1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Plant-Derived Monoclonal Antibodies for Prevention and Treatment of Infectious Disease

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    365.71 Kb
  • XML
    82.12 Kb
  • HTML
    84.15 Kb
  • Authors: Andrew Hiatt1, Kevin J. Whaley2, Larry Zeitlin3
  • Editors: James E. Crowe Jr.4, Diana Boraschi5, Rino Rappuoli6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Mapp Biopharmaceutical, Inc., San Diego, CA 92121; 2: Mapp Biopharmaceutical, Inc., San Diego, CA 92121; 3: Mapp Biopharmaceutical, Inc., San Diego, CA 92121; 4: Vanderbilt University School of Medicine, Nashville, TN; 5: National Research Council, Pisa, Italy; 6: Novartis Vaccines, Siena, Italy
  • Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.AID-0004-2012
  • Received 16 October 2012 Accepted 28 October 2013 Published 17 January 2014
  • Larry Zeitlin, larry.zeitlin@mappbio.com
image of Plant-Derived Monoclonal Antibodies for Prevention and Treatment of Infectious Disease
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Plant-Derived Monoclonal Antibodies for Prevention and Treatment of Infectious Disease, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/1/AID-0004-2012-1.gif /docserver/preview/fulltext/microbiolspec/2/1/AID-0004-2012-2.gif
  • Abstract:

    Numerous monoclonal antibodies (MAbs) that recognize and neutralize infectious pathogens have been isolated and developed over the years. The fact that infectious diseases can involve large populations of infected individuals is an important factor that has motivated the search for both cost-effective and scalable methods of antibody production. The current technologies for production of antibodies in plants allow for very rapid expression and evaluation that can also be readily scaled for multikilogram production runs. In addition, recent progress in manipulating glycosylation in plant production systems has allowed for the evaluation of antibodies containing glycans that are nearly homogeneous, are mammalian in structure, and have enhanced neutralizing capabilities. Among the anti-infectious disease antibodies that have been produced in plants are included those intended for prevention or treatment of anthrax, , Ebola virus, human immunodeficiency virus, herpes simplex virus, rabies, respiratory syncytial virus, staphylococcal enterotoxin, West Nile virus, and tooth decay. Animal and human efficacy data for these MAbs are discussed.

  • Citation: Hiatt A, Whaley K, Zeitlin L. 2014. Plant-Derived Monoclonal Antibodies for Prevention and Treatment of Infectious Disease. Microbiol Spectrum 2(1):AID-0004-2012. doi:10.1128/microbiolspec.AID-0004-2012.

