1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

Human Meningitis-Associated

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article
Choose downloadable ePub or PDF files.
Buy this Chapter
Digital (?) $30.00
  • Author: Kwang Sik Kim1
  • Editor: Michael S. Donnenberg2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287; 2: University of Maryland, School of Medicine, Baltimore, MD
  • Received 01 October 2015 Accepted 26 February 2016 Published 29 April 2016
  • Address correspondence to Kwang Sik Kim: kwangkim@jhmi.edu
image of Human Meningitis-Associated <span class="jp-italic">Escherichia coli</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    Human Meningitis-Associated , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/7/1/ESP-0015-2015-1.gif /docserver/preview/fulltext/ecosalplus/7/1/ESP-0015-2015-2.gif
  • Abstract:

    is the most common Gram-negative bacillary organism causing meningitis, and meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using and models of the blood-brain barrier have shown that meningitis follows a high degree of bacteremia and invasion of the blood-brain barrier. invasion of the blood-brain barrier, the essential step in the development of meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to invasion of the blood-brain barrier is shown to be efficient in preventing penetration into the brain. The basis for requiring a high degree of bacteremia for penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high degree of bacteremia and invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of meningitis.

  • Citation: Kim K. 2016. Human Meningitis-Associated , EcoSal Plus 2016; doi:10.1128/ecosalplus.ESP-0015-2015

Article Version

This article is an updated version of the following content:

