1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antibody Informatics: IMGT, the International ImMunoGeneTics Information System

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    104.46 Kb
  • PDF
    1.40 MB
  • XML
    90.16 Kb
  • Author: Marie-Paule Lefranc1
  • Editors: James E. Crowe Jr.2, Diana Boraschi3, Rino Rappuoli4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: IMGT, the international ImMunoGeneTics information system, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, Montpellier, 34396 cedex 5, France; 2: Vanderbilt University School of Medicine, Nashville, TN; 3: National Research Council, Pisa, Italy; 4: Novartis Vaccines, Siena, Italy
  • Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.AID-0001-2012
  • Received 21 August 2012 Accepted 28 October 2013 Published 07 March 2014
  • Marie-Paule Lefranc, Marie-Paule.Lefranc@igh.cnrs.fr
image of Antibody Informatics: IMGT, the International ImMunoGeneTics Information System
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antibody Informatics: IMGT, the International ImMunoGeneTics Information System, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/2/AID-0001-2012-1.gif /docserver/preview/fulltext/microbiolspec/2/2/AID-0001-2012-2.gif
  • Abstract:

    Antibody informatics, a part of immunoinformatics, refers to the concepts, databases, and tools developed and used to explore and to analyze the particular properties of the immunoglobulins (IG) or antibodies, compared with conventional genes and proteins. Antibody informatics is based on a unique ontology, IMGT-ONTOLOGY, created in 1989 by IMGT, the international ImMunoGeneTics information system (http://www.imgt.org). IMGT-ONTOLOGY defined, for the first time, the concept of ‘genes’ for the IG and the T cell receptors (TR), which led to their gene and allele nomenclature and allowed their entry in databases and tools. A second IMGT-ONTOLOGY revolutionizing and definitive concept was the IMGT unique numbering that bridged the gap between sequences and structures for the variable (V) and constant (C) domains of the IG and TR, and for the groove (G) domains of the major histocompatibility (MH). These breakthroughs contributed to the development of IMGT databases and tools for antibody informatics and its diverse applications, such as repertoire analysis in infectious diseases, antibody engineering and humanization, and study of antibody/antigen interactions. Nucleotide sequences of antibody V domains from deep sequencing (Next Generation Sequencing or High Throughput Sequencing) are analyzed with IMGT/HighV-QUEST, the high-throughput version of IMGT/V-QUEST and IMGT/JunctionAnalysis. Amino acid sequences of V and C domains are represented with the IMGT/Collier-de-Perles tool and analyzed with IMGT/DomainGapAlign. Three-dimensional (3D) structures (including contact analysis and paratope/epitope) are described in IMGT/3Dstructure-DB. Based on a friendly interface, IMGT/mAb-DB contains therapeutic monoclonal antibodies (INN suffix–mab) that can be queried on their specificity, for example, in infectious diseases, on bacterial or viral targets.

  • Citation: Lefranc M. 2014. Antibody Informatics: IMGT, the International ImMunoGeneTics Information System. Microbiol Spectrum 2(2):AID-0001-2012. doi:10.1128/microbiolspec.AID-0001-2012.

