1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Humanized Mice for Studying Human Immune Responses and Generating Human Monoclonal Antibodies

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    114.19 Kb
  • XML
    85.05 Kb
  • PDF
    355.43 Kb
  • Author: Ramesh Akkina1
  • Editors: James E. Crowe Jr.2, Diana Boraschi3, Rino Rappuoli4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; 2: Vanderbilt University School of Medicine, Nashville, TN; 3: National Research Council, Pisa, Italy; 4: Novartis Vaccines, Siena, Italy
  • Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.AID-0003-2012
  • Received 10 September 2012 Accepted 28 October 2013 Published 14 March 2014
  • Ramesh Akkina, akkina@colostate.edu
image of Humanized Mice for Studying Human Immune Responses and Generating Human Monoclonal Antibodies
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Humanized Mice for Studying Human Immune Responses and Generating Human Monoclonal Antibodies, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/2/AID-0003-2012-1.gif /docserver/preview/fulltext/microbiolspec/2/2/AID-0003-2012-2.gif
  • Abstract:

    The new-generation humanized (Hu) mouse models permit multilineage human hematopoiesis and generate T cells, B cells, macrophages, and dendritic cells required for a coordinated human immune response. Therefore, any desired antigen or human-specific pathogens that can infect humanized mice can be used to generate human antibody responses. Two leading humanized mouse models are currently being used. The Hu-HSC model uses the transplantation of human hematopoietic stem cells (HSCs), whereas the BLT mouse model is created by transplantation of human fetal liver, thymus, and HSC. A number of human pathogens such as HIV-1, dengue, Epstein-Barr virus, and hepatitis C virus have been studied in these systems. Responder antigen-specific B cells from these animals can be collected and used to generate human monoclonals by B-cell immortalization or by single-cell PCR methods to “rescue” antibody-producing genes for ectopic expression. Both models generate cellular and humoral immune responses. However, the antibodies generated are primarily of the IgM type because of the inefficient immunoglobulin class switch resulting in the suboptimal production of antigen-specific affinity-matured IgG. The current Hu mouse models thus far have permitted the analysis of human “antibodyome,” and recent reports demonstrated their utility in generating human monoclonal antibodies. Ongoing efforts at further refinements are expected to make these systems more efficient in the near future.

  • Citation: Akkina R. 2014. Humanized Mice for Studying Human Immune Responses and Generating Human Monoclonal Antibodies. Microbiol Spectrum 2(2):AID-0003-2012. doi:10.1128/microbiolspec.AID-0003-2012.

Key Concept Ranking

Toxic Shock Syndrome Toxin 1
0.51724136
Immune Systems
0.5134337
Major Histocompatibility Complex
0.47795606
0.51724136