References

1. Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T. 1995. Generation and assembly of secretory antibodies in plants. Science 268:716–719. [PubMed]
2. Aviezer D, Brill-Almon E, Shaaltiel Y, Hashmueli S, Bartfeld D, Mizrachi S, Liberman Y, Freeman A, Zimran A, Galun E. 2009. A plant-derived recombinant human glucocerebrosidase enzyme—a preclinical and phase I investigation. PLoS One 4:e4792–e4796. [PubMed][CrossRef]
3. Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, Gleba Y. 2006. Rapid high-yield expression of full-size IgG antibodies in plants co-infected with noncompeting viral vectors. Proc Natl Acad Sci USA 103:14701–14706. [PubMed][CrossRef]
4. Strasser R, Stadlmann J, Schahs M, Stiegler G, Quendler H, Mach L. 2008. Generation of glycoengineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotech J 6:392–402. [PubMed][CrossRef]
5. Hiatt A, Cafferkey R, Bowdish K. 1989. Production of antibodies in transgenic plants. Nature 342:76–78. [PubMed]
6. Bemark M, Boysen P, Lycke NY.2012. Induction of gut IgA production through T cell-dependent and T cell-independent pathways. Ann N Y Acad Sci 1247:97–116. [PubMed][CrossRef]
7. Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M, Velasco J, Whaley K, Zeitlin L, Garger SJ, White E, Bai Y, Haydon H, Bratcher B. 2010. Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654. [PubMed]
8. Klimyuk V, Pogue G, Herz S, Butler J, Haydon H. 15 April 2012. Production of recombinant antigens and antibodies in Nicotiana benthamiana using ‘magnifection’ technology: GMP-compliant facilities for small- and large-scale manufacturing. Curr Top Microbiol Immunol doi:10.1007/82_2012_212. [Epub ahead of print.] [PubMed][CrossRef]
9. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N. 1984. Inheritance of functional foreign genes in plants. Science 223:496–498. [PubMed][CrossRef]
10. Hiatt, A. and Pauly, M. 2006. Monoclonal antibodies from plants: a new speed record. Proc Natl Acad Sci USA 103:14645–14646. [PubMed][CrossRef]
11. Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P. 2009. Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485. [PubMed][CrossRef]
12. Castilho A, Strasser R, Stadlmann J, Grass J, Jez J, Gattinger P, Kunert R, Quendler H, Pabst M, Leonard R, Altmann F, Steinkellner H. 2010. In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285:15923–15930. [PubMed][CrossRef]
13. Jefferis R. 2005. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 21:11–16. [PubMed][CrossRef]
14. Nimmerjahn F, Ravetch JV. 2008. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533. [PubMed][CrossRef]
15. Anthony RM, Wermeling F, Ravetch JV. 2012. Novel roles for the IgG Fc glycan. Ann NY Acad Sci 1253:170–180. [PubMed]
16. Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, Hein MB, Lehner T. 1998. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 4:601–606. [PubMed]
17. Ma JK, Lehner T. 1990. Prevention of colonization of Streptococcus mutans by topical application of monoclonal antibodies in human subjects. Arch Oral Biol 35:115–122. [PubMed]
18. Ma JK, Hunjan M, Smith R, Lehner T. 1989. Specificity of monoclonal antibodies in local passive immunization against Streptococcus mutans. Clin Exp Immunol 77:331–337. [PubMed]
19. Weintraub JA, Hilton JF, White JM, Hoover CI, Wycoff KL, Yu L, Larrick JW, Featherstone JD. 2005. Clinical trial of a plant-derived antibody on re-colonization of mutans streptococci. Caries Res 39:241–250.
20. De Muynck B, Navarre C, Boutry M. 2010. Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563. [PubMed][CrossRef]
21. Zeitlin L, Pettitt J, Scully C, Bohorova N, Kim D, Pauly M, Hiatt A, Ngo L, Steinkellner H, Whaley KJ, Olinger GG. 2011. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc Natl Acad Sci USA 108:20690–20694. [PubMed][CrossRef]
22. Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, Matsushima K, Ueda R, Hanai N, Shitara K. 2004. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64:2127–2133. [PubMed]
23. Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM Dickey LF. 2006. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597. [PubMed][CrossRef]
24. Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE. 1999. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180. [PubMed][CrossRef]
25. Junttila TT, Parsons K, Olsson C, Lu Y, Xin Y, Theriault J, Crocker L, Pabonan O, Baginski T, Meng G, Totpal K, Kelley RF, Sliwkowski MX. 2010. Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer Res 70:4481–4489. [PubMed][CrossRef]
26. Olinger GG, Pettitt JD, Kim DH, Working C, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK, Morton J, Pauly MH, Whaley KJ, Lear CM, Biggins JE, Scully C, Hensley LE, Zeitlin L. 15 October 2012. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc Natl Acad Sci USA doi:10.1073/pnas.1213709109. [PubMed][CrossRef]
27. Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA, Whaley KJ. 1998. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 16:1361–1364. [PubMed][CrossRef]
28. Forthal DN, Gach JS, Landucci G, Jez J, Strasser R, Kunert R, Steinkellner H. 2010. Fc-glycosylation influences Fcγ receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12. J Immunol 185:6876–6882. [PubMed]
29. Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F. 2008. Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single GlcNAc N-glycans. Plant Biotech J 6:189–201. [PubMed][CrossRef]
30. Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D, Stiegler G. 2008. Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci USA 105:3727–3732. [PubMed][CrossRef]
31. Drake PMW, Barbi T, Sexton A, McGowan E, Stadlmann J, Navarre C. 2009. Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco. FASEB J 23:3581–3589. [PubMed][CrossRef]
32. Sexton A, Harman S, Shattock RJ, Ma JK. 2009. Design, expression and characterization of a multivalent, combination HIV microbicide. FASEB J 23:3590–3600. [PubMed][CrossRef]
33. Anonymous. 2002. Rabies vaccines. Wkly Epidemiol Rec 77:109–120.
34. Wilde H, Tipkong P, Khawplod P. 1999. Economic issues in postexposure rabies treatment. J Travel Med 6:238–242. [PubMed]
35. Daniell H, Streatfield SJ, Wycoff K. 2001. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226. [PubMed]
36. Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, Koprowski H. 2003. Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100:8013–8018. [PubMed][CrossRef]
37. Dietzschold B, Gore M, Casali P, Ueki Y, Rupprecht CE, Notkins AL, Koprowski H. 1990. Biological characterization of human monoclonal antibodies to rabies virus. J Virol 6:3087–3090. [PubMed]
38. Prosniak M, Faber M, Hanlon CA, Rupprecht CE, Hooper DC, Dietzschold B. 2003. Development of a cocktail of recombinant-expressed human rabies virus-neutralizing monoclonal antibodies for postexposure prophylaxis of rabies. J Infect Dis 188:53–56. [PubMed][CrossRef]
39. Joffe S, Ray GT, Escobar GJ, Black SB, Lieu TA. 1999. Cost-effectiveness of respiratory syncytial virus prophylaxis among preterm infants. Pediatrics 104(3 Pt 1):419–427.
40. Lofland JH, O'Connor JP, Chatterton ML, Moxey ED, Paddock LE, Nash DB, Desai SA. 2000. Palivizumab for respiratory syncytial virus prophylaxis in high-risk infants: a cost-effectiveness analysis. Clin Ther 22:1357–1369. [PubMed]
41. Numa A. 2000. Outcome of respiratory syncytial virus infection and a cost-benefit analysis of prophylaxis. J Paediatr Child Health 36:422–427. [PubMed]
42. Barton LL, Grant KL, Lemen RJ. 2001. Respiratory syncytial virus immune globulin: decisions and costs. Pediatr Pulmonol 32:20–28. [PubMed]
43. Vogel A, McKinlay M, Ashton T, Lennon D, Harding J, Pinnock R, Graham D, Grimwood K, Pattemore P, Schousboe, M. 2002. Cost-effectiveness of palivizumab in New Zealand. J Paediatr Child Health 38:352–357. [PubMed]
44. Roeckl-Wiedmann I, Liese JG, Grill E, Fischer B, Carr D, Belohradsky BH. 2003. Economic evaluation of possible prevention of RSV-related hospitalizations in premature infants in Germany. Eur J Pediatr 162:237–244. [PubMed][CrossRef]
45. Hubalek Z, Halouzka J. 1999. West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650. [PubMed][CrossRef]
46. Diamond MS. 2009. Progress on the development of therapeutics against West Nile virus. Antivir Res 83:214–227. [PubMed][CrossRef]
47. Furuta Y, Takahashi K, Shiraki K, Sakamoto K, Smee DF, Barnard DL, Gowen BB, Julander JG, Morrey JD. 2009. T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections. Antivir Res 82:95–102. [PubMed]
48. Morrey JD, Taro BS, Siddharthan V, Wang H, Smee DF, Christensen AJ, Furuta Y. 2008. Efficacy of orally administered T-705 pyrazine analog on lethal West Nile virus infection in rodents. Antivir Res 80:377–379. [PubMed][CrossRef]
49. Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond MS. 2005. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11:522–530. [PubMed][CrossRef]
50. Pierson TC, Xu Q, Nelson S, Oliphant T, Nybakken GE, Fremont DH, Diamond MS. 2007. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1:135–145. [PubMed][CrossRef]
51. Thompson BS, Moesker B, Smit JM, Wilschut J, Diamond MS, Fremont DH. 2009. A therapeutic antibody against West Nile virus neutralizes infection by blocking fusion within endosomes. PLoS Pathog 5:e1000453. [PubMed][CrossRef]
52. Morrey JD, Siddharthan V, Olsen AL, Roper GY, Wang H, Baldwin TJ, Koenig S, Johnson S, Nordstrom JL, Diamond MS. 2006. Humanized monoclonal antibody against West Nile virus envelope protein administered after neuronal infection protects against lethal encephalitis in hamsters. J Infect Dis 194:1300–1308. [PubMed][CrossRef]
53. Samuel MA, Wang H, Siddharthan V, Morrey JD, Diamond MS. 2007. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci USA 104:17140–17145. [PubMed][CrossRef]
54. Lai H, Engle M, Fuchs A, Keller T, Johnson S, Gorlatov S, Diamond MS, Chen Q. 2010. Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc Natl Acad Sci USA 107:2419–2424. [PubMed][CrossRef]
55. Beedham RJ, Turnbull PC, Williamson ED. 2001. Passive transfer of protection against Bacillus anthracis infection in a murine model. Vaccine 19:4409–4416. [PubMed]
56. Henderson J, Bauly JM, Ashford DA, Oliver SC, Hawes CR, Lazarus CM, Venis MA, Napier RM. 1997. Retention of maize auxin-binding protein in the endoplasmic reticulum: quantifying escape and the role of auxin. Planta 202:313–323. [PubMed]
57. Little SF, Leppla SH, Cora E. 1988. Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin. Infect Immun 56:1807–1813. [PubMed]
58. Pitt ML, Little SF, Ivins BE, Fellows P, Barth J, Hewetson J. 2001. In vitro correlate of immunity in a rabbit model of inhalational anthrax. Vaccine 19:4768–4773. [PubMed]
