1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Dengue Antibody-Dependent Enhancement: Knowns and Unknowns

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    161.92 Kb
  • PDF
    301.12 Kb
  • HTML
    153.59 Kb
  • Author: Scott B. Halstead1
  • Editors: James E. Crowe Jr.2, Diana Boraschi3, Rino Rappuoli4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; 2: Vanderbilt University School of Medicine, Nashville, TN; 3: National Research Council, Pisa, Italy; 4: Novartis Vaccines, Siena, Italy
  • Source: microbiolspec December 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.AID-0022-2014
  • Received 30 July 2014 Accepted 04 September 2014 Published 12 December 2014
  • Scott B. Halstead, halsteads@erols.com
image of Dengue Antibody-Dependent Enhancement: Knowns and Unknowns
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Dengue Antibody-Dependent Enhancement: Knowns and Unknowns, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/6/AID-0022-2014-1.gif /docserver/preview/fulltext/microbiolspec/2/6/AID-0022-2014-2.gif
  • Abstract:

    Dengue provides the most abundant example in human medicine and the greatest human illness burden caused by the phenomenon of intrinsic antibody-dependent infection enhancement (iADE). In this immunopathological phenomenon infection of monocytes or macrophages using infectious immune complexes suppresses innate antiviral systems, permitting logarithmic intracellular growth of dengue virus. The four dengue viruses evolved from a common ancestor yet retain similar ecology and pathogenicity, but although infection with one virus provides short-term cross-protection against infection with a different type, millions of secondary dengue infections occur worldwide each year. When individuals are infected in the virtual absence of cross-protective dengue antibodies, the dengue vascular permeability syndrome (DVPS) may ensue. This occurs in around 2 to 4% of second heterotypic dengue infections. A complete understanding of the biologic mechanism of iADE, dengue biology, and the mechanism of host responses to dengue infection should lead to a comprehensive and complete understanding of the pathogenesis of DVPS. A crucial emphasis must be placed on understanding ADE. Clinical and epidemiological observations of DVPS define the research questions and provide research parameters. This article will review knowledge related to dengue ADE and point to areas where there has been little research progress. These observations relate to the two stages of dengue illnesses: afferent phenomena are those that promote the success of the microorganism to infect and survive; efferent phenomena are those mounted by the host to inhibit infection and replication and to eliminate the infectious agent and infected tissues. Data will be discussed as “knowns” and “unknowns.”

  • Citation: Halstead S. 2014. Dengue Antibody-Dependent Enhancement: Knowns and Unknowns. Microbiol Spectrum 2(6):AID-0022-2014. doi:10.1128/microbiolspec.AID-0022-2014.

References

1. Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP, Diaz L, Trento A, Chang HY, Mitzner W, Ravetch J, Melero JA, Irusta PM, Polack FP. 2009. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med 15:34–41. [PubMed][CrossRef]
2. Hawkes RA. 1964. Enhancement of the infectivity of arboviruses by specific antisera produced in domestic fowls. Aust J Exp Biol Med Sci 42:465–482. [PubMed][CrossRef]
3. Hawkes RA, Lafferty KJ. 1967. The enhancement of virus infectivity by antibody. Virology 33:250–261. [PubMed][CrossRef]
4. Halstead SB, Chow J, Marchette NJ. 1973. Immunologic enhancement of dengue virus replication. Nat New Biol 243:24–26. [PubMed]
5. Halstead SB, O'Rourke EJ. 1977. Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265:739–741. [PubMed][CrossRef]
6. Halstead SB, O'Rourke EJ. 1977. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 146:201–217. [PubMed][CrossRef]
7. Halstead SB, O'Rourke EJ, Allison AC. 1977. Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection. J Exp Med 146:218–228. [PubMed][CrossRef]
8. Kliks S, Halstead SB. 1980. An explanation for enhanced virus plaque formation in chick embryo cells. Nature 285:504–505. [PubMed][CrossRef]
9. Kliks S, Halstead SB. 1983. Role of antibodies and host cells in plaque enhancement of Murray Valley encephalitis virus. J Virol 46:394–404. [PubMed]
10. Halstead SB. 1980. Immunological parameters of Togavirus disease syndromes, p 107–173. In Schlesinger RW (ed), The Togaviruses, Biology, Structure, Replication. Academic Press, New York, NY.