Key Concept Ranking

Amino Acids
0.57008904
T Cell Receptor
0.4643291
0.57008904

References

1. Lefranc M-P, Lefranc G. 2001. The Immunoglobulin FactsBook. Academic Press, London, United Kingdom.
2. Lefranc M-P, Lefranc G. 2001. The T Cell Receptor FactsBook. Academic Press, London, United Kingdom.
3. Lefranc M-P, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene F, Wu Y, Gemrot E, Brochet X, Lane J, Regnier L, Ehrenmann F, Lefranc G, Duroux P. 2009. IMGT®, the international ImMunoGeneTics information system®.Nucl Acids Res 37:D1006–D1012. [PubMed][CrossRef]
4. Giudicelli V, Lefranc M-P. 1999. Ontology for immunogenetics: IMGT-ONTOLOGY. Bioinformatics 15:1047–1054. [PubMed]
5. Lefranc M-P, Giudicelli V, Ginestoux C, Bosc N, Folch G, Guiraudou D, Jabado-Michaloud J, Magris S, Scaviner D, Thouvenin V, Combres K, Girod D, Jeanjean S, Protat C, Yousfi Monod M, Duprat E, Kaas Q, Pommié C, Chaume D, Lefranc G. 2004. IMGT-ONTOLOGY for immunogenetics and immunoinformatics. In Silico Biol 4:17–29. [PubMed]
6. Lefranc M-P, Clément O, Kaas Q, Duprat E, Chastellan P, Coelho I, Combres K, Ginestoux C, Giudicelli V, Chaume D, Lefranc G. 2005. IMGT-Choreography for Immunogenetics and Immunoinformatics. In SilicoBiol 5:45–60. [PubMed]
7. Lefranc M-P, Giudicelli V, Regnier L, Duroux P. 2008. IMGT®, a system and an ontology that bridge biological and computational spheres in bioinformatics. Brief Bioinform 9:263–275. [PubMed][CrossRef]
8. Duroux P, Kaas Q, Brochet X, Lane J, Ginestoux C, Lefranc M-P, Giudicelli V. 2008. IMGT-Kaleidoscope, the formal IMGT-ONTOLOGY paradigm. Biochimie 90:570–583. [PubMed][CrossRef]
9. Giudicelli V, Lefranc M-P. 2012. IMGT-ONTOLOGY 2012. Front Genet 3:79. doi:10.3389/fgene.2012.00079. [CrossRef]
10. Lefranc M-P. 2013. IMGT-ONTOLOGY, p. 964–972. In Dubitzky W, Wolkenhauer O, Cho K, Yokota H (ed), Encyclopedia of Systems Biology, doi:10.1007/978-1-4419-9863-7. Springer Science+Business Media, LLC012, Rueil-Malmaison, France.
11. Lefranc M-P. 2011. From IMGT-ONTOLOGY CLASSIFICATION Axiom to IMGT standardized gene and allele nomenclature: for immunoglobulins (IG) and T cell receptors (TR). Cold Spring Harb Protoc 6:627–632. pii: pdb.ip84. doi:10.1101/pdb.ip84. [CrossRef]
12. Lefranc M-P. 2001. Nomenclature of the human immunoglobulin genes, p A.1P.1–A.1P.37. In Coligan JE, Bierer BE, Margulies DE, Shevach EM, Strober W (ed), Current Protocols in Immunology. John Wiley and Sons, Hoboken, NJ.
13. Lefranc M-P. 2001. Nomenclature of the human T cell receptor genes, p A.1O.1–A.1O.23. In Coligan JE, Bierer BE, Margulies DE, Shevach EM, Strober W (ed), Current Protocols in Immunology. John Wiley and Sons, Hoboken, NJ.
14. Wain HM, Bruford EA, Lovering RC, Lush MJ, Wright MW, Povey S. 2002. Guidelines for human gene nomenclature. Genomics 79:464–470. [PubMed][CrossRef]
15. Bruford EA, Lush MJ, Wright MW, Sneddon TP, Povey S, Birney E. 2008. The HGNC Database in 2008: a resource for the human genome. Nucl Acids Res 36:D445–D448. [PubMed][CrossRef]
16. Lefranc M-P. 2007. WHO-IUIS Nomenclature Subcommittee for immunoglobulins and T cell receptors report. Immunogenetics 59:899–902. [PubMed][CrossRef]
17. Lefranc M-P. 2008. WHO-IUIS Nomenclature Subcommittee for immunoglobulins and T cell receptors report August 2007, 13th International Congress of Immunology, Rio de Janeiro, Brazil. Dev Comp Immunol 32:461–463.
18. Giudicelli V, Chaume D, Lefranc M-P. 2005. IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucl Acids Res 33:D256–D261. [PubMed][CrossRef]
19. Letovsky SI., Cottingham RW, Porter CJ, Li PW. 1998. GDB: the Human Genome Database. Nucl Acids Res 26:94–99. [PubMed]
20. Maglott DR, Katz KS, Sicotte H, Pruitt KD. 2000. NCBI’s LocusLink and RefSeq. Nucl Acids Res 28:126–128. [PubMed]
21. Maglott D, Ostell J, Pruitt KD, Tatusova T. 2007. Entrez Gene: gene-centered information at NCBI. Nucl Acids Res 35:D26–D31. [PubMed][CrossRef]
22. Stabenau A, McVicker G, Melsopp C, Proctor G, Clamp M, Birney E. 2004. The Ensembl core software libraries. Genome Res 14:929–933. [PubMed][CrossRef]
23. Wilming LG, Gilbert JG, Howe K, Trevanion S, Hubbard T, Harrow JL. 2008. The vertebrate genome annotation (Vega) database. Nucl Acids Res 36:D753–D760. [PubMed][CrossRef]
24. Lefranc M-P. 2011. Antibody nomenclature: from IMGT-ONTOLOGY to INN definition. mAbs 3:1–2. [PubMed]
25. World Health Organization. 2011. General policies for monoclonal antibodies, p 8–10. In International Nonproprietary Names (INN) for Biological and Biotechnological Substances, INN Working Document 05.179, Update 2011. http://www.who.int/medicines/services/inn/en.
26. Ehrenmann F, Kaas Q, Lefranc M-P. 2010. IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF. Nucl Acids Res 38:D301–D307. [PubMed][CrossRef]
27. Poiron C, Wu Y, Ginestoux C, Ehrenmann F, Duroux P, Lefranc M-P. 2010. IMGT/mAb-DB: the IMGT® database for therapeutic monoclonal antibodies, poster 101. 11èmes Journées Ouvertes de Biologie, Informatique et Mathématiques (JOBIM), Montpellier, France, 7 to 9 September 2010.
28. Lefranc M-P. 1997. Unique database numbering system for immunogenetic analysis. Immunol Today 18:509. [PubMed]
