1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 1:

Historical Perspectives

A Brief History of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Authors: Keith A. Lampel1, Samuel B. Formal†2, and Anthony T. Maurelli4
  • Editor: James Kaper5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708; 2: Walter Reed Army Institute of Research, Silver Spring, MD 20910; 3: † Deceased 18 November 2017; 4: Department of Environmental and Global Health and the Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610; 5: University of Maryland School of Medicine, Baltimore, MD
  • Received 05 September 2017 Accepted 21 November 2017 Published 09 January 2018
  • Address correspondence to Anthony T. Maurelli, amaurelli@phhp.ufl.edu
image of A Brief History of <span class="jp-italic">Shigella</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    A Brief History of , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/8/1/ESP-0006-2017-1.gif /docserver/preview/fulltext/ecosalplus/8/1/ESP-0006-2017-2.gif
  • Abstract:

    The history of , the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of pathogenesis in the first 100 years. Over the past century, has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and “black holes” and antivirulence genes. While there is still much to learn from studying pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.

  • Citation: Lampel K, Formal† S, Maurelli A. 2018. A Brief History of , EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2017

Key Concept Ranking

Type III Secretion System
0.40964672
0.40964672

References

1. Strockbine NA, Maurelli AT. 2005. Shigella, p 811–823. In Brenner DJ, Kreig NR, Staley JT (ed), Bergey’s Manual of Systematic Bacteriology, Volume 2: The Proteobacteria Part B: The Gammaproteobacteria, 2nd ed, vol 2. Springer, New York.
2. Zinsser H. 1935. Rats, Lice and History. Little, Brown & Co., Boston, MA.
3. Davison WC. 1922. A bacteriological and clinical consideration of bacillary dysentery in adults and children. Medicine 1:389–U384.
4. Mandell GL, Bennett JE, Dolin R. 2010. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 7th ed. Churchill Livingstone/Elsevier, Philadelphia, PA.
5. DuPont HL, Levine MM, Hornick RB, Formal SB. 1989. Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis 159:1126–1128. [PubMed]
6. Bensted HJ. 1956. Dysentery bacilli-Shigella; a brief historical review. Can J Microbiol 2:163–174. [PubMed]
7. Hardy SP, Kohler W. 2006. Investigating bacillary dysentery: the role of laboratory, technique and people. Int J Med Microbiol 296:171–178. [PubMed]
8. Shiga K. 1898. Ueber den Dysenterie-bacillus (Bacillus dysenteriae). Zentralbl Bakteriol [Orig] 24:913–918.
9. Chantemesse A, Widal F. 1888. Sur les microbes de la dysenteriae épidémique. Bull Acad Med Paris 19:522–529.
10. Vaillard L, Depter C. 1903. Contribution à l’étiologie de la dysenterie. La dysenterie épidémique. Ann Inst Pasteur (Paris) 17:463–491.
11. Shiga K. 1936. The trend of prevention, therapy and epidemiology of dysentery since the discovery of its causative organism. N Engl J Med 215:1205–1211.
12. Widal F. 1896. On the sero-diagnosis of typhoid fever. Lancet 2:1371–1372.
13. Shiga K. 1898. Ueber den Erreger der Dysenterie in Japan. Zentralbl Bakteriol Mikrobiol Hyg 23:599–600. Vorläufige Mitteilung
14. Strong RP, Musgrave WE. 1900. The bacillus of philippine dysentery. J Am Med Assoc 35:498–500.
15. Kruse W. 1900. Ueber die Ruhr als Volkskrankheit und ihren Erreger1. DMW-Deutsche Med Wochenschr 26:637–639.
16. Kruse W. 1901. Weitere Untersuchungen über die Ruhr. Dtsch Med Wochenschr 27:370–372.
17. Hiss PH. 1904. On fermentative and agglutinative characters of bacilli of the “dysentery group.” J Med Res 13:1–51. [PubMed]
18. Hiss PH, Russell FF. 1903. A study of a bacillus resembling the bacillus of shiga, from a case of fatal diarrhea in a child; with remarks on the recognition of dysentery, typhoid, and allied bacilli. Med News 82:289–295.