References

1. Chang CJ, Chang WN, Huang LT, Huang SC, Chang YC, Hung PL, Lu CH, Chang CS, Cheng BC, Lee PY, Wang KW, Chang HW. 2004. Bacterial meningitis in infants: the epidemiology, clinical features, and prognostic factors. Brain Dev 26:168–175. [PubMed][CrossRef]
2. Dawson KG, Emerson JC, Burns JL. 1999. Fifteen years of experience with bacterial meningitis. Pediatr Infect Dis J 18:816–822. [PubMed][CrossRef]
3. de Louvois J, Halket S, Harvey D. 2004. Neonatal meningitis in England and Wales: sequelae at 5 years of age. Eur J Pediatr 7:730–734.
4. Doctor BA, Newman N, Minich NM, Taylor HG, Fanaroff AA, Hack M. 2001. Clinical outcomes of neonatal meningitis in very-low birth-weight infants. Clin Pediatr (Phila) 40:473–480. [PubMed][CrossRef]
5. Gladstone IM, Ehrenkranz RA, Edberg SC, Baltimore RS. 1990. A ten-year review of neonatal sepsis and comparison with the previous fifty-year experience. Pediatr Infect Dis J 9:819–825. [PubMed][CrossRef]
6. Holt DE, Halket S, de Louvois J, Harvey D. 2001. Neonatal meningitis in England and Wales: 10 years on. Arch Dis Child Fetal Neonatal Ed 84:F85–F89. [PubMed][CrossRef]
7. Kim KS. 2010. Acute bacterial meningitis in infants and children. Lancet Infect Dis 10:32–42. [PubMed][CrossRef]
8. Klinger G, Chin C-N, Beyene J, Perlman M. 2000. Predicting the outcome of neonatal bacterial meningitis. Pediatrics 106:477–482. [PubMed][CrossRef]
9. Stevens JP, Eames M, Kent A, Halket S, Holt D, Harvey D. 2003. Long term outcome of neonatal meningitis. Arch Dis Child Fetal Neonatal Ed 88:F179–F184. [PubMed][CrossRef]
10. Unhanand M, Mustafa MM, McCracken GH, Jr, Nelson JD. 1993. Gram-negative enteric bacillary meningitis: a twenty-one-year experience. J Pediatr 122:15–21. [PubMed][CrossRef]
11. Kim KS. 1985. Comparison of cefotaxime, imipenem-cilastatin, ampicillin-gentamicin, and ampicillin-chloramphenicol in the treatment of experimental Escherichia coli bacteremia and meningitis. Antimicrob Agents Chemother 28:433–436. [PubMed][CrossRef]
12. McCracken GH, Jr, Threlkeld N, Mize S, Baker CJ, Kapal SL, Fraingezicht I, Feldman WF, Schad U, Neonatal Meningitis Cooperative Study Group. 1984. Moxalactam therapy for neonatal meningitis due to gram-negative sepsis enteric bacilli. JAMA 252:1427–1432. [PubMed][CrossRef]
13. Dietzman DE, Fischer GW, Schoenknecht FD. 1974. Neonatal Escherichia coli septicemia--bacterial counts in blood. J Pediatr 85:128–130. [CrossRef]
14. Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS. 1992. The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Invest 90:897–905. [PubMed][CrossRef]
15. Gross RJ, Ward LR, Threlfall EJ, Cheasty T, Rowe B. 1983. Drug resistance among Escherichia coli strains isolated from cerebrospinal fluid. J Hyg (Lond) 90:195–198. [PubMed][CrossRef]
16. Korhonen TK, Valtonen MV, Parkkinen J, Väisänen-Rhen V, Finne J, Orskov F, Orskov I, Svenson SB, Mäkelä PH. 1985. Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis. Infect Immun 48:486–491. [PubMed]
17. Robbins JB, McCracken GH, Jr, Gotschlich EC, Orskov F, Orskov I, Hanson LA. 1974. Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis. N Engl J Med 290:1216–1220. [PubMed][CrossRef]
18. Bonacorsi S, Clermont O, Houdouin V, Cordevant C, Brahimi N, Marecat A, Tinsley C, Nassif X, Lange M, Bingen E. 2003. Molecular analysis and experimental virulence of French and North American Escherichia coli neonatal meningitis isolates: identification of a new virulent clone. J Infect Dis 187:1895–1906. [PubMed][CrossRef]
19. Kim KS, Kang JH, Cross AS, Kaufman B, Zollinger W, Sadoff J. 1988. Functional activities of monoclonal antibodies to the O side chain of Escherichia coli lipopolysaccharides in vitro and in vivo. J Infect Dis 157:47–53. [PubMed][CrossRef]
20. Sarff LD, McCracken GH, Jr, Schiffer MS, Glode MP, Robbins JB, Orskov I, Orskov F. 1975. Epidemiology of Escherichia coli K1 in healthy and diseased newborns. Lancet 1:1099–1104. [PubMed][CrossRef]
21. Kim KS. 2008. Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol 6:625–634. [PubMed][CrossRef]
22. Kim KS. 2001. Escherichia coli translocation at the blood-brain barrier. Infect Immun 69:5217–5222. [PubMed][CrossRef]
23. Kim KS. 2002. Strategy of Escherichia coli for crossing the blood-brain barrier. J Infect Dis 186(Suppl 2):S220–S224. [PubMed][CrossRef]
24. Kim KS. 2003. Neurological diseases: pathogenesis of bacterial meningitis: from bacteremia to neuronal injury. Nat Rev Neurosci 4:376–385. [PubMed][CrossRef]