References

1. Presta LG. 2008. Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 20:460–470. [PubMed][CrossRef]
2. Lonberg N. 2005. Human antibodies from transgenic animals. Nat Biotechnol 23:1117–1125.
3. Jakobovits A, Amado RG, Yang X, Roskos L, Schwab G. 2007. From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol 25:1134–1143. [PubMed][CrossRef]
4. Berges BK, Rowan MR. 2011. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology 8:65. doi:10.1186/1742-4690-8-65. [PubMed][CrossRef]
5. Nischang M, Gers-Huber G, Audige A, Akkina R, Speck RF. 2012. Modeling HIV infection and therapies in humanized mice. Swiss Med Wkly 142:w13618. doi:10.4414/smw.2012.13618. [PubMed][CrossRef]
6. Shultz LD, Brehm MA, Bavari S, Greiner DL. 2011. Humanized mice as a preclinical tool for infectious disease and biomedical research. Ann N Y Acad Sci 1245:50–54. [PubMed][CrossRef]
7. Akkina R. 2013. Human immune responses and potential for vaccine assessment in humanized mice. Curr Opin Immunol 25:403–409. [PubMed][CrossRef]
8. Ito M, Kobayashi K, Nakahata T. 2008. NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol 324:53–76. [PubMed]
9. Mosier DE. 2000. Human xenograft models for virus infection. Virology 271:215–219. [PubMed][CrossRef]
10. McCune JM. 1996. Development and applications of the SCID-hu mouse model. Semin Immunol 8:187–196. [PubMed][CrossRef]
11. Jamieson BD, Zack JA. 1999. Murine models for HIV disease. AIDS 13(Suppl A):S5–S11. [PubMed]
12. Legrand N, Ploss A, Balling R, Becker PD, Borsotti C, Brezillon N, Debarry J, de Jong Y, Deng H, Di Santo JP, Eisenbarth S, Eynon E, Flavell RA, Guzman CA, Huntington ND, Kremsdorf D, Manns MP, Manz MG, Mention JJ, Ott M, Rathinam C, Rice CM, Rongvaux A, Stevens S, Spits H, Strick-Marchand H, Takizawa H, van Lent AU, Wang C, Weijer K, Willinger T, Ziegler P. 2009. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe 6:5–9. [PubMed][CrossRef]
13. Akkina R. 2013. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435:14–28. [PubMed][CrossRef]
14. Berges BK, Akkina SR, Folkvord JM, Connick E, Akkina R. 2008. Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2–/– gammac –/– (RAG-hu) mice. Virology 373:342–351. [PubMed][CrossRef]
15. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. 2006. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 108:487–492. [PubMed][CrossRef]
16. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV. 2006. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12:1316–1322. [PubMed][CrossRef]
17. Biswas S, Chang H, Sarkis PT, Fikrig E, Zhu Q, Marasco WA. 2011. Humoral immune responses in humanized BLT mice immunized with West Nile virus and HIV-1 envelope proteins are largely mediated via human CD5+ B cells. Immunology 134:419–433. [PubMed][CrossRef]
18. Stoddart CA, Maidji E, Galkina SA, Kosikova G, Rivera JM, Moreno ME, Sloan B, Joshi P, Long BR. 2011. Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2R γ–/– (NSG) BLT mice. Virology 417:154–160. [PubMed][CrossRef]
19. Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA, Barry W, Ploss A, Rice CM, Su L. 2011. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140:1334–1344. [PubMed][CrossRef]
20. Akkina R, Berges BK, Palmer BE, Remling L, Neff CP, Kuruvilla J, Connick E, Folkvord J, Gagliardi K, Kassu A, Akkina SR. 2011. Humanized Rag1–/– γc–/– mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes. PloS One 6:e20169. doi:10.1371/journal.pone.0020169. [PubMed][CrossRef]
21. Becker PD, Legrand N, van Geelen CM, Noerder M, Huntington ND, Lim A, Yasuda E, Diehl SA, Scheeren FA, Ott M, Weijer K, Wedemeyer H, Di Santo JP, Beaumont T, Guzman CA, Spits H. 2010. Generation of human antigen-specific monoclonal IgM antibodies using vaccinated “human immune system” mice. PloS One 5:e13137. doi:10.1371/journal.pone.0013137. [PubMed][CrossRef]
22. Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R. 2006. HIV-1 infection and CD4 T cell depletion in the humanized Rag2–/– γc–/– (RAG-hu) mouse model. Retrovirology 3:76. doi:10.1186/1742-4690-3-76. [PubMed][CrossRef]
23. McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE. 2010. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116:193–200. [PubMed][CrossRef]
24. Denton PW, Garcia JV. 2011. Humanized mouse models of HIV infection. AIDS Rev 13:135–148. [PubMed]
25. Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, Swanson MD, Chateau M, Nochi T, Krisko JF, Spagnuolo RA, Margolis DM, Garcia JV. 2012. Generation of HIV latency in humanized BLT mice. J Virol 86:630–634. [PubMed][CrossRef]
26. Marsden MD, Kovochich M, Suree N, Shimizu S, Mehta R, Cortado R, Bristol G, An DS, Zack JA. 2012. HIV latency in the humanized BLT mouse. J Virol 86:339–347. [PubMed]
