1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 10: Bioinformatics and Systems Biology

The EcoCyc Database

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    398.08 Kb
  • HTML
    172.79 Kb
  • XML
    155.45 Kb
  • Authors: Peter D. Karp1, Wai Kit Ong2, Suzanne Paley3, Richard Billington4, Ron Caspi5, Carol Fulcher6, Anamika Kothari7, Markus Krummenacker8, Mario Latendresse9, Peter E. Midford10, Pallavi Subhraveti11, Socorro Gama-Castro12, Luis Muñiz-Rascado13, César Bonavides-Martinez14, Alberto Santos-Zavaleta15, Amanda Mackie16, Julio Collado-Vides17, Ingrid M. Keseler18, and Ian Paulsen19
  • Editor: Susan T. Lovett20
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 2: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 3: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 4: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 5: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 6: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 7: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 8: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 9: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 10: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 11: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 12: Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, México; 13: Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, México; 14: Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, México; 15: Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, México; 16: Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; 17: Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, México; 18: Bioinformatics Research Group, SRI International, Menlo Park, CA 94025; 19: Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; 20: Department of Biology, Brandeis University, Waltham, MA
  • Received 05 June 2018 Accepted 18 September 2018 Published 12 November 2018
  • Address correspondence to Peter D. Karp, [email protected]
image of The EcoCyc Database
    Preview this reference work article:
    Zoom in
    Zoomout

    The EcoCyc Database, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/8/1/ESP-0006-2018-1.gif /docserver/preview/fulltext/ecosalplus/8/1/ESP-0006-2018-2.gif
  • Abstract:

    EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of . EcoCyc is an electronic reference source for biologists and for biologists who work with related microorganisms. The database includes information pages on each gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on gene essentiality and on nutrient conditions that do or do not support the growth of . The website and downloadable software contain tools for analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed via EcoCyc.org. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.

  • Citation: Karp P, Ong W, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford P, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler I, Paulsen I. 2018. The EcoCyc Database, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2018

Article Version

This article is an updated version of the following content:

References

1. Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R, Kothari A, Weaver D, Lee T, Subhraveti P, Spaulding A, Fulcher C, Keseler IM, Caspi R. 2016. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform 17:877–890 http://dx.doi.org/10.1093/bib/bbv079. [PubMed]
2. Kim KS, Lee S, Ryu CM. 2013. Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance. Nat Commun 4:1809 http://dx.doi.org/10.1038/ncomms2789. [PubMed]
3. Bower JM, Gordon-Raagas HB, Mulvey MA. 2009. Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. Infect Immun 77:2104–2112 http://dx.doi.org/10.1128/IAI.01200-08. [PubMed]
4. Rhodius V, Van Dyk TK, Gross C, LaRossa RA. 2002. Impact of genomic technologies on studies of bacterial gene expression. Annu Rev Microbiol 56:599–624 http://dx.doi.org/10.1146/annurev.micro.56.012302.160925. [PubMed]
5. Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO. 2003. Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19:612–623 http://dx.doi.org/10.1021/bp025658q. [PubMed]
6. Taoka M, Yamauchi Y, Shinkawa T, Kaji H, Motohashi W, Nakayama H, Takahashi N, Isobe T. 2004. Only a small subset of the horizontally transferred chromosomal genes in Escherichia coli are translated into proteins. Mol Cell Proteomics 3:780–787 http://dx.doi.org/10.1074/mcp.M400030-MCP200. [PubMed]
7. Goswami M, Narayana Rao AVSS. 2018. Transcriptome profiling reveals interplay of multifaceted stress response in Escherichia coli on exposure to glutathione and ciprofloxacin. mSystems 3:e00001–e00018 http://dx.doi.org/10.1128/mSystems.00001-18.
8. Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, Sauer U, Picotti P. 2018. A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172:358–372.e23 http://dx.doi.org/10.1016/j.cell.2017.12.006. [PubMed]
9. Sharma P, Haycocks JRJ, Middlemiss AD, Kettles RA, Sellars LE, Ricci V, Piddock LJV, Grainger DC. 2017. The multiple antibiotic resistance operon of enteric bacteria controls DNA repair and outer membrane integrity. Nat Commun 8:1444 http://dx.doi.org/10.1038/s41467-017-01405-7. [PubMed]
10. Karp PD. 2000. An ontology for biological function based on molecular interactions. Bioinformatics 16:269–285 http://dx.doi.org/10.1093/bioinformatics/16.3.269. [PubMed]
11. Miller SJ. 2013. Introduction to Ontology Concepts and Terminology. Presentation. Retrieved from http://dcevents.dublincore.org/IntConf/dc-2013/paper/download/140/105.
12. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. 2002. Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555 http://dx.doi.org/10.1126/science.1073374. [PubMed]
13. Simeonidis E, Rison SC, Thornton JM, Bogle ID, Papageorgiou LG. 2003. Analysis of metabolic networks using a pathway distance metric through linear programming. Metab Eng 5:211–219 http://dx.doi.org/10.1016/S1096-7176(03)00043-0.
14. Arita M. 2004. The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci USA 101:1543–1547 http://dx.doi.org/10.1073/pnas.0306458101. [PubMed]
15. Jardine O, Gough J, Chothia C, Teichmann SA. 2002. Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae. Genome Res 12:916–929 http://dx.doi.org/10.1101/gr.228002. [PubMed]
16. Rison SC, Thornton JM. 2002. Pathway evolution, structurally speaking. Curr Opin Struct Biol 12:374–382 http://dx.doi.org/10.1016/S0959-440X(02)00331-7.
17. Ma HW, Kumar B, Ditges U, Gunzer F, Buer J, Zeng AP. 2004. An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 32:6643–6649 http://dx.doi.org/10.1093/nar/gkh1009. [PubMed]
18. Shen-Orr SS, Milo R, Mangan S, Alon U. 2002. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68 http://dx.doi.org/10.1038/ng881. [PubMed]
19. Perez-Acle T, Fuenzalida I, Martin AJM, Santibañez R, Avaria R, Bernardin A, Bustos AM, Garrido D, Dushoff J, Liu JH. 2018. Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach. Biochem Biophys Res Commun 498:342–351 http://dx.doi.org/10.1016/j.bbrc.2017.11.138. [PubMed]