19. Sonne C. 1915. The bacteriology of atoxic dysentery bacilli (paradysentery bacilli). Zentralbl Bakteriol 75:408–456.
20. d’Herelle F. 1916. Sur un bacille dysentérique atypique. Ann Inst Pasteur (Paris) 30:145.
21. Thjøtta T. 1919. On the bacteriology of dysentery in Norway. J Bacteriol 4:355–378. [PubMed]
22. Boyd JS. 1938. The antigenic structure of the mannitol-fermenting group of dysentery bacilli. J Hyg (Lond) 38:477–499.
23. Boyd JS. 1931. Some investigations into the so-called non-agglutinable dysentery bacilli. J R Army Med Corps 57:161–186.
24. Friedmann HC. 2014. Escherich and Escherichia. EcoSal Plus 6. doi:10.1128/ecosalplus.ESP-0025-2013.
25. Conradi H. 1903. Uber Iosliche, durch asptische Autolyse erhaltene Giftstoffe vonRuhr- und Typhus-Bazillen. Dtsch Med Wochenschr 29:26–28.
26. Neisser M, Shiga K. 1903. Ueber freie Receptoren von Typhus- und Dysenteriebazillen und über das Dysenterietoxin. Deutsche Medicinische Wochenschrift 29.
27. Todd C. 1904. On a dysentery toxin and antitoxin. J Hyg (Lond) 4:480–494.
28. Todd C. 1903. On a dysentery antitoxin. BMJ 2:1456–1458. [PubMed]
29. Keusch GT. 1998. The rediscovery of Shiga toxin and its role in clinical disease. Jpn J Med Sci Biol 51(Suppl):S5–S22. [PubMed]
30. Bonnet E, Sicard J. 1920. De la dysenterie epidemique dans la Bible. Bull Acad Med 74:166–169.
31. Driver GR. 1950. The plague of the Philistines (1 Samuel v, 6-vi, 16). J R Asiat Soc 82:50–52.
32. Philbrook FR, Gordon JE. 1958. Army experience with diarrheal disorders before World War II, p 319–413. In Hays SB, Coates, Jr. JB, Hoff EC, Hoff PM (ed), Preventive Medicine in World War II, vol IV. Communicable Diseases Transmitted Chiefly Through Respiratory and Alimentary Tracts. U.S. Government Printing Office, Washington, DC.
33. Woodward JJ. 1879. The Medical and Surgical History of the War of the Rebellion (1861-65), vol I. U.S. Government Printing Office, Washington, DC.
34. Manson-Bahr PH. 1942. Dysentery and diarrhoea in wartime. BMJ 2:346–348. [PubMed]
35. Ledingham JC, Penfold WJ. 1915. Recent bacteriological experiences with typhoidal disease and dysentery. BMJ 2:704–711. [PubMed]
36. Anonymous. 1940. Bacillary dysentery in war. Br Med J 1:1023. PMCID: PMC2177886. [PubMed]
37. Baker KS, Mather AE, McGregor H, Coupland P, Langridge GC, Day M, Deheer-Graham A, Parkhill J, Russell JE, Thomson NR. 2014. The extant World War 1 dysentery bacillus NCTC1: a genomic analysis. Lancet 384:1691–1697.
38. Felsen J, Wolarsky W. 1947. Bacillary dysentery and ulcerative colitis; their occurrence among military and associated personnel, World War II. Gastroenterology 9:557–561. [PubMed]
39. Gear HS. 1944. Hygiene aspects of the El Alamein Victory. Brit Med J 1:383–387. [PubMed]
40. Hyams KC, Hanson K, Wignall FS, Escamilla J, Oldfield EC III. 1995. The impact of infectious diseases on the health of U.S. troops deployed to the Persian Gulf during operations Desert Shield and Desert Storm. Clin Infect Dis 20:1497–1504. [PubMed]
41. Thornton SA, Sherman SS, Farkas T, Zhong W, Torres P, Jiang X. 2005. Gastroenteritis in US Marines during Operation Iraqi Freedom. Clin Infect Dis 40:519–525. [PubMed]
42. Mata LJ, Gangarosa EJ, Cáceres A, Perera DR, Mejicanos ML. 1970. Epidemic Shiga bacillus dysentery in Central America. I. Etiologic investigations in Guatemala, 1969. J Infect Dis 122:170–180. [PubMed]
43. Gangarosa EJ, Perera DR, Mata LJ, Mendizábal-Morris C, Guzmán G, Reller LB. 1970. Epidemic Shiga bacillus dysentery in Central America. II. Epidemiologic studies in 1969. J Infect Dis 122:181–190. [PubMed]
44. Olarte J, Filloy L, Galindo E. 1976. Resistance of Shigella dysenteriae type 1 to ampicillin and other antimicrobial agents: strains isolated during a dysentery outbreak in a hospital in Mexico City. J Infect Dis 133:572–575. [PubMed]
45. Parsonnet J, Greene KD, Gerber AR, Tauxe RV, Vallejo Aguilar OJ, Blake PA. 1989. Shigella dysenteriae type 1 infections in US travellers to Mexico, 1988. Lancet 2:543–545.