11. Boonpucknavig S, Boonpucknavig V, Bhamarapravati N, Nimmannitya S. 1979. Immunofluorescence study of skin rash in patients with dengue hemorrhagic fever. Arch Pathol Lab Med 103:463–466. [PubMed]
12. Hall WC, Crowell TP, Watts DM, Barros VL, Kruger H, Pinheiro F, Peters CJ. 1991. Demonstration of yellow fever and dengue antigens in formalin-fixed paraffin-embedded human liver by immunohistochemical analysis. Am J Trop Med Hyg 45:408–417. [PubMed]
13. Durbin AP, Vargas MJ, Wanionek K, Hammond SN, Gordon A, Rocha C, Balmaseda A, Harris E. 2008. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever. Virology 376:429–435. [PubMed][CrossRef]
14. Balsitis SJ, Coloma J, Castro G, Alava A, Flores D, McKerrow JH, Beatty PR, Harris E. 2009. Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. Am J Trop Med Hyg 80:416–424. [PubMed]
15. Jessie K, Fong MY, Devi S, Lam SK, Wong KT. 2004. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189:1411–1418. [PubMed][CrossRef]
16. Aye KS, Charngkaew K, Win N, Wai KZ, Moe K, Punyadee N, Thiemmeca S, Suttitheptumrong A, Sukpanichnant S, Malasit P, Halstead SB. 2014. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Hum Pathol 45:1221–1233. [PubMed][CrossRef]
17. Halstead SB. 1982. Immune enhancement of viral infection. Prog Allergy 31:301–364. [PubMed]
18. Gollins SW, Porterfield JS. 1984. Flavivirus infection enhancement in macrophages: radioactive and biological studies on the effect of antibody on virus fate. J Gen Virol 65:1261–1272. [PubMed][CrossRef]
19. Gollins SW, Porterfield JS. 1985. Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry. J Gen Virol 66:1969–1982. [PubMed][CrossRef]
20. Olsen C, Scott F. 1993. Evaluation of antibody-dependent enhancement of feline infectious peritonitis virus infectivity using in situ hybridization. Microb Pathog 14:275–285. [PubMed][CrossRef]
21. Robinson WE, Jr, Montefiori DC, Gillespie DH, Mitchell WM. 1989. Complement-mediated, antibody-dependent enhancement of HIV-1 infection in vitro is characterized by increased protein and RNA syntheses and infectious virus release. J Acquir Immune Defic Syndr 2:33–42. [PubMed]
22. Linn ML, Aaskov JG, Suhrbier A. 1996. Antibody-dependent enhancement and persistence in macrophages of an arbovirus associated with arthritis. J Gen Virol 77:407–411. [PubMed][CrossRef]
23. Lidbury BA, Mahalingam S. 2000. Specific ablation of antiviral gene expression in macrophages by antibody-dependent enhancement of Ross River virus infection. J Virol 74:8376–8381. [PubMed][CrossRef]
24. Suhrbier A, La Linn M. 2003. Suppression of antiviral responses by antibody-dependent enhancement of macrophage infection. Trends Immunol 24:165–168. [PubMed][CrossRef]
25. Halstead SB. 2009. Antibodies determine virulence in dengue. Ann NY Acad Sci 1171(Suppl 1):E48–E56. [PubMed][CrossRef]
26. Smith SA, Zhou Y, Olivarez NP, Broadwater AH, de Silva AM, Crowe JE, Jr. 2012. Persistence of circulating B memory cell clones with potential for dengue virus disease enhancement for decades following infection. J Virol 86:2665–2675. [PubMed][CrossRef]
27. de Alwis R, Beltramello M, Messer WB, Sukupolvi-Petty S, Wahala WM, Kraus A, Olivarez NP, Pham Q, Brian J, Tsai WY, Wang WK, Halstead S, Kliks S, Diamond MS, Baric R, Lanzavecchia A, Sallusto F, de Silva AM. 2011. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl Trop Dis 5:e1188. doi:10.1371/journal.pntd.0001188. [PubMed][CrossRef]
28. Beltramello M, Williams KL, Simmons CP, Macagno A, Simonelli L, Quyen NT, Sukupolvi-Petty S, Navarro-Sanchez E, Young PR, de Silva AM, Rey FA, Varani L, Whitehead SS, Diamond MS, Harris E, Lanzavecchia A, Sallusto F. 2010. The human immune response to dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8:271–283. [PubMed][CrossRef]
29. Wahala WM, Kraus AA, Haymore LB, Accavitti-Loper MA, de Silva AM. 2009. Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology 392:103–113. [PubMed][CrossRef]