20. Fang X, Sastry A, Mih N, Kim D, Tan J, Yurkovich JT, Lloyd CJ, Gao Y, Yang L, Palsson BO. 2017. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities. Proc Natl Acad Sci USA 114:10286–10291 http://dx.doi.org/10.1073/pnas.1702581114. [PubMed]
21. Karimpour-Fard A, Leach SM, Gill RT, Hunter LE. 2008. Predicting protein linkages in bacteria: which method is best depends on task. BMC Bioinformatics 9:397 http://dx.doi.org/10.1186/1471-2105-9-397. [PubMed]
22. Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D. 2004. Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5:R35 http://dx.doi.org/10.1186/gb-2004-5-5-r35. [PubMed]
23. Price MN, Huang KH, Alm EJ, Arkin AP. 2005. A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33:880–892 http://dx.doi.org/10.1093/nar/gki232. [PubMed]
24. Steinhauser D, Junker BH, Luedemann A, Selbig J, Kopka J. 2004. Hypothesis-driven approach to predict transcriptional units from gene expression data. Bioinformatics 20:1928–1939 http://dx.doi.org/10.1093/bioinformatics/bth182. [PubMed]
25. Burden S, Lin YX, Zhang R. 2005. Improving promoter prediction for the NNPP2.2 algorithm: a case study using Escherichia coli DNA sequences. Bioinformatics 21:601–607 http://dx.doi.org/10.1093/bioinformatics/bti047. [PubMed]
26. Gordon L, Chervonenkis AY, Gammerman AJ, Shahmuradov IA, Solovyev VV. 2003. Sequence alignment kernel for recognition of promoter regions. Bioinformatics 19:1964–1971 http://dx.doi.org/10.1093/bioinformatics/btg265. [PubMed]
27. Umarov RK, Solovyev VV. 2017. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One 12:e0171410 http://dx.doi.org/10.1371/journal.pone.0171410. [PubMed]
28. Fu Y, Jarboe LR, Dickerson JA. 2011. Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities. BMC Bioinformatics 12:233 http://dx.doi.org/10.1186/1471-2105-12-233. [PubMed]
29. Watanabe RL, Morett E, Vallejo EE. 2008. Inferring modules of functionally interacting proteins using the Bond Energy Algorithm. BMC Bioinformatics 9:285 http://dx.doi.org/10.1186/1471-2105-9-285. [PubMed]
30. Muley VY, Ranjan A. 2012. Effect of reference genome selection on the performance of computational methods for genome-wide protein-protein interaction prediction. PLoS One 7:e42057 http://dx.doi.org/10.1371/journal.pone.0042057. [PubMed]
31. Moreno-Hagelsieb G, Jokic P. 2012. The evolutionary dynamics of functional modules and the extraordinary plasticity of regulons: the Escherichia coli perspective. Nucleic Acids Res 40:7104–7112 http://dx.doi.org/10.1093/nar/gks443. [PubMed]
32. Maheshwari S, Brylinski M. 2017. Across-proteome modeling of dimer structures for the bottom-up assembly of protein-protein interaction networks. BMC Bioinformatics 18:257 http://dx.doi.org/10.1186/s12859-017-1675-z. [PubMed]
33. Kastenmüller G, Schenk ME, Gasteiger J, Mewes HW. 2009. Uncovering metabolic pathways relevant to phenotypic traits of microbial genomes. Genome Biol 10:R28 http://dx.doi.org/10.1186/gb-2009-10-3-r28. [PubMed]
34. Kumar VS, Maranas CD. 2009. GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLOS Comput Biol 5:e1000308 http://dx.doi.org/10.1371/journal.pcbi.1000308. [PubMed]
35. Thomas GH, Zucker J, Macdonald SJ, Sorokin A, Goryanin I, Douglas AE. 2009. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC Syst Biol 3:24 http://dx.doi.org/10.1186/1752-0509-3-24. [PubMed]
36. Frazier ME, Johnson GM, Thomassen DG, Oliver CE, Patrinos A. 2003. Realizing the potential of the genome revolution: the genomes to life program. Science 300:290–293 http://dx.doi.org/10.1126/science.1084566. [PubMed]
37. Bailey JE. 1991. Toward a science of metabolic engineering. Science 252:1668–1675 http://dx.doi.org/10.1126/science.2047876. [PubMed]
38. Stephanopoulos G, Vallino JJ. 1991. Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681 http://dx.doi.org/10.1126/science.1904627. [PubMed]