46. Ries AA, Wells JG, OlivoIa D, Ntakibirora M, Nyandwi S, Ntibakivayo M, Ivey CB, Greene KD, Tenover FC, Wahlquist SP, Griffin PM, Tauxe RV. 1994. Epidemic Shigella dysenteriae type 1 in Burundi: panresistance and implications for prevention. J Infect Dis 169:1035–1041. [PubMed]
47. Centers for Disease Control and Prevention (CDC). 1994. Health status of displaced persons following Civil War--Burundi, December 1993-January 1994. MMWR Morb Mortal Wkly Rep 43:701–703. [PubMed]
48. Kernéis S, Guerin PJ, von Seidlein L, Legros D, Grais RF. 2009. A look back at an ongoing problem: Shigella dysenteriae type 1 epidemics in refugee settings in Central Africa (1993-1995). PLoS One 4:e4494. doi:10.1371/journal.pone.0004494
49. Georgakopoulou T, Mandilara G, Mellou K, Tryfinopoulou K, Chrisostomou A, Lillakou H, Hadjichristodoulou C, Vatopoulos A. 2016. Resistant Shigella strains in refugees, August-October 2015, Greece. Epidemiol Infect 144:2415–2419. [PubMed]
50. Smith JL. 1987. Shigella as a food borne pathogen. J Food Prot 50:788–801.
51. Bean NH, Griffin PM, Goulding JS, Ivey CB. 1990. Foodborne disease outbreaks, 5-year summary, 1983-1987. MMWR CDC Surveill Summ 39:15–57. [PubMed]
52. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis 17:7–15. [PubMed]
53. Kennedy FM, Astbury J, Needham JR, Cheasty T. 1993. Shigellosis due to occupational contact with non-human primates. Epidemiol Infect 110:247–251. [PubMed]
54. Nizeyi JB, Innocent RB, Erume J, Kalema GR, Cranfield MR, Graczyk TK. 2001. Campylobacteriosis, salmonellosis, and shigellosis in free-ranging human-habituated mountain gorillas of Uganda. J Wildl Dis 37:239–244. [PubMed]
55. Kimura AC, Johnson K, Palumbo MS, Hopkins J, Boase JC, Reporter R, Goldoft M, Stefonek KR, Farrar JA, Van Gilder TJ, Vugia DJ. 2004. Multistate shigellosis outbreak and commercially prepared food, United States. Emerg Infect Dis 10:1147–1149. [PubMed]
56. Gessner BD, Beller M. 1994. Moose soup shigellosis in Alaska. West J Med 160:430–433. [PubMed]
57. Lee LA, Ostroff SM, McGee HB, Johnson DR, Downes FP, Cameron DN, Bean NH, Griffin PM. 1991. An outbreak of shigellosis at an outdoor music festival. Am J Epidemiol 133:608–615. [PubMed]
58. Heier BT, Nygard K, Kapperud G, Lindstedt BA, Johannessen GS, Blekkan H. 2009. Shigella sonnei infections in Norway associated with sugar peas, May-June 2009. Euro Surveill 14:14. doi:10.2807/ese.14.24.19243-en. [PubMed]
59. Guzman-Herrador B, Vold L, Comelli H, MacDonald E, Heier BT, Wester AL, Stavnes TL, Jensvoll L, Lindegard Aanstad A, Severinsen G, Aasgaard Grini J, Werner Johansen Ø, Cudjoe K, Nygard K. 2011. Outbreak of Shigella sonnei infection in Norway linked to consumption of fresh basil, October 2011. Euro Surveill 16:16. PMID: 22085618. [PubMed]
60. Hedberg CW, Levine WC, White KE, Carlson RH, Winsor DK, Cameron DN, MacDonald KL, Osterholm MT. 1992. An international foodborne outbreak of shigellosis associated with a commercial airline. JAMA 268:3208–3212. [PubMed]
61. Gargano JW, Adam EA, Collier SA, Fullerton KE, Feinman SJ, Beach MJ. 2017. Mortality from selected diseases that can be transmitted by water - United States, 2003-2009. J Water Health 15:438–450. [PubMed]
62. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acácio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382:209–222.
63. Liu J, Platts-Mills JA, Juma J, Kabir F, Nkeze J, Okoi C, Operario DJ, Uddin J, Ahmed S, Alonso PL, Antonio M, Becker SM, Blackwelder WC, Breiman RF, Faruque ASG, Fields B, Gratz J, Haque R, Hossain A, Hossain MJ, Jarju S, Qamar F, Iqbal NT, Kwambana B, Mandomando I, McMurry TL, Ochieng C, Ochieng JB, Ochieng M, Onyango C, Panchalingam S, Kalam A, Aziz F, Qureshi S, Ramamurthy T, Roberts JH, Saha D, Sow SO, Stroup SE, Sur D, Tamboura B, Taniuchi M, Tennant SM, Toema D, Wu Y, Zaidi A, Nataro JP, Kotloff KL, Levine MM, Houpt ER. 2016. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet 388:1291–1301.