25. Kim KS. 2014. How pathogens penetrate the blood-brain barrier. Microbe 9:487–492.
26. Rubin LL, Staddon JM. 1999. The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28. [PubMed][CrossRef]
27. Kim BY, Kang J, Kim KS. 2005. Invasion processes of pathogenic Escherichia coli. Int J Med Microbiol 295:463–470. [PubMed][CrossRef]
28. Kim KS. 2012. Current concepts on the pathogenesis of E. coli meningitis; implications for prevention and therapy. Curr Opin Infect Dis 25:273–278. [PubMed][CrossRef]
29. Kim YV, DiCello F, Hillaire CS, Kim KS. 2004. Protease-activated receptors of human brain microvascular endothelial cells: expression and differential Ca2+ signaling induced by thrombin and protease-activated receptor-1 activating peptide. Am J Physiol Cell Physiol 286:C31–C42. [PubMed][CrossRef]
30. Stins MF, Badger J, Sik Kim K. 2001. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 30:19–28. [PubMed][CrossRef]
31. Stins MF, Gilles F, Kim KS. 1997. Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76:81–90. [PubMed][CrossRef]
32. Rüffer C, Strey A, Janning A, Kim KS, Gerke V. 2004. Cell-cell junctions of dermal microvascular endothelial cells contain tight and adherens junction proteins in spatial proximity. Biochemistry 43:5360–5369. [PubMed][CrossRef]
33. Nemani PV, Stins M, Wass CA, Shimada H, Kim KS. 1999. Outer membrane A promoted cytoskeletal rearrangement of brain microvascular endothelial cells is required for E. coli invasion. Infect Immun 67:5775–5783.
34. Huang SH, Wass C, Fu Q, Prasadarao NV, Stins M, Kim KS. 1995. Escherichia coli invasion of brain microvascular endothelial cells in vitro and in vivo: molecular cloning and characterization of invasion gene ibe10. Infect Immun 63:4470–4475. [PubMed]
35. Huang SH, Chen YH, Fu Q, Stins M, Wang Y, Wass C, Kim KS. 1999. Identification and characterization of an Escherichia coli invasion gene locus, ibeB, required for penetration of brain microvascular endothelial cells. Infect Immun 67:2103–2109. [PubMed]
36. Hoffman JA, Badger JL, Zhang Y, Huang SH, Kim KS. 2000. Escherichia coli K1 aslA contributes to invasion of brain microvascular endothelial cells in vitro and in vivo. Infect Immun 68:5062–5067. [PubMed][CrossRef]
37. Wang Y, Huang SH, Wass CA, Stins MF, Kim KS. 1999. The gene locus yijP contributes to Escherichia coli K1 invasion of brain microvascular endothelial cells. Infect Immun 67:4751–4756. [PubMed]
38. Wang Y, Kim KS. 2002. Role of OmpA and IbeB in Escherichia coli K1 invasion of brain microvascular endothelial cells in vitro and in vivo. Pediatr Res 51:559–563. [PubMed][CrossRef]
39. Wang Y, Wen ZG, Kim KS. 2004. Role of S fimbriae in Escherichia coli K1 binding to brain microvascular endothelial cells in vitro and penetration into the central nervous system in vivo. Microb Pathog 37:287–293. [PubMed][CrossRef]
40. Zhu L, Maruvada R, Sapirstein A, Malik KU, Peters-Golden M, Kim KS. 2010a. Arachidonic acid metabolism regulates Escherichia coli penetration of the blood-brain barrier. Infect Immun 78:4302–4310. [PubMed][CrossRef]
41. Zhu L, Pearce D, Kim KS. 2010b. Prevention of Escherichia coli K1 penetration of the blood-brain barrier by counteracting the host cell receptor and signaling molecule involved in E. coli invasion of human brain microvascular endothelial cells. Infect Immun 78:3554–3559. [PubMed][CrossRef]
42. Kim KS, Wass CA, Cross AS. 1997. Blood-brain barrier permeability during the development of experimental bacterial meningitis in the rat. Exp Neurol 145:253–257. [PubMed][CrossRef]
43. Xie Y, Kim KJ, Kim KS. 2004. Current concepts on Escherichia coli K1 translocation of the blood-brain barrier. FEMS Immunol Med Microbiol 42:271–279. [PubMed][CrossRef]
44. Stins MF, Nemani PV, Wass C, Kim KS. 1999. Escherichia coli binding to and invasion of brain microvascular endothelial cells derived from humans and rats of different ages. Infect Immun 67:5522–5525. [PubMed]
45. Cross AS, Kim KS, Wright DC, Sadoff JC, Gemski P. 1986. Role of lipopolysaccharide and capsule in the serum resistance of bacteremic strains of Escherichia coli. J Infect Dis 154:497–503. [PubMed][CrossRef]
46. Kim KS, Kang JH, Cross AS. 1986. The role of capsular antigens in serum resistance and in vivo virulence of Escherichia coli. FEMS Microbiol Lett 35:275–278. [CrossRef]
47. Cross A, Artenstein A, Que J, Fredeking T, Furer E, Sadoff JC, Cryz SJ, Jr. 1994. Safety and immunogenicity of a polyvalent Escherichia coli vaccine in human volunteers. J Infect Dis 170:834–840. [PubMed][CrossRef]