39. Arense P, Bernal V, Charlier D, Iborra JL, Foulquié-Moreno MR, Cánovas M. 2013. Metabolic engineering for high yielding L(-)-carnitine production in Escherichia coli. Microb Cell Fact 12:56 http://dx.doi.org/10.1186/1475-2859-12-56. [PubMed]
40. Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO. 2008. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101:881–893 http://dx.doi.org/10.1002/bit.22005. [PubMed]
41. Weber J, Hoffmann F, Rinas U. 2002. Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 2. Redirection of metabolic fluxes. Biotechnol Bioeng 80:320–330 http://dx.doi.org/10.1002/bit.10380. [PubMed]
42. Averesch NJH, Martínez VS, Nielsen LK, Krömer JO. 2018. Toward synthetic biology strategies for adipic acid production: an in silico tool for combined thermodynamics and stoichiometric analysis of metabolic networks. ACS Synth Biol 7:490–509 http://dx.doi.org/10.1021/acssynbio.7b00304. [PubMed]
43. Delépine B, Duigou T, Carbonell P, Faulon J-L. 2018. RetroPath2.0: A retrosynthesis workflow for metabolic engineers. Metab Eng 45:158–170 http://dx.doi.org/10.1016/j.ymben.2017.12.002. [PubMed]
44. Ovsienko MV, Fedorova EN, Doroshenko VG. 2018. Vanillin resistance induced by BssS overexpression in Escherichia coli. Appl Biochem Microbiol 54:21–25 http://dx.doi.org/10.1134/S0003683818010088.
45. UniProt Consortium. 2013. Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41:D43–D47. [PubMed]
46. Busch W, Saier MH Jr, International Union of Biochemistry and Molecular Biology (IUBMB). 2004. The IUBMB-endorsed transporter classification system. Mol Biotechnol 27:253–262 http://dx.doi.org/10.1385/MB:27:3:253.
47. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1) :D353–D361 http://dx.doi.org/10.1093/nar/gkw1092. [PubMed]
48. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJ, Yoo HS, Zhang C, Zhang Y, Sobral BW. 2014. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42(D1) :D581–D591 http://dx.doi.org/10.1093/nar/gkt1099. [PubMed]
49. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, The Gene Ontology Consortium. 2000. Gene ontology: tool for the unification of biology. Nat Genet 25:25–29 http://dx.doi.org/10.1038/75556. [PubMed]
50. Serres MH, Riley M. 2000. MultiFun, a multifunctional classification scheme for Escherichia coli K-12 gene products. Microb Comp Genomics 5:205–222 http://dx.doi.org/10.1089/mcg.2000.5.205. [PubMed]
51. Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, Muñiz-Rascado L, García-Sotelo JS, Alquicira-Hernández K, Martínez-Flores I, Pannier L, Castro-Mondragón JA, Medina-Rivera A, Solano-Lira H, Bonavides-Martínez C, Pérez-Rueda E, Alquicira-Hernández S, Porrón-Sotelo L, López-Fuentes A, Hernández-Koutoucheva A, Del Moral-Chávez V, Rinaldi F, Collado-Vides J. 2016. RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res 44(D1) :D133–D143 http://dx.doi.org/10.1093/nar/gkv1156. [PubMed]
52. Bochner BR, Gadzinski P, Panomitros E. 2001. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255 http://dx.doi.org/10.1101/gr.186501. [PubMed]
53. AbuOun M, Suthers PF, Jones GI, Carter BR, Saunders MP, Maranas CD, Woodward MJ, Anjum MF. 2009. Genome scale reconstruction of a Salmonella metabolic model: comparison of similarity and differences with a commensal Escherichia coli strain. J Biol Chem 284:29480–29488 http://dx.doi.org/10.1074/jbc.M109.005868. [PubMed]
54. Baumler DJ, Peplinski RG, Reed JL, Glasner JD, Perna NT. 2011. The evolution of metabolic networks of E. coli. BMC Syst Biol 5:182 http://dx.doi.org/10.1186/1752-0509-5-182. [PubMed]
55. Mackie A, Paley S, Keseler IM, Shearer A, Paulsen IT, Karp PD. 2014. Addition of Escherichia coli K–12 growth-observation and gene essentiality data to the EcoCyc database. J Bacteriol 196:982–988. doi:10.1128/JB.01209-13. [PubMed]
56. Yoon SH, Han MJ, Jeong H, Lee CH, Xia XX, Lee DH, Shim JH, Lee SY, Oh TK, Kim JF. 2012. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol 13:R37 http://dx.doi.org/10.1186/gb-2012-13-5-r37. [PubMed]
