Med Hyg 84:451–455. [PubMed][CrossRef]
363. Burgess MN, Bywater RJ, Cowley CM, Mullan NA, Newsome PM. 1978. Biological evaluation of a methanol-soluble, heat-stable Escherichia coli enterotoxin in infant mice, pigs, rabbits, and calves. Infect Immun 21:526–531. [PubMed]
364. Smith HW, Gyles CL. 1970. The effect of cell-free fluids prepared from cultures of human and animal enteropathogenic strains of Escherichia coli on ligated intestinal segments of rabbits and pigs. J Med Microbiol 3:403–409. [PubMed][CrossRef]
365. Nair GB, Takeda Y. 1998. The heat-stable enterotoxins. Microb Pathog 24:123–131. [PubMed][CrossRef]
366. Staples SJ, Asher SE, Giannella RA. 1980. Purification and characterization of heat-stable enterotoxin produced by a strain of E. coli pathogenic for man. J Biol Chem 255:4716–4721. [PubMed]
367. Weiglmeier PR, Rösch P, Berkner H. 2010. Cure and curse: E. coli heat-stable enterotoxin and its receptor guanylyl cyclase C. Toxins (Basel) 2:2213–2229. [PubMed][CrossRef]
368. Lima AA, Fonteles MC. 2014. From Escherichia coli heat-stable enterotoxin to mammalian endogenous guanylin hormones. Braz J Med Biol Res 47:179–191. [PubMed][CrossRef]
369. Okamoto K, Okamoto K, Yukitake J, Kawamoto Y, Miyama A. 1987. Substitutions of cysteine residues of Escherichia coli heat-stable enterotoxin by oligonucleotide-directed mutagenesis. Infect Immun 55:2121–2125. [PubMed]
370. Takeda T, Takeda Y, Aimoto S, Takao T, Ikemura H, Shimonishi Y, Miwatani T. 1983. Neutralization of activity of two different heat-stable enterotoxins (STh and STp) of enterotoxigenic Escherichia coli by homologous and heterologous antisera. FEMS Microbiol Lett 20:357–359. [CrossRef]
371. Dreyfus LA, Frantz JC, Robertson DC. 1983. Chemical properties of heat-stable enterotoxins produced by enterotoxigenic Escherichia coli of different host origins. Infect Immun 42:539–548. [PubMed]
372. Harnett NM, Gyles CL. 1985. Enterotoxin plasmids in bovine and porcine enterotoxigenic Escherichia coli of O groups 9, 20, 64 and 101. Can J Comp Med 49:79–87. [PubMed]
373. So M, McCarthy BJ. 1980. Nucleotide sequence of the bacterial transposon Tn1681 encoding a heat-stable (ST) toxin and its identification in enterotoxigenic Escherichia coli strains. Proc Natl Acad Sci USA 77:4011–4015. [PubMed][CrossRef]
374. Sekizaki T, Akashi H, Terakado N. 1985. Nucleotide sequences of the genes for Escherichia coli heat-stable enterotoxin I of bovine, avian, and porcine origins. Am J Vet Res 46:909–912. [PubMed]
375. Alderete JF, Robertson DC. 1977. Repression of heat-stable enterotoxin synthesis in enterotoxigenic Escherichia coli. Infect Immun 17:629–633. [PubMed]
376. Stieglitz H, Cervantes L, Robledo R, Fonseca R, Covarrubias L, Bolivar F, Kupersztoch YM. 1988. Cloning, sequencing, and expression in Ficoll-generated minicells of an Escherichia coli heat-stable enterotoxin gene. Plasmid 20:42–53. [PubMed][CrossRef]
377. Okamoto K, Takahara M. 1990. Synthesis of Escherichia coli heat-stable enterotoxin STp as a pre-pro form and role of the pro sequence in secretion. J Bacteriol 172:5260–5265. [PubMed]
378. Rasheed JK, Guzmán-Verduzco LM, Kupersztoch YM. 1990. Two precursors of the heat-stable enterotoxin of Escherichia coli: evidence of extracellular processing. Mol Microbiol 4:265–273. [PubMed][CrossRef]
379. Yamanaka H, Fuke Y, Hitotsubashi S, Fujii Y, Okamoto K. 1993. Functional properties of pro region of Escherichia coli heat-stable enterotoxin. Microbiol Immunol 37:195–205. [PubMed][CrossRef]
380. Sommerfelt H, Haukanes BI, Kalland KH, Svennerholm AM, Sanchéz J, Bjorvatn B. 1989. Mechanism of spontaneous loss of heat-stable toxin (STa) production in enterotoxigenic Escherichia coli. APMIS 97:436–440. [PubMed][CrossRef]
381. Okamoto K, Baba T, Yamanaka H, Akashi N, Fujii Y. 1995. Disulfide bond formation and secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol 177:4579–4586. [PubMed]