30. Halstead SB. 2003. Neutralization and antibody dependent enhancement of dengue viruses. Adv Virus Res 60:421–467. [PubMed][CrossRef]
31. Halstead SB, Venkateshan CN, Gentry MK, Larsen LK. 1984. Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J Immunol 132:1529–1532. [PubMed]
32. Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P, Mongkolsapaya J, Screaton G. 2010. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328:745–748. [PubMed][CrossRef]
33. Halstead SB, Nimmannitya S, Cohen SN. 1970. Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 42:311–328. [PubMed]
34. Kliks SC, Nimmannitya S, Nisalak A, Burke DS. 1988. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 38:411–419. [PubMed]
35. Libraty DH, Acosta LP, Tallo V, Segubre-Mercado E, Bautista A, Potts JA, Jarman RG, Yoon IK, Gibbons RV, Brion JD, Capeding RZ. 2009. A prospective nested case-control study of dengue in infants: rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med 6:e1000171. doi:10.1371/journal.pmed.1000171. [PubMed][CrossRef]
36. Simmons CP, Chau TN, Thuy TT, Tuan NM, Hoang DM, Thien NT, Lien le B, Quy NT, Hieu NT, Hien TT, McElnea C, Young P, Whitehead S, Hung NT, Farrar J. 2007. Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. J Infect Dis 196:416–424. [PubMed][CrossRef]
37. Chau TN, Anders KL, Lien le B, Hung NT, Hieu LT, Tuan NM, Thuy TT, Phuong le T, Tham NT, Lanh MN, Farrar JJ, Whitehead SS, Simmons CP. 2010. Clinical and virological features of dengue in Vietnamese infants. PLoS Negl Trop Dis 4:e657. doi:10.1371/journal.pntd.0000657. [PubMed][CrossRef]
38. Chau TN, Hieu NT, Anders KL, Wolbers M, Lien le B, Hieu LT, Hien TT, Hung NT, Farrar J, Whitehead S, Simmons CP. 2009. Dengue virus infections and maternal antibody decay in a prospective birth cohort study of Vietnamese infants. J Infect Dis 200:1893–1900. [PubMed][CrossRef]
39. Chau TN, Quyen NT, Thuy TT, Tuan NM, Hoang DM, Dung NT, Lien le B, Quy NT, Hieu NT, Hieu LT, Hien TT, Hung NT, Farrar J, Simmons CP. 2008. Dengue in Vietnamese infants: results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity. J Infect Dis 198:516–524. [PubMed][CrossRef]
40. Halstead SB, Mahalingam S, Marovich MA, Ubol S, Mosser DM. 2010. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis 10:712–722. [PubMed][CrossRef]
41. Ubol S, Halstead SB. 2010. How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin Vaccine Immunol 17:1829–1835. [PubMed][CrossRef]
42. Boonnak K, Dambach KM, Donofrio GC, Marovich MA. 2011. Cell type specificity and host genetic polymorphisms influence antibody dependent enhancement of dengue virus infection. J Virol 85:1671–1683. [PubMed][CrossRef]
43. Sullivan NJ. 2001. Antibody-mediated enhancement of viral disease. Curr Top Microbiol Immunol 260:145–169. [PubMed][CrossRef]
44. Tirado SM, Yoon KJ. 2003. Antibody-dependent enhancement of virus infection and disease. Viral Immunol 16:69–86. [PubMed][CrossRef]
45. Huisman W, Martina BE, Rimmelzwaan GF, Gruters RA, Osterhaus AD. 2009. Vaccine-induced enhancement of viral infections. Vaccine 27:505–512. [PubMed][CrossRef]
46. Halstead SB. 1970. Observations related to pathogenesis of dengue hemorrhagic fever. VI. Hypotheses and discussion. Yale J Biol Med 42:350–362. [PubMed]
47. Gibbons RV, Kalanarooj S, Jarman RG, Nisalak A, Vaughn DW, Endy TP, Mammen MP, Jr, Srikiatkhachorn A. 2007. Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences. Am J Trop Med Hyg 77:910–913. [PubMed]
48. Halstead SB, Lan NT, Myint TT, Shwe TN, Nisalak A, Soegijanto S, Vaughn DW, Endy T. 2002. Infant dengue hemorrhagic fever: research opportunities ignored. Emerg Infect Dis 12:1474–1479. [PubMed][CrossRef]
49. Coffey LL, Mertens E, Brehin AC, Fernandez-Garcia MD, Amara A, Despres P, Sakuntabhai A. 2009. Human genetic determinants of dengue virus susceptibility. Microbes Infect 11:143–156. [PubMed][CrossRef]