27. Berges BK, Akkina SR, Remling L, Akkina R. 2010. Humanized Rag2–/– γc–/– (RAG-hu) mice can sustain long-term chronic HIV-1 infection lasting more than a year. Virology 397:100–103. [PubMed][CrossRef]
28. Jaiswal S, Pazoles P, Woda M, Shultz LD, Greiner DL, Brehm MA, Mathew A. 2012. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice. Immunology 136:334–343. [PubMed][CrossRef]
29. Kuruvilla JG, Troyer RM, Devi S, Akkina R. 2007. Dengue virus infection and immune response in humanized RAG2–/– γc–/– (RAG-hu) mice. Virology 369:143–152. [PubMed][CrossRef]
30. Garcia S, Freitas AA. 2012. Humanized mice: current states and perspectives. Immunol Lett 146:1–7. [PubMed][CrossRef]
31. Gorantla S, Sneller H, Walters L, Sharp JG, Pirruccello SJ, West JT, Wood C, Dewhurst S, Gendelman HE, Poluektova L. 2007. Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2–/–γc–/– mice. J Virol 81:2700–2712. [PubMed][CrossRef]
32. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M. 2005. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 106:1565–1573. [PubMed][CrossRef]
33. Matsumura T, Kametani Y, Ando K, Hirano Y, Katano I, Ito R, Shiina M, Tsukamoto H, Saito Y, Tokuda Y, Kato S, Ito M, Motoyoshi K, Habu S. 2003. Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/γcnull (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells. Exp Hematol 31:789–797. [PubMed]
34. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, Doi T, Sone A, Suzuki N, Fujiwara H, Yasukawa M, Ishikawa F. 2010. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci USA 107:13022–13027. [PubMed][CrossRef]
35. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG. 2004. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–107. [PubMed][CrossRef]
36. Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y, Dewan MZ, Yu Z, Ito M, Morio T, Shimizu N, Honda M, Yamamoto N. 2007. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rγnull mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 109:212–218. [PubMed][CrossRef]
37. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, Ito R, Ito M, Minegishi M, Minegishi N, Tsuchiya S, Sugamura K. 2009. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). Int Immunol 21:843–858. [PubMed][CrossRef]
38. Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu TD, Casares S. 2011. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PloS One 6:e19826. doi:10.1371/journal.pone.0019826. [PubMed][CrossRef]
39. Chang H, Biswas S, Tallarico AS, Sarkis PT, Geng S, Panditrao MM, Zhu Q, Marasco WA. 2012. Human B-cell ontogeny in humanized NOD/SCID γcnull mice generates a diverse yet auto/poly- and HIV-1-reactive antibody repertoire. Genes Immun 13:399–410. [PubMed][CrossRef]
40. Tonomura N, Habiro K, Shimizu A, Sykes M, Yang YG. 2008. Antigen-specific human T-cell responses and T cell-dependent production of human antibodies in a humanized mouse model. Blood 111:4293–4296. [PubMed][CrossRef]
41. Rajesh D, Zhou Y, Jankowska-Gan E, Roenneburg DA, Dart ML, Torrealba J, Burlingham WJ. 2010. Th1 and Th17 immunocompetence in humanized NOD/SCID/IL2rgammanull mice. Hum Immunol 71:551–559. [PubMed][CrossRef]
42. Hiramatsu H, Nishikomori R, Heike T, Ito M, Kobayashi K, Katamura K, Nakahata T. 2003. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood 102:873–880. [PubMed][CrossRef]
43. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J, Koo G, Rice CM, Young JW, Chadburn A, Cohen JI, Munz C. 2009. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 206:1423–1434. [PubMed]
44. Gorantla S, Makarov E, Finke-Dwyer J, Gebhart CL, Domm W, Dewhurst S, Gendelman HE, Poluektova LY. 2010. CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. J Immunol 184:7082–7091. [PubMed][CrossRef]
45. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, Ito M, Shimizu N, Yamamoto N, Fujiwara S. 2009. T cell-mediated control of Epstein-Barr virus infection in humanized mice. J Infect Dis 200:1611–1615. [PubMed][CrossRef]
46. An DS, Poon B, Ho Tsong Fang R, Weijer K, Blom B, Spits H, Chen IS, Uittenbogaart CH. 2007. Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 14:391–396. [PubMed][CrossRef]
47. Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, Kurrer MO, Behnke S, Frey J, Oxenius A, Joller H, Aguzzi A, Manz MG, Speck RF. 2006. Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2–/–γ c–/– mice. Proc Natl Acad Sci USA 103:15951–15956. [PubMed][CrossRef]
48. Dudek TE, No DC, Seung E, Vrbanac VD, Fadda L, Bhoumik P, Boutwell CL, Power KA, Gladden AD, Battis L, Mellors EF, Tivey TR, Gao X, Altfeld M, Luster AD, Tager AM, Allen TM. 2012. Rapid evolution of HIV-1 to functional CD8(+) T cell responses in humanized BLT mice. Sci Transl Med 4:143ra98. doi:10.1126/scitranslmed.3003984. [PubMed][CrossRef]
49. Scheeren FA, van Geelen CM, Yasuda E, Spits H, Beaumont T. 2011. Antigen-specific monoclonal antibodies isolated from B cells expressing constitutively active STAT5. PloS One 6:e17189. doi:10.1371/journal.pone.0017189. [PubMed][CrossRef]