382. Sanchez J, Solorzano RM, Holmgren J. 1993. Extracellular secretion of STa heat-stable enterotoxin by Escherichia coli after fusion to a heterologous leader peptide. FEBS Lett 330:265–269. [PubMed][CrossRef]
383. Yang Y, Gao Z, Guzmán-Verduzco LM, Tachias K, Kupersztoch YM. 1992. Secretion of the STA3 heat-stable enterotoxin of Escherichia coli: extracellular delivery of Pro-STA is accomplished by either Pro or STA. Mol Microbiol 6:3521–3529. [PubMed][CrossRef]
384. Yamanaka H, Kameyama M, Baba T, Fujii Y, Okamoto K. 1994. Maturation pathway of Escherichia coli heat-stable enterotoxin I: requirement of DsbA for disulfide bond formation. J Bacteriol 176:2906–2913. [PubMed]
385. Yamanaka H, Nomura T, Fujii Y, Okamoto K. 1998a. Need for TolC, an Escherichia coli outer membrane protein, in the secretion of heat-stable enterotoxin I across the outer membrane. Microb Pathog 25:111–120. [PubMed][CrossRef]
386. Yamanaka H, Nomura T, Fujii Y, Okamoto K. 1997. Extracellular secretion of Escherichia coli heat-stable enterotoxin I across the outer membrane. J Bacteriol 179:3383–3390. [PubMed]
387. Yamasaki S, Hidaka Y, Ito H, Takeda Y, Shimonishi Y. 1988. Structure requirements for the spatial structure and toxicity of heat-stable enterotoxin (STh) of enterotoxigenic Escherichia coli. Bull Chem Soc Jpn 61:1701–1706. [CrossRef]
388. Hidaka Y, Ohmori K, Wada A, Ozaki H, Ito H, Hirayama T, Takeda Y, Shimonishi Y. 1991. Synthesis and biological properties of carba-analogs of heat-stable enterotoxin (ST) produced by enterotoxigenic Escherichia coli. Biochem Biophys Res Commun 176:958–965. [PubMed][CrossRef]
389. Ozaki H, Sato T, Kubota H, Hata Y, Katsube Y, Shimonishi Y. 1991. Molecular structure of the toxin domain of heat-stable enterotoxin produced by a pathogenic strain of Escherichia coli. A putative binding site for a binding protein on rat intestinal epithelial cell membranes. J Biol Chem 266:5934–5941. [PubMed]
390. Gariépy J, Judd AK, Schoolnik GK. 1987. Importance of disulfide bridges in the structure and activity of Escherichia coli enterotoxin ST1b. Proc Natl Acad Sci USA 84:8907–8911. [PubMed][CrossRef]
391. Gariépy J, Lane A, Frayman F, Wilbur D, Robien W, Schoolnik GK, Jardetzky O. 1986. Structure of the toxic domain of the Escherichia coli heat-stable enterotoxin ST I. Biochemistry 25:7854–7866. [PubMed][CrossRef]
392. Carpick BW, Gariépy J. 1991. Structural characterization of functionally important regions of the Escherichia coli heat-stable enterotoxin STIb. Biochemistry 30:4803–4809. [PubMed][CrossRef]
393. Waldman SA, O’Hanley P. 1989. Influence of a glycine or proline substitution on the functional properties of a 14-amino-acid analog of Escherichia coli heat-stable enterotoxin. Infect Immun 57:2420–2424. [PubMed]
394. Yoshimura S, Ikemura H, Watanabe H, Aimoto S, Shimonishi Y, Hara S, Takeda T, Miwatani T, Takeda Y. 1985. Essential structure for full enterotoxigenic activity of heat-stable enterotoxin produced by enterotoxigenic Escherichia coli. FEBS Lett 181:138–142. [PubMed][CrossRef]
395. Arshad N, Visweswariah SS. 2012. The multiple and enigmatic roles of guanylyl cyclase C in intestinal homeostasis. FEBS Lett 586:2835–2840. [PubMed][CrossRef]
396. Hasegawa M, Shimonishi Y. 2005. Recognition and signal transduction mechanism of Escherichia coli heat-stable enterotoxin and its receptor, guanylate cyclase C. J Pept Res 65:261–271. [PubMed][CrossRef]
397. Steinbrecher KA. 2014. The multiple roles of guanylate cyclase C, a heat stable enterotoxin receptor. Curr Opin Gastroenterol 30:1–6. [PubMed][CrossRef]
398. Carpick BW, Gariépy J. 1993. The Escherichia coli heat-stable enterotoxin is a long-lived superagonist of guanylin. Infect Immun 61:4710–4715. [PubMed]
399. Forte LR, Eber SL, Turner JT, Freeman RH, Fok KF, Currie MG. 1993. Guanylin stimulation of Cl- secretion in human intestinal T84 cells via cyclic guanosine mo