57. Gerdes SY, Scholle MD, Campbell JW, Balázsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabási AL, Oltvai ZN, Osterman AL. 2003. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684 http://dx.doi.org/10.1128/JB.185.19.5673-5684.2003. [PubMed]
58. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008. doi:10.1038/msb4100050.
59. Yamamoto N, Nakahigashi K, Nakamichi T, Yoshino M, Takai Y, Touda Y, Furubayashi A, Kinjyo S, Dose H, Hasegawa M, Datsenko KA, Nakayashiki T, Tomita M, Wanner BL, Mori H. 2009. Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol Syst Biol 5:335 http://dx.doi.org/10.1038/msb.2009.92. [PubMed]
60. Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BØ, Agarwalla S. 2006. Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol 188:8259–8271 http://dx.doi.org/10.1128/JB.00740-06. [PubMed]
61. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ. 2007. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121 http://dx.doi.org/10.1038/msb4100155. [PubMed]
62. Patrick WM, Quandt EM, Swartzlander DB, Matsumura I. 2007. Multicopy suppression underpins metabolic evolvability. Mol Biol Evol 24:2716–2722 http://dx.doi.org/10.1093/molbev/msm204. [PubMed]
63. Orth JD, Thiele I, Palsson BØ. 2010. What is flux balance analysis? Nat Biotechnol 28:245–248 http://dx.doi.org/10.1038/nbt.1614. [PubMed]
64. McCloskey D, Palsson BO, Feist AM. 2013. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9:661 http://dx.doi.org/10.1038/msb.2013.18. [PubMed]
65. Reed JL, Vo TD, Schilling CH, Palsson BO. 2003. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4:R54 http://dx.doi.org/10.1186/gb-2003-4-9-r54. [PubMed]
66. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ. 2011. A comprehensive genome-scale reconstruction of Escherichia coli metabolism--2011. Mol Syst Biol 7:535 http://dx.doi.org/10.1038/msb.2011.65. [PubMed]
67. Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, Takeuchi R, Nomura W, Zhang Z, Mori H, Feist AM, Palsson BO. 2017. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol 35:904–908 http://dx.doi.org/10.1038/nbt.3956. [PubMed]
68. Oursel D, Loutelier-Bourhis C, Orange N, Chevalier S, Norris V, Lange CM. 2007. Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. Rapid Commun Mass Spectrom 21:1721–1728 http://dx.doi.org/10.1002/rcm.3013. [PubMed]
69. Latendresse M, Krummenacker M, Trupp M, Karp PD. 2012. Construction and completion of flux balance models from pathway databases. Bioinformatics 28:388–396 http://dx.doi.org/10.1093/bioinformatics/btr681. [PubMed]
70. Latendresse M. 2014. Efficiently gap-filling reaction networks. BMC Bioinformatics 15:225 http://dx.doi.org/10.1186/1471-2105-15-225. [PubMed]
71. Paley SM, Karp PD. 2006. The Pathway Tools cellular overview diagram and Omics Viewer. Nucleic Acids Res 34:3771–3778 http://dx.doi.org/10.1093/nar/gkl334. [PubMed]
72. Paley S, Parker K, Spaulding A, Tomb JF, O’Maille P, Karp PD. 2017. The Omics Dashboard for interactive exploration of gene-expression data. Nucleic Acids Res 45:12113–12124 http://dx.doi.org/10.1093/nar/gkx910. [PubMed]
73. Kayser A, Weber J, Hecht V, Rinas U. 2005. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151:693–706 http://dx.doi.org/10.1099/mic.0.27481-0. [PubMed]
74. Belaich A, Belaich JP. 1976. Microcalorimetric study of the anaerobic growth of Escherichia coli: growth thermograms in a synthetic medium. J Bacteriol 125:14–18. [PubMed]
75. Varma A, Boesch BW, Palsson BO. 1993. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59:2465–2473. [PubMed]
76. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. 2013. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol 7:74 http://dx.doi.org/10.1186/1752-0509-7-74. [PubMed]
77. Weaver DS, Keseler IM, Mackie A, Paulsen IT, Karp PD. 2014. A genome-scale metabolic flux model of Escherichia coli K-12 derived from the EcoCyc database. BMC Syst Biol 8:79 http://dx.doi.org/10.1186/1752-0509-8-79. [PubMed]