50. Sabin AB. 1952. Research on dengue during World War II. Am J Trop Med Hyg 1:30–50. [PubMed]
51. Chan KR, Zhang SL, Tan HC, Chan YK, Chow A, Lim AP, Vasudevan SG, Hanson BJ, Ooi EE. 2011. Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. Proc Natl Acad Sci USA 108:12479–12484. [PubMed][CrossRef]
52. Kliks SC, Nisalak A, Brandt WE, Wahl L, Burke DS. 1989. Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am J Trop Med Hyg 40:444–451. [PubMed]
53. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, Nisalak A. 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181:2–9. [PubMed][CrossRef]
54. Libraty DH, Endy TP, Houng HS, Green S, Kalayanarooj S, Suntayakorn S, Chansiriwongs W, Vaughn DW, Nisalak A, Ennis FA, Rothman AL. 2002. Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis 185:1213–1221. [PubMed][CrossRef]
55. Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, Filgueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx DL, Hayes CG, Frankel SS. 2000. Human skin Langerhans cells are targets of dengue virus infection [see comments]. Nat Med 6:816–820. [PubMed][CrossRef]
56. Montoya M, Gresh L, Mercado JC, Williams KL, Vargas MJ, Gutierrez G, Kuan G, Gordon A, Balmaseda A, Harris E. 2013. Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year. PLoS Negl Trop Dis 7:e2357. doi:10.1371/journal.pntd.0002357. [PubMed][CrossRef]
57. Gordon A, Kuan G, Mercado JC, Gresh L, Aviles W, Balmaseda A, Harris E. 2013. The Nicaraguan pediatric dengue cohort study: incidence of inapparent and symptomatic dengue virus infections, 2004–2010. PLoS Negl Trop Dis 7:e2462. doi:10.1093/aje/kwp092. [PubMed][CrossRef]
58. Anderson KB, Gibbons RV, Cummings DA, Nisalak A, Green S, Libraty DH, Jarman RG, Srikiatkhachorn A, Mammen MP, Darunee B, Yoon IK, Endy TP. 2013. A shorter time interval between first and second dengue infections is associated with protection from clinical illness in a school-based cohort in Thailand. J Infect Dis 209:360–368. [PubMed][CrossRef]
59. Grange L, Simon-Loriere E, Sakuntabhai A, Gresh L, Paul R, Harris E. 2014. Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections. Front Immunol 5:280. [PubMed][CrossRef]
60. Guzman MG, Kouri G, Valdes L, Bravo J, Vazquez S, Halstead SB. 2002. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev Panam Salud Publica 11:223–227. [PubMed][CrossRef]
61. Guzman MG, Alvarez M, Rodriguez-Roche R, Bernardo L, Montes T, Vazquez S, Morier L, Alvarez A, Gould EA, Kouri G, Halstead SB. 2007. Neutralizing antibodies after infection with dengue 1 virus. Emerg Infect Dis 13:282–286. [PubMed][CrossRef]
62. Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S, Salitul V, Phanthumachinda B, Halstead SB. 1984. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol 120:653–669. [PubMed]
63. Halstead SB, Porterfield JS, O'Rourke EJ. 1980. Enhancement of dengue virus infection in monocytes by flavivirus antisera. Am J Trop Med Hyg 29:638–642. [PubMed]
64. Anderson KB, Gibbons RV, Thomas SJ, Rothman AL, Nisalak A, Berkelman RL, Libraty DH, Endy TP. 2011. Preexisting Japanese encephalitis virus neutralizing antibodies and increased symptomatic dengue illness in a school-based cohort in Thailand. PLoS Negl Trop Dis 5:e1311. doi:10.1371/journal.pntd.0001311. [CrossRef]
65. Hoke CH, Jr, Nisalak A, Sangawhipa N, Jatanasen S, Laorakpongse T, Innis BL, Kotchasenee S, Gingrich JB, Latendresse J, Fukai K, et al. 1988. Protection against Japanese encephalitis by inactivated vaccines. N Engl J Med 319:608–614. [PubMed][CrossRef]
66. Lai CY, Tsai WY, Lin SR, Kao CL, Hu HP, King CC, Wu HC, Chang GJ, Wang WK. 2008. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol 82:6631–6643. [PubMed][CrossRef]
67. Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J. 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–1837. [PubMed][CrossRef]