48. Finne J, Bitter-Suermann D, Goridis C, Finne U. 1987. An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J Immunol 138:4402–4407. [PubMed]
49. Söderström T, Hansson G, Larson G. 1984. The Escherichia coli K1 capsule shares antigenic determinants with the human gangliosides GM3 and GD3. N Engl J Med 310:726–727. [PubMed][CrossRef]
50. Moriel DG, Bertoldi I, Spagnuolo A, Marchi S, Rosini R, Nesta B, Pastorello I, Corea VA, Torricelli G, Cartocci E, Savino S, Scarselli M, Dobrindt U, Hacker J, Tettelin H, Tallon LJ, Sullivan S, Wieler LH, Ewers C, Pickard D, Dougan G, Fontana MR, Rappuoli R, Pizza M, Serino L. 2010. Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc Natl Acad Sci USA 107:9072–9077. [PubMed][CrossRef]
51. Xie Y, Kolisnychenko V, Paul-Satyaseela M, Elliott S, Parthasarathy G, Yao Y, Plunkett G III, Blattner FR, Kim KS. 2006. Identification and characterization of Escherichia coli RS218-derived islands in the pathogenesis of E. coli meningitis. J Infect Dis 194:358–364. [PubMed][CrossRef]
52. Teng CH, Tseng YT, Maruvada R, Pearce D, Xie Y, Paul-Satyaseela M, Kim KS. 2010. NlpI contributes to Escherichia coli K1 strain RS218 interaction with human brain microvascular endothelial cells. Infect Immun 78:3090–3096. [PubMed][CrossRef]
53. Tseng YT, Wang SW, Kim KS, Wang YH, Yao Y, Chen CC, Chiang CW, Hsieh PC, Teng CH. 2012. NlpI facilitates deposition of C4bp on Escherichia coli by blocking classical complement-mediated killing, which results in high-level bacteremia. Infect Immun 80:3669–3678. [PubMed][CrossRef]
54. Wieser A, Magistro G, Nörenberg D, Hoffmann C, Schubert S. 2012. First multi-epitope subunit vaccine against extraintestinal pathogenic Escherichia coli delivered by a bacterial type-3 secretion system (T3SS). Int J Med Microbiol 302:10–18. [PubMed][CrossRef]
55. Khan NA, Wang Y, Kim KJ, Chung JW, Wass CA, Kim KS. 2002. Cytotoxic necrotizing factor-1 contributes to Escherichia coli K1 invasion of the central nervous system. J Biol Chem 277:15607–15612. [PubMed][CrossRef]
56. Khan NA, Kim Y, Shin S, Kim KS. 2007. FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell Microbiol 9:169–178. [PubMed][CrossRef]
57. Prasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS. 1996b. Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 64:146–153. [PubMed]
58. Shin S, Lu G, Cai M, Kim KS. 2005. Escherichia coli outer membrane protein A adheres to human brain microvascular endothelial cells. Biochem Biophys Res Commun 330:1199–1204. [PubMed][CrossRef]
59. Teng CH, Cai M, Shin S, Xie Y, Kim KJ, Khan NA, Di Cello F, Kim KS. 2005. Escherichia coli K1 RS218 interacts with human brain microvascular endothelial cells via type 1 fimbria phase-on bacteria. Infect Immun 73:2923–2931. [PubMed][CrossRef]
60. Orskov I, Orskov F. 1983. Serology of Escherichia coli fimbriae. Prog Allergy 33:80–105. [PubMed]
61. Xie Y, Yao Y, Kolisnychenko V, Teng CH, Kim KS. 2006. HbiF regulates type 1 fimbriation independently of FimB and FimE. Infect Immun 74:4039–4047. [PubMed][CrossRef]
62. Kim Y, Pearce D, Kim KS. 2008. Ca2+/Calmodulin-dependent invasion of the human brain microvascular endothelial cells by Escherichia coli K1. Cell Tissue Res 332:427–433. [PubMed][CrossRef]
63. Parkkinen J, Korhonen TK, Pere A, Hacker J, Soinila S. 1988. Binding sites in the rat brain for Escherichia coli S fimbriae associated with neonatal meningitis. J Clin Invest 81:860–865. [PubMed][CrossRef]
64. Prasadarao NV, Wass CA, Hacker J, Jann K, Kim KS. 1993. Adhesion of S-fimbriated Escherichia coli to brain glycolipids mediated by sfaA gene-encoded protein of S-fimbriae. J Biol Chem 268:10356–10363. [PubMed]
65. Stins MF, Prasadarao NV, Ibric L, Wass CA, Luckett P, Kim KS. 1994. Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am J Pathol 145:1228–1236. [PubMed]
66. Parthasarathy G, Yao Y, Kim KS. 2007. Flagella promote Escherichia coli K1 association with and invasion of human brain microvascular endothelial cells. Infect Immun 75:2937–2945. [PubMed][CrossRef]
67. Xie Y, Parthasarathy G, Di Cello F, Teng CH, Paul-Satyaseela M, Kim KS. 2008. Transcriptome of Escherichia coli K1 bound to human brain microvascular endothelial cells. Biochem Biophys Res Commun 365:201–206. [PubMed][CrossRef]
68. Maruvada R, Kim KS. 2011. Extracellular loops of the Escherichia coli outer membrane protein A contribute to the pathogenesis of meningitis. J Infect Dis 203:131–140. [PubMed][CrossRef]