78. Hu JC, Karp PD, Keseler IM, Krummenacker M, Siegele DA. 2009. What we can learn about Escherichia coli through application of Gene Ontology. Trends Microbiol 17:269–278 http://dx.doi.org/10.1016/j.tim.2009.04.004. [PubMed]
79. Riley M, Abe T, Arnaud MB, Berlyn MK, Blattner FR, Chaudhuri RR, Glasner JD, Horiuchi T, Keseler IM, Kosuge T, Mori H, Perna NT, Plunkett G III, Rudd KE, Serres MH, Thomas GH, Thomson NR, Wishart D, Wanner BL. 2006. Escherichia coli K-12: a cooperatively developed annotation snapshot--2005. Nucleic Acids Res 34:1–9 http://dx.doi.org/10.1093/nar/gkj405. [PubMed]
80. Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Fulcher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD. 2011. EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39(Database) :D583–D590 http://dx.doi.org/10.1093/nar/gkq1143.
81. Keseler IM, Bonavides-Martínez C, Collado-Vides J, Gama-Castro S, Gunsalus RP, Johnson DA, Krummenacker M, Nolan LM, Paley S, Paulsen IT, Peralta-Gil M, Santos-Zavaleta A, Shearer AG, Karp PD. 2009. EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37(Database) :D464–D470 http://dx.doi.org/10.1093/nar/gkn751.
82. Karp PD, Keseler IM, Shearer A, Latendresse M, Krummenacker M, Paley SM, Paulsen I, Collado-Vides J, Gama-Castro S, Peralta-Gil M, Santos-Zavaleta A, Peñaloza-Spínola MI, Bonavides-Martinez C, Ingraham J. 2007. Multidimensional annotation of the Escherichia coli K-12 genome. Nucleic Acids Res 35:7577–7590 http://dx.doi.org/10.1093/nar/gkm740. [PubMed]
83. Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD. 2005. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:D334–D337 http://dx.doi.org/10.1093/nar/gki108. [PubMed]
84. Karp PD, Arnaud M, Collado-Vides J, Ingraham J, Paulsen IT, Saier MHJ. 2004. The E. coli EcoCyc database: no longer just a metabolic pathway database. ASM News 70:25–30.
85. Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides J, Paley SM, Pellegrini-Toole A, Bonavides C, Gama-Castro S. 2002. The EcoCyc Database. Nucleic Acids Res 30:56–58 http://dx.doi.org/10.1093/nar/30.1.56. [PubMed]
86. Karp PD, Riley M, Saier M, Paulsen IT, Paley SM, Pellegrini-Toole A. 2000. The EcoCyc and MetaCyc databases. Nucleic Acids Res 28:56–59 http://dx.doi.org/10.1093/nar/28.1.56. [PubMed]
87. Karp PD. 1999. Using the EcoCyc Database, p 269–280. In Bishop M (ed), Nucleic Acid and Protein Databases and How To Use Them. Academic Press, London, UK.
88. Karp PD, Riley M. 1999. EcoCyc: the resource and the lessons learned, p 47–62. In Letovsky S (ed), Bioinformatics Databases and Systems. Kluwer Academic Publishers, Norwell, MA.
89. Karp PD, Riley M, Paley SM, Pellegrini-Toole A, Krummenacker M. 1999. Eco Cyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 27:55–58 http://dx.doi.org/10.1093/nar/27.1.55.
90. Karp PD, Riley M, Paley SM, Pellegrini-Toole A, Krummenacker M. 1998. EcoCyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 26:50–53 http://dx.doi.org/10.1093/nar/26.1.50. [PubMed]
91. Karp PD, Riley M, Paley SM, Pellegrini-Toole A, Krummenacker M. 1997. EcoCyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 25:43–51 http://dx.doi.org/10.1093/nar/25.1.43. [PubMed]
92. Karp PD, Riley M, Paley SM, Pelligrini-Toole A. 1996. EcoCyc: an encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 24:32–39 http://dx.doi.org/10.1093/nar/24.1.32. [PubMed]
93. Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velázquez-Ramírez DA, Weaver D, Collado-Vides J, Paulsen I, Karp PD. 2017. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 45(D1) :D543–D550 http://dx.doi.org/10.1093/nar/gkw1003. [PubMed]
94. Keseler IM, Skrzypek M, Weerasinghe D, Chen AY, Fulcher C, Li GW, Lemmer KC, Mladinich KM, Chow ED, Sherlock G, Karp PD. 2014. Curation accuracy of model organism databases. Database (Oxford) 2014:1–6 http://dx.doi.org/10.1093/database/bau058. [PubMed]
95. journal-id:
Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0006-2018
2018-11-12
2019-07-22