64. GBD Diarrhoeal Diseases Collaborators. 2017. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis 17:909–948. [PubMed]
65. Livio S, Strockbine NA, Panchalingam S, Tennant SM, Barry EM, Marohn ME, Antonio M, Hossain A, Mandomando I, Ochieng JB, Oundo JO, Qureshi S, Ramamurthy T, Tamboura B, Adegbola RA, Hossain MJ, Saha D, Sen S, Faruque AS, Alonso PL, Breiman RF, Zaidi AK, Sur D, Sow SO, Berkeley LY, O’Reilly CE, Mintz ED, Biswas K, Cohen D, Farag TH, Nasrin D, Wu Y, Blackwelder WC, Kotloff KL, Nataro JP, Levine MM. 2014. Shigella isolates from the global enteric multicenter study inform vaccine development. Clin Infect Dis 59:933–941. [PubMed]
66. Kazal HL, Sohn N, Carrasco JI, Robilotti JG, Delaney WE. 1976. The gay bowel syndrome: clinico-pathologic correlation in 260 cases. Ann Clin Lab Sci 6:184–192. [PubMed]
67. Dritz SK, Back AF. 1974. Letter: Shigella enteritis venereally transmitted. N Engl J Med 291:1194. [PubMed]
68. Bader M, Pedersen AH, Williams R, Spearman J, Anderson H. 1977. Venereal transmission of shigellosis in Seattle-King county. Sex Transm Dis 4:89–91. [PubMed]
69. Aragón TJ, Vugia DJ, Shallow S, Samuel MC, Reingold A, Angulo FJ, Bradford WZ. 2007. Case-control study of shigellosis in San Francisco: the role of sexual transmission and HIV infection. Clin Infect Dis 44:327–334. [PubMed]
70. Cooper F, Barber T. 2014. ‘Gay bowel syndrome’: relic or real (and returning) phenomenon? Curr Opin Infect Dis 27:84–89. [PubMed]
71. Bowen A, Grass J, Bicknese A, Campbell D, Hurd J, Kirkcaldy RD. 2016. Elevated risk for antimicrobial drug-resistant shigella infection among men who have sex with men, United States, 2011-2015. Emerg Infect Dis 22:1613–1616. [PubMed]
72. Mook P, McCormick J, Bains M, Cowley LA, Chattaway MA, Jenkins C, Mikhail A, Hughes G, Elson R, Day M, Manuel R, Dave J, Field N, Godbole G, Dallman T, Crook P. 2016. ESBL-Producing and macrolide-resistant Shigella sonnei infections among men who have sex with men, England, 2015. Emerg Infect Dis 22:1948–1952. [PubMed]
73. Baker KS, Dallman TJ, Ashton PM, Day M, Hughes G, Crook PD, Gilbart VL, Zittermann S, Allen VG, Howden BP, Tomita T, Valcanis M, Harris SR, Connor TR, Sintchenko V, Howard P, Brown JD, Petty NK, Gouali M, Thanh DP, Keddy KH, Smith AM, Talukder KA, Faruque SM, Parkhill J, Baker S, Weill FX, Jenkins C, Thomson NR. 2015. Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. Lancet Infect Dis 15:913–921. [PubMed]
74. Kaper JB, O’Brien AD. 2014. Overview and historical perspectives. Microbiol Spectr 2. doi:10.1128/microbiolspec.EHEC-0028-2014.
75. Beutin L, Strauch E, Fischer I. 1999. Isolation of Shigella sonnei lysogenic for a bacteriophage encoding gene for production of Shiga toxin. Lancet 353:1498. doi:10.1016/S0140-6736(99)00961-7.
76. Gupta SK, Strockbine N, Omondi M, Hise K, Fair MA, Mintz E. 2007. Emergence of Shiga toxin 1 genes within Shigella dysenteriae type 4 isolates from travelers returning from the Island of Hispañola. Am J Trop Med Hyg 76:1163–1165. [PubMed]
77. Gray MD, Lampel KA, Strockbine NA, Fernandez RE, Melton-Celsa AR, Maurelli AT. 2014. Clinical isolates of Shiga toxin 1a-producing Shigella flexneri with an epidemiological link to recent travel to Hispañiola. Emerg Infect Dis 20:1669–1677. [PubMed]
78. Gray MD, Lacher DW, Leonard SR, Abbott J, Zhao S, Lampel KA, Prothery E, Gouali M, Weill FX, Maurelli AT. 2015. Prevalence of Shiga toxin-producing Shigella species isolated from French travellers returning from the Caribbean: an emerging pathogen with international implications. Clin Microbiol Infect 21:765.e9–765.e14. [PubMed]
79. Gray MD, Leonard SR, Lacher DW, Lampel KA, Alam MT, Morris JG Jr, Ali A, LaBreck PT, Maurelli AT. 2015. Stx-producing shigella species from patients in Haiti: an emerging pathogen with the potential for global spread. Open Forum Infect Dis 2:ofv134. doi:10.1093/ofid/ofv134.
80. Kolavic SA, Kimura A, Simons SL, Slutsker L, Barth S, Haley CE. 1997. An outbreak of Shigella dysenteriae type 2 among laboratory workers due to intentional food contamination. JAMA 278:396–398. [PubMed]