59. Beebe LE, Zhong J, Clagett M, Babin M, Ou Y, Roschke V. 2003. Protection against inhalation anthrax induced lethality by a human monoclonal antibody to protective antigen in rabbits and cynomolgus monkeys, abstr. 3836. Progr Abstr 43rd Intersci Conf Antimicrob Agents Chemother, Chicago, IL.
60. Beebe LE, Babin M, Barnewall R, Zhong J, Choi G. 2004. Post-exposure therapeutic potential of PAMAb in an inhalation model of anthrax in New Zealand White rabbits (NZW), abstr. 167G. Abstr 2004 Am Soc Microbiol Biodefense Res Meet, Baltimore, MD.
61. Mabry R, Rani M, Geiger R, Hubbard GB, Carrion R Jr, Brasky K, Patterson JL, Georgiou G, Iverson BL. 2005. Passive protection against anthrax by using a high-affinity antitoxin antibody fragment lacking an Fc region. Infect Immun 73:8362–8368. [PubMed][CrossRef]
62. Mohamed N, Clagett M, Li J, Jones S, Pincus S, D'Alia G, Nardone L, Babin M, Spitalny G, Casey L. 2005. A high-affinity monoclonal antibody to anthrax protective antigen passively protects rabbits before and after aerosolized Bacillus anthracis spore challenge. Infect Immun 73:795–802. [PubMed][CrossRef]
63. Peterson JW, Comer JE, Noffsinger DM, Wenglikowski A, Walberg KG, Chatuev BM. 2006. Human monoclonal anti-protective antigen antibody completely protects rabbits and is synergistic with ciprofloxacin in protecting mice and guinea pigs against inhalation anthrax. Infect Immun 74:1016–1024. [PubMed][CrossRef]
64. Peterson JW, Comer JE, Baze WB, Noffsinger DM, Wenglikowski A, Walberg KG. 2007. Human monoclonal antibody AVP-21D9 to protective antigen reduces dissemination of the Bacillus anthracis Ames strain from the lungs in a rabbit model. Infect Immun 75:3414–3424. [PubMed][CrossRef]
65. Sawada-Hirai R, Jiang I, Wang F, Sun SM, Nedellec R, Ruther P. 2004. Human anti-anthrax protective antigen neutralizing monoclonal antibodies derived from donors vaccinated with anthrax vaccine adsorbed. J Immune Based Ther Vaccines 2:5. [PubMed][CrossRef]
66. Vitale L, Blanset D, Lowy I, O’Neill T, Goldstein J, Little SF. 2006. Prophylaxis and therapy of inhalational anthrax by a novel monoclonal antibody to protective antigen that mimics vaccine-induced immunity. Infect Immun 74:5840–5847. [PubMed][CrossRef]
67. Wild MA, Kumor K, Nolan MJ, Lockman H, Bowdish KS. 2007. A human antibody against anthrax protective antigen protects rabbits from lethal infection with aerosolized spores. Hum Antibodies 16:99–105. [PubMed]
68. Mett V, Chichester JA, Stewart ML, Musiychuk K, Bi H, Reifsnyder CJ, Hull AK, Albrecht MT, Goldman S, Baillie LW, Yusibov V. 2011. A non-glycosylated, plant-produced human monoclonal antibody against anthrax protective antigen protects mice and non-human primates from B. anthracis spore challenge. Hum Vaccin 7(Suppl):183–190. [PubMed]
69. Wycoff KL, Belle A, Deppe D, Schaefer L, Maclean JM, Haase S, Trilling AK, Liu S, Leppla SH, Geren IN, Pawlik J, Peterson JW. 2011. Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax. Antimicrob Agents Chemother 55:132–139. [PubMed]
70. Bowmann E. 1998. Iraqi Chemical and Biological Weapons Capabilities, p. 1–5. Congressional Research Service, Washington, DC.
71. Cordesman RA. 1998. UNSCOM Main Achievements, p. 67–71. United Nations Special Commission (UNSCOM), New York, NY.
72. Gill DM. 1982. Bacterial toxins: a table of lethal amounts. Microbiol Rev 46:86–94. [PubMed]
73. Hauer PJ, Clough NE. 1999. Development of monoclonal antibodies suitable for use in antigen quantification potency tests for clostridial veterinary vaccines. Dev Biol Stand 101:85–94. [PubMed]
74. Burnett JC, Henchal EA, Schmaljohn AL, Bavari S. 2005. The evolving field of biodefence: therapeutic developments and diagnostics. Nat Rev Drug Discov 4:281–297. [PubMed][CrossRef]
75. Schlievert PM. 1993. Role of superantigens in human disease. J Infect Dis 167: 997–1002. [PubMed]
76. Schlievert PM. 1986. Staphylococcal enterotoxin B and toxic-shock syndrome toxin-1 are significantly associated with non-menstrual TSS. Lancet i:1149–1150. [PubMed]
77. Karauzum H, Chen G, Abaandou L, Mahmoudieh M, Boroun AR, Shulenin S, Devi VS, Stavale E, Warfield KL, Zeitlin L, Roy CJ, Sidhu SS, Aman MJ. 2012. Synthetic human monoclonal antibodies toward staphylococcal enterotoxin B (SEB) protective against toxic shock syndrome. J Biol Chem 287:25203–25215. [PubMed][CrossRef]
78. Valdés R, Reyes B, Alvarez T, García J, Montero JA, Figueroa A, Gómez L, Padilla S, Geada D, Abrahantes MC, Dorta L, Fernández D, Mendoza O, Ramirez N, Rodriguez M, Pujol M, Borroto C, Brito J. 2003. Hepatitis B surface antigen immunopurification using a plant-derived specific antibody produced in large scale. Biochem Biophys Res Commun 310:742–747. [PubMed]
79. Blank GS, Zapata G, Fahrner R, Milton M, Yedinak C, Knudsen H, Schmelzer C. 2001. Expanded bed adsorption in the purification of monoclonal antibodies: a comparison of process alternatives. Bioseparation 10:65–71. [PubMed]
80. Zeitlin L, Bohorov O, Bohorova N, Hiatt A, Kim Do H, Pauly MH, Velasco J, Whaley KJ, Barnard DL, Bates JT, Crowe JE Jr, Piedra PA, Gilbert BE. 2013. Prophylactic and therapeutic testing of Nicotiana-derived RSV-neutralizing human monoclonal antibodies in the cotton rat model. mAbs 5(2):263–269. doi:10.4161/mabs.23281. Epub Feb 8 2013. [PubMed][CrossRef]
microbiolspec.AID-0004-2012.citations
cm/2/1
content/journal/microbiolspec/10.1128/microbiolspec.AID-0004-2012
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.AID-0004-2012
2014-01-17
2017-09-24