Abstract:

EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of . EcoCyc is an electronic reference source for biologists and for biologists who work with related microorganisms. The database includes information pages on each gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on gene essentiality and on nutrient conditions that do or do not support the growth of . The website and downloadable software contain tools for analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed via EcoCyc.org. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/ecosalplus/8/1/ESP-0006-2018.html?itemId=/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0006-2018&mimeType=html&fmt=ahah
Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Tables

Generic image for table

Click to view

Table 1

Genes and gene products in EcoCyc

Citation: Karp P, Ong W, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford P, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler I, Paulsen I. 2018. The EcoCyc Database, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2018
Generic image for table

Click to view

Table 2

Gene annotation status in EcoCyc

Citation: Karp P, Ong W, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford P, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler I, Paulsen I. 2018. The EcoCyc Database, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2018
Generic image for table

Click to view

Table 3

Reactions, compounds, and pathways in EcoCyc

Citation: Karp P, Ong W, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford P, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler I, Paulsen I. 2018. The EcoCyc Database, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2018
Generic image for table

Click to view

Table 4

Regulation-related objects and interactions in EcoCyc

Citation: Karp P, Ong W, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford P, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler I, Paulsen I. 2018. The EcoCyc Database, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2018
Generic image for table

Click to view

Table 5

Comparison of the number of biomass metabolites and the number of reactions carrying flux for EcoCyc-17.5, EcoCyc-18.0, and EcoCyc-22.05 under glucose aerobic and anaerobic conditions

Citation: Karp P, Ong W, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford P, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler I, Paulsen I. 2018. The EcoCyc Database, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2018
Generic image for table

Click to view

Table 6

Comparison of experimental aerobic glucose-limited chemostat growth data with EcoCyc-17.5, EcoCyc-22.05, and iML1515 model predictions

Citation: Karp P, Ong W, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford P, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler I, Paulsen I. 2018. The EcoCyc Database, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2018
Generic image for table

Click to view

Table 7

Comparison of experimental anaerobic glucose-limited chemostat growth data with EcoCyc-17.5, EcoCyc-22.05, and iML1515 model predictions

Citation: Karp P, Ong W, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford P, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler I, Paulsen I. 2018. The EcoCyc Database, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2018
Generic image for table

Click to view

Table 8

Comparison of experimental gene essentiality results with computational EcoCyc-22.05_BW results for aerobic growth on MOPS medium with 0.4% glucose

Citation: Karp P, Ong W, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford P, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler I, Paulsen I. 2018. The EcoCyc Database, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2018
Generic image for table

Click to view

Table 9

Comparison of experimental gene essentiality results with computational EcoCyc-22.05_BW results for aerobic growth on MOPS medium with 1% glycerol

Citation: Karp P, Ong W, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford P, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler I, Paulsen I. 2018. The EcoCyc Database, EcoSal Plus 2018; doi:10.1128/ecosalplus.ESP-0006-2018

Supplemental Material

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error