50. Crowe JE, Jr. 2009. Recent advances in the study of human antibody responses to influenza virus using optimized human hybridoma approaches. Vaccine 27(Suppl 6):G47–G51. [PubMed][CrossRef]
51. Smith K, Garman L, Wrammert J, Zheng NY, Capra JD, Ahmed R, Wilson PC. 2009. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc 4:372–384. [PubMed][CrossRef]
52. Banerjee P, Tripp A, Lairmore MD, Crawford L, Sieburg M, Ramos JC, Harrington W, Jr, Beilke MA, Feuer G. 2010. Adult T-cell leukemia/lymphoma development in HTLV-1-infected humanized SCID mice. Blood 115:2640–2648. [PubMed][CrossRef]
53. Yamamoto I, Takajo I, Umeki K, Morishita K, Hatakeyama K, Kataoka H, Nomura H, Okayama A. 2010. Multiple integrations of human T-lymphotropic virus type 1 proviruses in the engrafted cells from the asymptomatic carriers in NOD/SCID/gammacnull mice. Intervirology 53:229–239. [PubMed][CrossRef]
54. He Z, Zhang H, Zhang X, Xie D, Chen Y, Wangensteen KJ, Ekker SC, Firpo M, Liu C, Xiang D, Zi X, Hui L, Yang G, Ding X, Hu Y, Wang X. 2010. Liver xeno-repopulation with human hepatocytes in Fah–/–Rag2–/– mice after pharmacological immunosuppression. Am J Pathol 177:1311–1319. [PubMed][CrossRef]
55. Kwant-Mitchell A, Ashkar AA, Rosenthal KL. 2009. Mucosal innate and adaptive immune responses against herpes simplex virus type 2 in a humanized mouse model. J Virol 83:10664–10676. [PubMed][CrossRef]
56. Parsons CH, Adang LA, Overdevest J, O'Connor CM, Taylor JR Jr, Camerini D, Kedes DH. 2006. KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice. J Clin Invest 116:1963–1973. [PubMed][CrossRef]
57. Smith MS, Goldman DC, Bailey AS, Pfaffle DL, Kreklywich CN, Spencer DB, Othieno FA, Streblow DN, Garcia JV, Fleming WH, Nelson JA. 2010. Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe 8:284–291. [PubMed][CrossRef]
58. Firoz Mian M, Pek EA, Chenoweth MJ, Ashkar AA. 2011. Humanized mice are susceptible to Salmonella typhi infection. Cell Mol Immunol 8:83–87.
59. Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M, Smith KD, Cookson BT, Karlinsey JE, Kinkel TL, Porwollik S, Canals R, Cummings LA, Fang FC. 2010. Humanized nonobese diabetic-scidIL2rγnull mice are susceptible to lethal Salmonella Typhi infection. Proc Natl Acad Sci USA 107:15589–15594. [PubMed][CrossRef]
60. Arnold L, Tyagi RK, Meija P, Swetman C, Gleeson J, Perignon JL, Druilhe P. 2011. Further improvements of the P. falciparum humanized mouse model. PloS One 6:e18045. doi:10.1371/journal.pone.0018045. [PubMed][CrossRef]
61. Wege AK, Florian C, Ernst W, Zimara N, Schleicher U, Hanses F, Schmid M, Ritter U. 2012. Leishmania major infection in humanized mice induces systemic infection and provokes a nonprotective human immune response. PLoS Negl Trop Dis 6:e1741. doi:10.1371/journal.pntd.0001741. [PubMed][CrossRef]
62. Yu CI, Gallegos M, Marches F, Zurawski G, Ramilo O, Garcia-Sastre A, Banchereau J, Palucka AK. 2008. Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood 112:3671–3678. [PubMed][CrossRef]
63. Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T, Sykes M, Yang YG, Ohdan H. 2007. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci USA 104:5062–5066. [PubMed][CrossRef]
64. van den Berg TK, van der Schoot CE. 2008. Innate immune ‘self’ recognition: a role for CD47-SIRPalpha interactions in hematopoietic stem cell transplantation. Trends Immunol 29:203–206. [PubMed][CrossRef]
65. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, Eynon EE, Manz MG, Flavell RA. 2011. Transgenic expression of human signal regulatory protein alpha in Rag2–/–gamma(c)–/– mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci USA 108:13218–13223. [PubMed][CrossRef]
66. Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R, Strick-Marchand H, de Geus SJ, Pouw SM, Bohne M, Voordouw A, Weijer K, Di Santo JP, Spits H. 2011. Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci USA 108:13224–13229. [PubMed][CrossRef]
67. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA. 2011. Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 32:321–327. [PubMed][CrossRef]
68. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ, Valenzuela DM, Yancopoulos GD, Eynon EE, Stevens S, Manz MG, Flavell RA. 2011. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci USA 108:2378–2383. [PubMed][CrossRef]
69. Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, Yancopoulos GD, Rongvaux A, Eynon EE, Manz MG, Flavell RA. 2011. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood 118:3119–3128. [PubMed][CrossRef]
microbiolspec.AID-0003-2012.citations
cm/2/2
content/journal/microbiolspec/10.1128/microbiolspec.AID-0003-2012
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.AID-0003-2012
2014-03-14
2017-09-19