29. Lefranc M-P. 1999. The IMGT unique numbering for Immunoglobulins, T cell receptors and Ig-like domains. The Immunologist 7:132–136.
30. Lefranc M-P, Pommié C, Ruiz M, Giudicelli V, Foulquier E, Truong L, Thouvenin-Contet V, Lefranc G. 2003. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77. [PubMed]
31. Lefranc M-P, Pommié C, Kaas Q, Duprat E, Bosc N, Guiraudou D, Jean C, Ruiz M, Da Piedade I, Rouard M, Foulquier E, Thouvenin V, Lefranc G. 2005. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains. Dev Comp Immunol 29:185–203. [PubMed]
32. Lefranc M-P. 2011. IMGT Unique Numbering for the Variable (V), Constant (C), and Groove (G) Domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb Protoc 6:633–642. pii: pdb.ip85. doi:10.1101/pdb.ip85. [CrossRef]
33. Lefranc M-P, Duprat E, Kaas Q, Tranne M, Thiriot A, Lefranc G. 2005. IMGT unique numbering for MHC groove G-DOMAIN and MHC superfamily (MhcSF) G-LIKE-DOMAIN. Dev Comp Immunol 29:917–938. [PubMed][CrossRef]
34. Ruiz M, Lefranc M-P. 2002. IMGT gene identification and Colliers de Perles of human immunoglobulins with known 3D structures. Immunogenetics 53:857–883. [PubMed][CrossRef]
35. Kaas Q, Lefranc M-P. 2007. IMGT Colliers de Perles: standardized sequence-structure representations of the IgSF and MhcSF superfamily domains. Curr Bioinformatics 2:21–30.
36. Kaas Q, Ehrenmann F, Lefranc M-P. 2007. IG, TR and IgSf, MHC and MhcSF: what do we learn from the IMGT Colliers de Perles? Brief Funct Genomic Proteomic 6:253–264. [PubMed][CrossRef]
37. Lefranc M-P. 2011. IMGT Collier de Perles for the Variable (V), Constant (C), and Groove (G) Domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb Protoc 6:643–651. pii: pdb.ip86. doi:10.1101/pdb.ip86. [CrossRef]
38. Ehrenmann F, Giudicelli V, Duroux, P, Lefranc M-P. 2011. IMGT/Collier-de-Perles: IMGT Standardized Representation of Domains (IG, TR, and IgSF Variable and Constant Domains, MH and MhSF Groove Domains). Cold Spring Harb Protoc 6:726–736. pii: pdb.prot5635. doi:10.1101/pdb.prot5635. [CrossRef]
39. Lefranc M-P. 2004. IMGT, the international ImMunoGenetics information system®. In Lo BKC (ed), Antibody Engineering: Methods and Protocols, 2nd edition. Humana Press, Totowa, NJ. Meth Mol Biol 248:27–49.
40. Lefranc M-P. 2009. Antibody databases and tools: The IMGT® experience, p 91–114. In An Z (ed), Therapeutic Monoclonal Antibodies: from Bench to Clinic. John Wiley and Sons, Hoboken, NJ.
41. Ehrenmann F, Duroux P, Giudicelli V, Lefranc M-P. 2010. Standardized sequence and structure analysis of antibody using IMGT®, p 11–31. In Kontermann R, Dübel S (ed), Antibody Engineering, vol 2. Springer-Verlag, Heidelberg, Germany.
42. Lefranc MP, Ehrenmann F, Ginestoux C, Duroux P, Giudicelli V. 2012. Use of IMGT® databases and tools for antibody engineering and humanization. In Chames P (ed), Antibody Engineering. Humana Press, Springer, New York, NY. Meth Mol Biol 907:3–37.
43. Alamyar E, Giudicelli V, Shuo L, Duroux P, Lefranc M-P. 2012. IMGT/HighV-QUEST: the IMGT® web portal for immunoglobulin (IG) or antibody and T cell receptor (TR) analysis from NGS high throughput and deep sequencing. Immunome Res 8:26.
44. Giudicelli V, Brochet X, Lefranc M-P. 2011. IMGT/V-QUEST: IMGT Standardized Analysis of the Immunoglobulin (IG) and T Cell Receptor (TR) Nucleotide Sequences. Cold Spring Harb Protoc. 6:695–715. pii: pdb.prot5633. doi:10.1101/pdb.prot5633. [CrossRef]
45. Giudicelli V, Lefranc M-P. 2011. IMGT/JunctionAnalysis: IMGT Standardized Analysis of the V-J and V-D-J Junctions of the Rearranged Immunoglobulins (IG) and T Cell Receptors (TR). Cold Spring Harb Protoc 6:716–725. pii: pdb.prot5634. doi:10.1101/pdb.prot5634. [CrossRef]
46. Alamyar E, Duroux P, Lefranc M-P, Giudicelli V. 2012. IMGT® tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. In Christiansen F, Tait B (ed), Immunogenetics. Humana Press, Springer, New York, NY. Meth Mol Biol 882:569–604.
47. Ehrenmann F, Lefranc M-P. 2011. IMGT/DomainGapAlign: IMGT Standardized Analysis of Amino Acid Sequences of Variable, Constant, and Groove Domains (IG, TR, MH, IgSF, MhSF). Cold Spring Harb Protoc 6:737–749. pii: pdb.prot5636. doi:10.1101/pdb.prot5636. [CrossRef]
48. Ehrenmann F, Lefranc M-P. (2011) IMGT/3Dstructure-DB: Querying the IMGT Database for 3D Structures in Immunology and Immunoinformatics (IG or Antibodies, TR, MH, RPI, and FPIA). Cold Spring Harb Protoc 6:750–761. pii: pdb.prot5637. doi:10.1101/pdb.prot5637. [CrossRef]
49. Pommié C, Levadoux S, Sabatier R, Lefranc M-P. 2004. IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. J Mol Recognit 17:17–32. [PubMed][CrossRef]
50. Lefranc M-P, Lefranc G. 2012. Human Gm, Km and Am allotypes and their molecular characterization: a remarkable demonstration of polymorphism. In Christiansen F, Tait B (ed), Immunogenetics. Humana Press, Springer, New York, NY. Meth Mol Biol 882:635–680.
microbiolspec.AID-0001-2012.citations
cm/2/2
content/journal/microbiolspec/10.1128/microbiolspec.AID-0001-2012
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.AID-0001-2012
2014-03-07
2017-09-24