81. d’Herelle F. 1917. Sur un microbe invisible antagoniste des bacilles dysentérique. CR Acad Sci Paris 165:373–375.
82. D’Herelle F. 2007. On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D’Herelle, presented by Mr. Roux. 1917. Res Microbiol 158:553–554. [PubMed]
83. Goodridge LD. 2013. Bacteriophages for managing Shigella in various clinical and non-clinical settings. Bacteriophage 3:e25098. doi:10.4161/bact.25098.
84. Duckworth DH. 1976. “Who discovered bacteriophage?” Bacteriol Rev 40:793–802. [PubMed]
85. Kitamoto O, Kasai N, Fukaya K, Kawashima A. 1956. Drug sensitivity of the Shigella strains isolated in 1955. J Jpn Assoc Infect Dis 30:403–404.
86. Falkow S. 1975. Infectious Multiple Drug Resistance. Pion. Distributed by Academic Press, London.
87. Watanabe T. 1967. Infectious drug resistance. Sci Am 217:19–28. [PubMed]
88. Akiba T, Koyama K, Ishiki Y, Kimura S, Fukushima T. 1960. On the mechanism of the development of multiple-drug-resistant clones of Shigella. Jpn J Microbiol 4:219–227. [PubMed]
89. Ochiai K, Yamanaka T, Kimura K, Sawada O. 1959. Inheritance of drug resistance (and its transfer) between Shigella strains and between Shigella and E. coli strains. Nihon Iji Shimpo, (in Japanese) 34:1861.
90. Kagiwada S, Kato S, Kokungo M, Hoshino J, Nishiyama K. 1960. Studies on the mechanism of development of resistant Shigella in intestinal tracts with special reference to the possibility of converting sensitive Shigella to resistance by multiple-drug resistant E. coli in intestinal tracts. Nihon Iji Shimpo 1885:5.
91. Mitsuhashi S, Harada K, Hashimoto H. 1960. Multiple resistance of enteric bacteria and transmission of drug-resistance to other strain by mixed cultivation. Jpn J Exp Med 30:179–184. [PubMed]
92. Watanabe T, Fukasawa T. 1960. Episome-mediated transfer of drug resistance in Enteobacteriaeceae. J Bacteriol 81:669–678.
93. Nakaya R, Nakamura A, Murata Y. 1960. Resistance transfer agents in Shigella. Biochem Biophys Res Commun 3:654–659.
94. Zinder ND, Lederberg J. 1952. Genetic exchange in Salmonella. J Bacteriol 64:679–699. [PubMed]
95. Bertani G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300. [PubMed]
96. Bertani G. 2004. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186:595–600. [PubMed]
97. Lennox ES. 1955. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206. [PubMed]
98. Lederberg J, Tatum EL. 1953. Sex in bacteria; genetic studies, 1945-1952. Science 118:169–175. [PubMed]
99. Luria SE, Burrous JW. 1957. Hybridization between Escherichia coli and Shigella. J Bacteriol 74:461–476. [PubMed]
100. Brenner DJ, Fanning GR, Johnson KE, Citarella RV, Falkow S. 1969. Polynucleotide sequence relationships among members of Enterobacteriaceae. J Bacteriol 98:637–650. [PubMed]
101. Brenner DJ. 1984. Family I. Enterobacteriaceae, p 408–420. In Bergey DH, Krieg NR, Holt JG (ed), Bergey’s Manual of Systematic Bacteriology, vol 1. Williams & Wilkins, Baltimore, MD.
102. Pupo GM, Karaolis DK, Lan R, Reeves PR. 1997. Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun 65:2685–2692. [PubMed]
103. Pupo GM, Lan R, Reeves PR. 2000. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 97:10567–10572. [PubMed]
104. Wei J, Goldberg MB, Burland V, Venkatesan MM, Deng W, Fournier G, Mayhew GF, Plunkett G III, Rose DJ, Darling A, Mau B, Perna NT, Payne SM, Runyen-Janecky LJ, Zhou S, Schwartz DC, Blattner FR. 2003. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 71:2775–2786. [PubMed]
105. Wilson GS, Miles AA. 1946. Shigella, p 685–701. In Topley and Wilson’s Principles of Bacteriology and Immunity, 3rd ed, vol 1. Williams & Wilkins Company, Baltimore.
106. Van Heyningen WE, Gladstone GP. 1953. The neurotoxin of Shigella shigae. I. Production, purification and properties of the toxin. Br J Exp Pathol 34:202–216. [PubMed]