Abstract:

The new-generation humanized (Hu) mouse models permit multilineage human hematopoiesis and generate T cells, B cells, macrophages, and dendritic cells required for a coordinated human immune response. Therefore, any desired antigen or human-specific pathogens that can infect humanized mice can be used to generate human antibody responses. Two leading humanized mouse models are currently being used. The Hu-HSC model uses the transplantation of human hematopoietic stem cells (HSCs), whereas the BLT mouse model is created by transplantation of human fetal liver, thymus, and HSC. A number of human pathogens such as HIV-1, dengue, Epstein-Barr virus, and hepatitis C virus have been studied in these systems. Responder antigen-specific B cells from these animals can be collected and used to generate human monoclonals by B-cell immortalization or by single-cell PCR methods to “rescue” antibody-producing genes for ectopic expression. Both models generate cellular and humoral immune responses. However, the antibodies generated are primarily of the IgM type because of the inefficient immunoglobulin class switch resulting in the suboptimal production of antigen-specific affinity-matured IgG. The current Hu mouse models thus far have permitted the analysis of human “antibodyome,” and recent reports demonstrated their utility in generating human monoclonal antibodies. Ongoing efforts at further refinements are expected to make these systems more efficient in the near future.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/2/AID-0003-2012.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.AID-0003-2012&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Schematic for generation of Hu-HSC RG (Rag-hu) and BLT mice. doi:10.1128/microbiolspec.AID-0003-2012.f1.

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.AID-0003-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Intrahepatic injection of CD34 hematopoietic stem cells (HSCs) into newborn immunodeficient RG mouse. doi:10.1128/microbiolspec.AID-0003-2012.f2.

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.AID-0003-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Schematic for deriving human monoclonal antibodies using Hu mice. doi:10.1128/microbiolspec.AID-0003-2012.f3.

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.AID-0003-2012
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Summary of current Hu mouse models

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.AID-0003-2012

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error