Abstract:

Antibody informatics, a part of immunoinformatics, refers to the concepts, databases, and tools developed and used to explore and to analyze the particular properties of the immunoglobulins (IG) or antibodies, compared with conventional genes and proteins. Antibody informatics is based on a unique ontology, IMGT-ONTOLOGY, created in 1989 by IMGT, the international ImMunoGeneTics information system (http://www.imgt.org). IMGT-ONTOLOGY defined, for the first time, the concept of ‘genes’ for the IG and the T cell receptors (TR), which led to their gene and allele nomenclature and allowed their entry in databases and tools. A second IMGT-ONTOLOGY revolutionizing and definitive concept was the IMGT unique numbering that bridged the gap between sequences and structures for the variable (V) and constant (C) domains of the IG and TR, and for the groove (G) domains of the major histocompatibility (MH). These breakthroughs contributed to the development of IMGT databases and tools for antibody informatics and its diverse applications, such as repertoire analysis in infectious diseases, antibody engineering and humanization, and study of antibody/antigen interactions. Nucleotide sequences of antibody V domains from deep sequencing (Next Generation Sequencing or High Throughput Sequencing) are analyzed with IMGT/HighV-QUEST, the high-throughput version of IMGT/V-QUEST and IMGT/JunctionAnalysis. Amino acid sequences of V and C domains are represented with the IMGT/Collier-de-Perles tool and analyzed with IMGT/DomainGapAlign. Three-dimensional (3D) structures (including contact analysis and paratope/epitope) are described in IMGT/3Dstructure-DB. Based on a friendly interface, IMGT/mAb-DB contains therapeutic monoclonal antibodies (INN suffix–mab) that can be queried on their specificity, for example, in infectious diseases, on bacterial or viral targets.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/2/AID-0001-2012.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.AID-0001-2012&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