107. Keusch GT, Grady GF, Mata LJ, McIver J. 1972. The pathogenesis of Shigella diarrhea. I. Enterotoxin production by Shigella dysenteriae I. J Clin Invest 51:1212–1218. [PubMed]
108. Keusch GT, Grady GF, Takeuchi A, Sprinz H. 1972. The pathogenesis of Shigella diarrhea. II. Enterotoxin-induced acute enteritis in the rabbit ileum. J Infect Dis 126:92–95. [PubMed]
109. Gemski P Jr, Takeuchi A, Washington O, Formal SB. 1972. Shigellosis due to Shigella dysenteriae. 1. Relative importance of mucosal invasion versus toxin production in pathogenesis. J Infect Dis 126:523–530. [PubMed]
110. Fontaine A, Arondel J, Sansonetti PJ. 1988. Role of Shiga toxin in the pathogenesis of bacillary dysentery, studied by using a Tox- mutant of Shigella dysenteriae 1. Infect Immun 56:3099–3109. [PubMed]
111. O’Brien AO, Lively TA, Chen ME, Rothman SW, Formal SB. 1983. Escherichia coli O157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (SHIGA) like cytotoxin. Lancet 1:702. PMID: 6132054. [PubMed]
112. Melton-Celsa AR. 2014. Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr 2:EHEC-0024-2013. doi:10.1128/microbiolspec.EHEC-0024-2013.
113. Labrec EH, Schneider H, Magnani TJ, Formal SB. 1964. Epithelial cell penetration as an essential step in the pathogenesis of bacillary dysentery. J Bacteriol 88:1503–1518. [PubMed]
114. Flexner S, Sweet JE. 1906. The pathogenesis of experimental colitis, and the relation of colitis in animals and man. J Exp Med 8:514–535. [PubMed]
115. Takeuchi A, Sprinz H, LaBrec EH, Formal SB. 1965. Experimental bacillary dysentery. An electron microscopic study of the response of the intestinal mucosa to bacterial invasion. Am J Pathol 47:1011–1044. [PubMed]
116. Falkow S, Schneider H, Baron LS, Formal SB. 1963. Virulence of Escherichia-Shigella genetic hybrids for the guinea pig. J Bacteriol 86:1251–1258. [PubMed]
117. Formal SB, Hornick RB. 1978. Invasive Escherichia coli. J Infect Dis 137:641–644. [PubMed]
118. Kopecko DJ, Washington O, Formal SB. 1980. Genetic and physical evidence for plasmid control of Shigella sonnei form I cell surface antigen. Infect Immun 29:207–214. [PubMed]
119. Sansonetti P, David M, Toucas M. 1980. Corrélation entre la perte d’ADN plasmidique et le passage de la phase I virulente à la phase II avirulente chez Shigella sonnei. C R Acad Sci Hebd Seances Acad Sci D 290:879–882.
120. Sansonetti PJ, Kopecko DJ, Formal SB. 1981. Shigella sonnei plasmids: evidence that a large plasmid is necessary for virulence. Infect Immun 34:75–83. [PubMed]
121. Falkow S. 1988. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10(Suppl 2):S274–S276. [PubMed]
122. Sansonetti PJ, Kopecko DJ, Formal SB. 1982. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun 35:852–860. [PubMed]
123. Kopecko DJ, Holcombe J, Formal SB. 1979. Molecular characterization of plasmids from virulent and spontaneously occurring avirulent colonial variants of Shigella flexneri. Infect Immun 24:580–582. [PubMed]
124. Mills JA, Venkatesan MM, Baron LS, Buysse JM. 1992. Spontaneous insertion of an IS1-like element into the virF gene is responsible for avirulence in opaque colonial variants of Shigella flexneri 2a. Infect Immun 60:175–182. [PubMed]
125. Maurelli AT, Blackmon B, Curtiss R III. 1984. Temperature-dependent expression of virulence genes in Shigella species. Infect Immun 43:195–201. [PubMed]
126. Maurelli AT. 1989. Temperature regulation of virulence genes in pathogenic bacteria: a general strategy for human pathogens? Microb Pathog 7:1–10. [PubMed]
127. Konkel ME, Tilly K. 2000. Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2:157–166.
128. Picker MA, Wing HJ. 2016. H-NS, its family members and their regulation of virulence genes in Shigella species. Genes (Basel) 7:7. doi:10.3390/genes7120112.
129. Di Martino ML, Falconi M, Micheli G, Colonna B, Prosseda G. 2016. The multifaceted activity of the VirF regulatory protein in the Shigella lifestyle. Front Mol Biosci 3:61. doi:10.3389/fmolb.2016.00061.
130. Payne SM, Finkelstein RA. 1977. Detection and differentiation of iron-responsive avirulent mutants on Congo red agar. Infect Immun 18:94–98. [PubMed]