69. Khan NA, Shin S, Chung JW, Kim KJ, Elliott S, Wang Y, Kim KS. 2003. Outer membrane protein A and cytotoxic necrotizing factor-1 use diverse signaling mechanisms for Escherichia coli K1 invasion of human brain microvascular endothelial cells. Microb Pathog 35:35–42. [PubMed][CrossRef]
70. Nemani PV, Wass CA, Kim KS. 1996a. Endothelial cell GlcNAcB1-4 GlcNAc epitopes for outer membrane protein A traversal of E. coli across the blood-brain barrier. Infect Immun 64:154–160.
71. Teng C-H, Xie Y, Shin S, Di Cello F, Paul-Satyaseela M, Cai M, Kim KS. 2006. Effects of ompA deletion on expression of type 1 fimbriae in Escherichia coli K1 strain RS218 and on the association of E. coli with human brain microvascular endothelial cells. Infect Immun 74:5609–5616. [PubMed][CrossRef]
72. Barnich N, Bringer MA, Claret L, Darfeuille-Michaud A. 2004. Involvement of lipoprotein NlpI in the virulence of adherent invasive Escherichia coli strain LF82 isolated from a patient with Crohn’s disease. Infect Immun 72:2484–2493. [PubMed][CrossRef]
73. Badger JL, Wass CA, Kim KS. 2000. Identification of Escherichia coli K1 genes contributing to human brain microvascular endothelial cell invasion by differential fluorescence induction. Mol Microbiol 36:174–182. [PubMed][CrossRef]
74. Badger J, Wass C, Weissman S, Kim KS. 2000. Application of signature-tagged mutagenesis for the identification of E coli K1 genes that contribute to invasion of the blood-brain barrier. Infect Immun 68:5056–5061. [PubMed][CrossRef]
75. Boquet P. 2001. The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. Toxicon 39:1673–1680. [PubMed][CrossRef]
76. Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P. 1997. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733. [PubMed][CrossRef]
77. Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K. 1997. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387:725–729. [PubMed][CrossRef]
78. Fabbri A, Falzano L, Travaglione S, Stringaro A, Malorni W, Fais S, Fiorentini C. 2002. Rho-activating Escherichia coli cytotoxic necrotizing factor 1: macropinocytosis of apoptotic bodies in human epithelial cells. Int J Med Microbiol 291:551–554. [PubMed][CrossRef]
79. Chung JW, Hong SJ, Kim KJ, Goti D, Stins MF, Shin S, Dawson VL, Dawson TM, Kim KS. 2003. 37-kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. J Biol Chem 278:16857–16862. [PubMed][CrossRef]
80. Massia SP, Rao SS, Hubbell JA. 1993. Covalently immobilized laminin peptide Tyr-Ile-Gly-Ser-Arg (YIGSR) supports cell spreading and co-localization of the 67-kilodalton laminin receptor with alpha-actinin and vinculin. J Biol Chem 268:8053–8059. [PubMed]
81. Kim KJ, Chung JW, Kim KS. 2005. 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J Biol Chem 280:1360–1368. [PubMed][CrossRef]
82. Ménard S, Tagliabue E, Colnaghi MI. 1998. The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat 52:137–145. [PubMed][CrossRef]
83. Yu H, Kim KS. 2010. Ferredoxin is involved in secretion of cytotoxic necrotizing factor 1 across the cytoplasmic membrane in Escherichia coli K1. Infect Immun 78:838–844. [PubMed][CrossRef]
84. Yu H, Kim KS. 2012. YgfZ contributes to secretion of cytotoxic necrotizing factor 1 into outer-membrane vesicles in Escherichia coli. Microbiology 158:612–621. [PubMed][CrossRef]
85. Kim KJ, Elliott SJ, Di Cello F, Stins MF, Kim KS. 2003. The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell Microbiol 5:245–252. [PubMed][CrossRef]
86. Reddy MA, Prasadarao NV, Wass CA, Kim KS. 2000. Phosphatidylinositol 3-kinase activation and interaction with focal adhesion kinase in Escherichia coli K1 invasion of human brain microvascular endothelial cells. J Biol Chem 275:36769–36774. [PubMed][CrossRef]
87. Reddy MA, Wass CA, Kim KS, Schlaepfer DD, Prasadarao NV. 2000. Involvement of focal adhesion kinase in Escherichia coli invasion of human brain microvascular endothelial cells. Infect Immun 68:6423–6430. [PubMed][CrossRef]
88. Maruvada R, Kim KS. 2012. IbeA and OmpA of Escherichia coli K1 exploit Rac1 activation for invasion of human brain microvascular endothelial cells. Infect Immun 80:2035–2041. [PubMed][CrossRef]
89. Zhao WD, Liu W, Fang WG, Kim KS, Chen YH. 2010. Vascular endothelial growth factor receptor 1 contributes to Escherichia coli K1 invasion of human brain microvascular endothelial cells through PI3K/Akt signaling pathway. Infect Immun 78:4809–4816. [PubMed][CrossRef]
90. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. 2000. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19:2803–2812. [PubMed][CrossRef]
91. Rode CK, Melkerson-Watson LJ, Johnson AT, Bloch CA. 1999. Type-specific contributions to chromosome size differences in Escherichia coli. Infect Immun 67:230–236. [PubMed]
92. Bloch CA, Huang SH, Rode CK, Kim KS. 1996. Mapping of noninvasion TnphoA mutations on the Escherichia coli O18:K1:H7 chromosome. FEMS Microbiol Lett 144:171–176. [PubMed][CrossRef]
93. Bonacorsi SP, Clermont O, Tinsley C, Le Gall I, Beaudoin JC, Elion J, Nassif X, Bingen E. 2000. Identification of regions of the Escherichia coli chromosome specific for neonatal meningitis-associated strains. Infect Immun 68:2096–2101. [PubMed][CrossRef]
94. Bingen E, Picard B, Brahimi N, Mathy S, Desjardins P, Elion J, Denamur E. 1998. Phylogenetic analysis of Escherichia coli strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. J Infect Dis 177:642–650. [PubMed][CrossRef]
95. Johnson JR, Delavari P, O’Bryan TT. 2001. Escherichia coli O18:K1:H7 isolates from patients with acute cystitis and neonatal meningitis exhibit common phylogenetic origins and virulence factor profiles. J Infect Dis 183:425–434. [PubMed][CrossRef]
96. Johnson JR, Oswald E, O’Bryan TT, Kuskowski MA, Spanjaard L. 2002. Phylogenetic distribution of virulence-associated genes among Escherichia coli isolates associated with neonatal bacterial meningitis in the Netherlands. J Infect Dis 185:774–784. [PubMed][CrossRef]
97. Yao Y, Xie Y, Kim KS. 2006. Genomic comparison of Escherichia coli K1 strains isolated from the cerebrospinal fluid of patients with meningitis. Infect Immun 74:2196–2206. [PubMed][CrossRef]
98. Houdouin V, Bonacorsi S, Bidet P, Blanco J, De La Rocque F, Cohen R, Aujard Y, Bingen E. 2008. Association between mortality of Escherichia coli meningitis in young infants and non-virulent clonal groups of strains. Clin Microbiol Infect 14:685–90. [PubMed][CrossRef]
99. Ideses D, Gophna U, Paitan Y, Chaudhuri RR, Pallen MJ, Ron EZ. 2005. A degenerate type III secretion system from septicemic Escherichia coli contributes to pathogenesis. J Bacteriol 187:8164–8171. [PubMed][CrossRef]
100. Lu S, Zhang X, Zhu Y, Kim KS, Yang J, Jin Q. 2011. Complete genome sequence of the neonatal-meningitis-associated Escherichia coli strain CE10. J Bacteriol 193:7005. [PubMed][CrossRef]
101. Yao Y, Xie Y, Perace D, Zhong Y, Lu J, Tao J, Guo X, Kim KS. 2009. The type III secretion system is involved in the invasion and intracellular survival of Escherichia coli K1 in human brain microvascular endothelial cells. FEMS Microbiol Lett 300:18–24. [PubMed][CrossRef]
102. Zhou Y, Tao J, Yu H, Ni J, Zeng L, Teng Q, Kim KS, Zhao GP, Guo X, Yao Y. 2012. Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun 80:1243–1251. [PubMed][CrossRef]
103. Peigne C, Bidet P, Mahjoub-Messai F, Plainvert C, Barbe V, Médigue C, Frapy E, Nassif X, Denamur E, Bingen E, Bonacorsi S. 2009. The plasmid of Escherichia coli strain S88 (O45:K1:H7) that causes neonatal meningitis is closely related to avian pathogenic E. coli plasmids and is associated with high-level bacteremia in a neonatal rat meningitis model. Infect Immun 77:2272–2284. [PubMed][CrossRef]
104. Wijetunge DS, Karunathilake KH, Chaudhari A, Katani R, Dudley EG, Kapur V, DebRoy C, Kariyawasam S. 2014. Complete nucleotide sequence of pRS218, a large virulence plasmid that augments pathogenic potential of meningitis-associated Escherichia coli strain RS218. BMC Microbiol 14:203. [PubMed][CrossRef]
105. Das A, Asatryan L, Reddy MA, Wass CA, Stins MF, Joshi S, Bonventre JV, Kim KS. 2001. Differential role of cytosolic phospholipase A2 in the invasion of brain microvascular endothelial cells by Escherichia coli and Listeria monocytogenes. J Infect Dis 184:732–737. [PubMed][CrossRef]
106. Galanakis E, Di Cello F, Paul-Satyaseela M, Kim KS. 2006. Escherichia coli K1 induces IL-8 expression in human brain microvascular endothelial cells. Eur Cytokine Netw 17:260–265. [PubMed]
107. Sokolova O, Heppel N, Jägerhuber R, Kim KS, Frosch M, Eigenthaler M, Schubert-Unkmeir A. 2004. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell Microbiol 6:1153–1166. [PubMed][CrossRef]
108. journal-id:
ecosalplus.ESP-0015-2015.citations
ecosalplus/7/1
content/journal/ecosalplus/10.1128/ecosalplus.ESP-0015-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0015-2015
2016-04-29
2017-07-21