IMGT Collier de Perles for V-DOMAIN and C-DOMAIN. A, VH and V-KAPPA. B, CH1 and C-KAPPA. The VH, V-KAPPA, CH1, and C-KAPPA of the motavizumab antibody are shown as examples. IMGT Colliers de Perles are shown on one layer (top), on two layers (middle) (INN, from IMGT/2Dstructure-DB, http://www.imgt.org), and on two layers with hydrogen bonds (bottom) (3ixt_H and 3ixt_L, from IMGT/3Dstructure-DB, http://www.imgt.org) ( 26 , 48 ). In the V-DOMAIN, anchors (positions 26 and 39, 55 and 66, 104 and 118) support the three CDR (CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT that correspond to the BC, C′C″, and FG loops, respectively) ( 29 , 30 , 32 ). The VH and V-KAPPA CDR-IMGT lengths are [10.7.12] and [5.3.9], respectively. In the C-DOMAIN, anchors (positions 26 and 39, 104 and 118) support the BC and FG loops as in a V-DOMAIN, whereas in the absence of a C′ strand, C′C″ loops, and C″ strand, anchors 45 and 77 delimit the CD transverse strand ( 31 , 32 ). A ban symbol indicates an error (K instead of CH1 R120) in the 3D structure PDB file (3ixt), detected by using the IMGT unique numbering and by comparison with the INN sequence. A similar type of error (A instead of CH1 V121) has also been detected by IMGT for the 3D structure of the anti-HIV b12 antibody (1hzh). doi:10.1128/microbiolspec.AID-0001-2012.f1

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.AID-0001-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

IMGT/DomainGapAlign alignments. A, VH and V-KAPPA. B, CH1 and C-KAPPA. The closest V-REGION and J-REGION identified at the amino acid level are aligned with the user sequence (here, motavizumab INN 8693, as example). The VH and V-KAPPA are identified as having 86.9% and 83% identity at the amino acid level with the IGHV2-70*01 and IGKV1-5*01, respectively (% identity is shown in an upper section online). Amino acid differences are indicated below the V and J alignments. The FR-IMGT and CDR-IMGT, strands and loops are according to the IMGT unique numbering for V domain ( 28 , 29 , 30 , 32 ). The CH1 and C-KAPPA are identified as having 100% identity at the amino acid level with the IGHG1*03 CH1 and IGKC*01, respectively. IMGT/DomainGapAlign displays the C-domain amino acid sequence of the user, with IMGT gaps and delimitations of the strands, turns, and loops, according to the IMGT unique numbering ( 31 , 32 ). doi:10.1128/microbiolspec.AID-0001-2012.f2

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.AID-0001-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

IMGT/3Dstructure-DB Domain pair contacts and IMGT paratope and epitope details. A, IMGT/3Dstructure-DB Domain pair contacts between the VH of motavizumab (3ixt_H) and the Fusion glycoprotein F1 (ligand) (3ixt_P). B, IMGT/3Dstructure-DB Domain pair contacts between the V-KAPPA of motavizumab (3ixt_L) and the Fusion glycoprotein F1 (ligand) (3ixt_P). ‘Polar,’ ‘Hydrogen bonds,’ and ‘Nonpolar’ were selected before display, in ‘Atom contact types.’ Amino acids belonging to the CDR1-IMGT, CDR2-IMGT, and CDR3-IMGT are colored online according to the IMGT color menu (red, orange, and purple, respectively, for VH; blue, green, and green-blue, respectively, for V-KAPPA). In this 3D structure, all but one amino acid that contact the antigen belong to the CDR-IMGT. Clicking on R@P gives access to the IMGT Residue@Position cards ( 26 , 48 ). C, ‘IMGT paratope and epitope details’ of the IG/Ag complex ‘3ix’t is shown. Each AA that belongs to the IG paratope is characterized by its position in the V domains according to the IMGT unique numbering ( 29 , 30 , 32 ). Thus, ‘A (35V1_A)’ means that the alanine () is at position of the domain of 3ixt_A (VH). In the same way, ‘G(107V1_B)’ means that the glycine () is at position 107 of the domain of 3ixt_B (V-KAPPA). Each AA that belongs to the antigenic determinant (epitope) is characterized by its position (here, position in the chain, in the 3D structure). For example, ‘S (3_C)’ means that the serine (S is at position of the Fusion glycoprotein F1 ligand (3ixt_C), whereas ‘SN (23-24_C)’ means that the serine (S), asparagine () are at positions , . The ‘IMGT paratope and epitope’ analysis of the IG/Ag 3D structure (3ixt) is from IMGT/3Dstructure-DB (http://www.imgt.org). doi:10.1128/microbiolspec.AID-0001-2012.f3

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.AID-0001-2012
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

List of the IMGT/HighV-QUEST results files with number of columns and results content

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.AID-0001-2012

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error