Abstract:

Numerous monoclonal antibodies (MAbs) that recognize and neutralize infectious pathogens have been isolated and developed over the years. The fact that infectious diseases can involve large populations of infected individuals is an important factor that has motivated the search for both cost-effective and scalable methods of antibody production. The current technologies for production of antibodies in plants allow for very rapid expression and evaluation that can also be readily scaled for multikilogram production runs. In addition, recent progress in manipulating glycosylation in plant production systems has allowed for the evaluation of antibodies containing glycans that are nearly homogeneous, are mammalian in structure, and have enhanced neutralizing capabilities. Among the anti-infectious disease antibodies that have been produced in plants are included those intended for prevention or treatment of anthrax, , Ebola virus, human immunodeficiency virus, herpes simplex virus, rabies, respiratory syncytial virus, staphylococcal enterotoxin, West Nile virus, and tooth decay. Animal and human efficacy data for these MAbs are discussed.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/1/AID-0004-2012.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.AID-0004-2012&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Fluorescent immunocytochemistry of a leaf 7 days after magnifection. Tissue was stained with Cy3-labeled anti-human IgG. Image courtesy of Jeffrey Pudney, Boston University Medical College. doi:10.1128/microbiolspec.AID-0004-2012.f1

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.AID-0004-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

N glycosylation of a humanized IgG1 produced in ΔXF and mammalian cell culture (NS0 cells) as determined by 2-AA glycan analysis. doi:10.1128/microbiolspec.AID-0004-2012.f2

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.AID-0004-2012
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

In vivo studies with plant-derived MAbs against ID targets

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.AID-0004-2012

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error