Abstract:

is the most common Gram-negative bacillary organism causing meningitis, and meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using and models of the blood-brain barrier have shown that meningitis follows a high degree of bacteremia and invasion of the blood-brain barrier. invasion of the blood-brain barrier, the essential step in the development of meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to invasion of the blood-brain barrier is shown to be efficient in preventing penetration into the brain. The basis for requiring a high degree of bacteremia for penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high degree of bacteremia and invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of meningitis.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Scale bar = 1 μm. Modified with permission from reference 25 .

Citation: Kim K. 2016. Human Meningitis-Associated , EcoSal Plus 2016; doi:10.1128/ecosalplus.ESP-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Modified with permission from reference 25 .

Citation: Kim K. 2016. Human Meningitis-Associated , EcoSal Plus 2016; doi:10.1128/ecosalplus.ESP-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Mechanisms involved in penetration of the blood-brain barrier and factors contributing to translocation of the blood-brain barrier

Citation: Kim K. 2016. Human Meningitis-Associated , EcoSal Plus 2016; doi:10.1128/ecosalplus.ESP-0015-2015
Generic image for table
Table 2

Development of bacteremia and meningitis (defined as positive CSF cultures) in newborn rats receiving meningitis-causing strain RS 218 or its isogenic mutants

Citation: Kim K. 2016. Human Meningitis-Associated , EcoSal Plus 2016; doi:10.1128/ecosalplus.ESP-0015-2015
Generic image for table
Table 3

Size and characteristics of eight RDIs derived from meningitis-causing strain RS218 that are involved in the pathogenesis of meningitis

Citation: Kim K. 2016. Human Meningitis-Associated , EcoSal Plus 2016; doi:10.1128/ecosalplus.ESP-0015-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error