131. Maurelli AT, Blackmon B, Curtiss R III. 1984. Loss of pigmentation in Shigella flexneri 2a is correlated with loss of virulence and virulence-associated plasmid. Infect Immun 43:397–401. [PubMed]
132. Parsot C, Ménard R, Gounon P, Sansonetti PJ. 1995. Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol Microbiol 16:291–300. [PubMed]
133. Maurelli AT, Baudry B, d’Hauteville H, Hale TL, Sansonetti PJ. 1985. Cloning of plasmid DNA sequences involved in invasion of HeLa cells by Shigella flexneri. Infect Immun 49:164–171. [PubMed]
134. Oaks EV, Wingfield ME, Formal SB. 1985. Plaque formation by virulent Shigella flexneri. Infect Immun 48:124–129. [PubMed]
135. Serény B. 1957. Experimental keratoconjunctivitis shigellosa. Acta Microbiol Acad Sci Hung 4:367–376. [PubMed]
136. Sansonetti PJ, Hale TL, Dammin GJ, Kapfer C, Collins HH Jr, Formal SB. 1983. Alterations in the pathogenicity of Escherichia coli K-12 after transfer of plasmid and chromosomal genes from Shigella flexneri. Infect Immun 39:1392–1402. [PubMed]
137. Sansonetti PJ, Ryter A, Clerc P, Maurelli AT, Mounier J. 1986. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun 51:461–469. [PubMed]
138. Ogawa H, Nakamura A, Nakaya R. 1968. Cinemicrographic study of tissue cell cultures infected with Shigella flexneri. Jpn J Med Sci Biol 21:259–273. [PubMed]
139. Makino S, Sasakawa C, Kamata K, Kurata T, Yoshikawa M. 1986. A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell 46:551–555.
140. Bernardini ML, Mounier J, d’Hauteville H, Coquis-Rondon M, Sansonetti PJ. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA 86:3867–3871. [PubMed]
141. Tilney LG, Portnoy DA. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597–1608.
142. Mounier J, Ryter A, Coquis-Rondon M, Sansonetti PJ. 1990. Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect Immun 58:1048–1058. [PubMed]
143. Hale TL, Oaks EV, Formal SB. 1985. Identification and antigenic characterization of virulence-associated, plasmid-coded proteins of Shigella spp. and enteroinvasive Escherichia coli. Infect Immun 50:620–629. [PubMed]
144. Hale TL, Sansonetti PJ, Schad PA, Austin S, Formal SB. 1983. Characterization of virulence plasmids and plasmid-associated outer membrane proteins in Shigella flexneri, Shigella sonnei, and Escherichia coli. Infect Immun 40:340–350. [PubMed]
145. Andrews GP, Hromockyj AE, Coker C, Maurelli AT. 1991. Two novel virulence loci, mxiA and mxiB, in Shigella flexneri 2a facilitate excretion of invasion plasmid antigens. Infect Immun 59:1997–2005. [PubMed]
146. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ, Santos AS, Strynadka NCJ, Finlay BB. 2017. Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 15:323–337. [PubMed]
147. Venkatesan MM, Buysse JM, Oaks EV. 1992. Surface presentation of Shigella flexneri invasion plasmid antigens requires the products of the spa locus. J Bacteriol 174:1990–2001. [PubMed]
148. Sasakawa C, Komatsu K, Tobe T, Suzuki T, Yoshikawa M. 1993. Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri 2a. J Bacteriol 175:2334–2346. [PubMed]
149. Mattock E, Blocker AJ. 2017. How do the virulence factors of Shigella work together to cause disease? Front Cell Infect Microbiol 7:64. doi:10.3389/fcimb.2017.00064.
150. Carayol N, Tran Van Nhieu G. 2013. The inside story of Shigella invasion of intestinal epithelial cells. Cold Spring Harb Perspect Med 3:a016717. doi:10.1101/cshperspect.a016717.
151. Zychlinsky A, Prevost MC, Sansonetti PJ. 1992. Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167–169. [PubMed]
152. Navarre WW, Zychlinsky A. 2000. Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell Microbiol 2:265–273.
153. Fink SL, Cookson BT. 2005. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916. [PubMed]
154. Ashida H, Kim M, Sasakawa C. 2014. Manipulation of the host cell death pathway by Shigella. Cell Microbiol 16:1757–1766. [PubMed]
155. Mantis N, Prévost MC, Sansonetti P. 1996. Analysis of epithelial cell stress response during infection by Shigella flexneri. Infect Immun 64:2474–2482. [PubMed]
156. Clark CS, Maurelli AT. 2007. Shigella flexneri inhibits staurosporine-induced apoptosis in epithelial cells. Infect Immun 75:2531–2539. [PubMed]
157. Faherty CS, Maurelli AT. 2008. Staying alive: bacterial inhibition of apoptosis during infection. Trends Microbiol 16:173–180. [PubMed]
158. Groisman EA, Ochman H. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791–794.
159. Falkow S. 1958. Activity of lysine decarboxlase as an aid in the identification of Salmonellae and Shigellae. Am J Clin Pathol 29:598–600. [PubMed]
160. Ewing EH. 1986. Edwards and Ewing’s Identification of Enterobacteriacae, 4th ed. Elsevier Science Publishing Co. Inc., New York.
161. Maurelli AT, Fernández RE, Bloch CA, Rode CK, Fasano A. 1998. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci USA 95:3943–3948. [PubMed]
162. Day WA Jr, Fernández RE, Maurelli AT. 2001. Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect Immun 69:7471–7480. [PubMed]
163. Bliven KA, Maurelli AT. 2012. Antivirulence genes: insights into pathogen evolution through gene loss. Infect Immun 80:4061–4070. [PubMed]
164. Landy M. 1950. The visual identification of V and W form colonies in Salmonella cultures. Public Health Rep 65:950–951. [PubMed]
165. Cooper ML, Keller HM, Walters EW. 1957. Microscopic characteristics of colonies of Shigella flexneri 2a and 2b and their relation to antigenic composition, mouse virulence and immunogenicity. J Immunol 78:160–171. [PubMed]
166. Sasakawa C, Kamata K, Sakai T, Murayama SY, Makino S, Yoshikawa M. 1986. Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri. Infect Immun 51:470–475. [PubMed]
167. Falkow S. 1994. A look through the retrospectoscope, p xxiii–xxxix. In Miller VL, Kaper JB, Portnoy DA, Isberg RR (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC.
168. Falkow S. 2008. The fortunate professor. Annu Rev Microbiol 62:1–18. [PubMed]
169. Maurelli T. 1992. Shigella inside and out: lifestyles of the invasive and dysenteric. ASM News 58:603–608.
170. Sasakawa C. 2010. A new paradigm of bacteria-gut interplay brought through the study of Shigella. Proc Jpn Acad, Ser B, Phys Biol Sci 86:229–243. [PubMed]
171. Falkow S. 1998. Who speaks for the microbes? Emerg Infect Dis 4:495–497. [PubMed]
Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0006-2017
2018-01-09
2018-04-24

Abstract:

The history of , the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of pathogenesis in the first 100 years. Over the past century, has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and “black holes” and antivirulence genes. While there is still much to learn from studying pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Reprinted from reference 169 .

Citation: Lampel K, Formal† S, Maurelli A. 2018. A Brief History of , EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Reprinted from Sasakawa ( 170 ). Photo provided courtesy of the Shibasaburo Kitasato Memorial Museum at the Kitasato Institute (Tokyo). Copyright © 2010 The Japan Academy.

Citation: Lampel K, Formal† S, Maurelli A. 2018. A Brief History of , EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Doc Stuart (right) with Sam Formal and Sam’s sons (circa 1955).

Citation: Lampel K, Formal† S, Maurelli A. 2018. A Brief History of , EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Reprinted from ( 171 ).

Citation: Lampel K, Formal† S, Maurelli A. 2018. A Brief History of , EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Alison O’Brien and Sam Formal, Bethesda, MD, 2013.

Citation: Lampel K, Formal† S, Maurelli A. 2018. A Brief History of , EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Philippe Sansonetti, Sam Formal, and Tony Maurelli, Silver Spring, MD, 2003.

Citation: Lampel K, Formal† S, Maurelli A. 2018. A Brief History of , EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error