68. Rodenhuis-Zybert IA, Wilschut J, Smit JM. 2011. Partial maturation: an immune-evasion strategy of dengue virus? Trends Microbiol 19:248–254. [PubMed][CrossRef]
69. Rodenhuis-Zybert IA, van der Schaar HM, Voorham JMD, van der Ende-Metselaar H, Lei HY, Wilschut J, Smit JM. 2010. Immature dengue virus: a veiled pathogen? PLoS Pathog 6:e1000718. doi:10.1371/journal.ppat.1000718. [PubMed][CrossRef]
70. Rodenhuis-Zybert IA, Moesker B, da Silva Voorham JM, van der Ende-Metselaar H, Diamond MS, Wilschut J, Smit JM. 2011. A fusion-loop antibody enhances the infectious properties of immature flavivirus particles. J Virol 85:11800–11808. [PubMed][CrossRef]
71. da Silva Voorham JM, Rodenhuis-Zybert IA, Ayala Nunez NV, Colpitts TM, van der Ende-Metselaar H, Fikrig E, Diamond MS, Wilschut J, Smit JM. 2012. Antibodies against the envelope glycoprotein promote infectivity of immature dengue virus serotype 2. PLoS One 7:e29957. doi:10.1371/journal.pone.0029957. [PubMed][CrossRef]
72. Cherrier MV, Kaufmann B, Nybakken GE, Lok SM, Warren JT, Chen BR, Nelson CA, Kostyuchenko VA, Holdaway HA, Chipman PR, Kuhn RJ, Diamond MS, Rossmann MG, Fremont DH. 2009. Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J 28:3269–3276. [PubMed][CrossRef]
73. Sutterwala FS, Noel GJ, Clynes R, Mosser DM. 1997. Selective suppression of interleukin-12 induction after macrophage receptor ligation. J Exp Med 185:1977–1985. [PubMed][CrossRef]
74. Sutterwala FS, Noel GJ, Salgame P, Mosser DM. 1998. Reversal of proinflammatory responses by ligating the macrophage Fcgamma receptor type I. J Exp Med 188:217–222. [PubMed][CrossRef]
75. Anderson CF, Lucas M, Gutierrez-Kobeh L, Field AE, Mosser DM. 2004. T cell biasing by activated dendritic cells. J Immunol 173:955–961. [PubMed][CrossRef]
76. Ioan-Facsinay A, de Kimpe SJ, Hellwig SM, van Lent PL, Hofhuis FM, van Ojik HH, Sedlik C, da Silveira SA, Gerber J, de Jong YF, Roozendaal R, Aarden LA, van den Berg WB, Saito T, Mosser D, Amigorena S, Izui S, van Ommen GJ, van Vugt M, van de Winkel JG, Verbeek JS. 2002. FcgammaRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity 16:391–402. [PubMed][CrossRef]
77. Kima PE, Constant SL, Hannum L, Colmenares M, Lee KS, Haberman AM, Shlomchik MJ, McMahon-Pratt D. 2000. Internalization of Leishmania mexicana complex amastigotes via the Fc receptor is required to sustain infection in murine cutaneous leishmaniasis. J Exp Med 191:1063–1068. [PubMed][CrossRef]
78. Padigel UM, Farrell JP. 2005. Control of infection with Leishmania major in susceptible BALB/c mice lacking the common gamma-chain for FcR is associated with reduced production of IL-10 and TGF-beta by parasitized cells. J Immunol 174:6340–6345. [PubMed][CrossRef]
79. Mosser DM. 2003. The many faces of macrophage activation. J Leukoc Biol 73:209–212. [PubMed][CrossRef]
80. Miles SA, Conrad SM, Alves RG, Jeronimo SM, Mosser DM. 2005. A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J Exp Med 201:747–754. [PubMed][CrossRef]
81. Anderson CF, Gerber JS, Mosser DM. 2002. Modulating macrophage function with IgG immune complexes. J Endotoxin Res 8:477–481. [PubMed][CrossRef]
82. Lucas M, Zhang X, Prasanna V, Mosser DM. 2005. ERK activation following macrophage FcgammaR ligation leads to chromatin modifications at the IL-10 locus. J Immunol 175:469–477. [PubMed][CrossRef]
83. Murray HW, Masur H, Keithly JS. 1982. Cell-mediated immune response in experimental visceral leishmaniasis. I. Correlation between resistance to Leishmania donovani and lymphokine-generating capacity. J Immunol 129:344–350. [PubMed]
84. Yang Z, Mosser DM, Zhang X. 2007. Activation of the MAPK, ERK, following Leishmania amazonensis infection of macrophages. J Immunol 178:1077–1085. [PubMed][CrossRef]
85. Chareonsirisuthigul T, Kalayanarooj S, Ubol S. 2007. Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol 88:365–375. [PubMed][CrossRef]
86. Ubol S, Phuklia W, Kalayanarooj S, Modhiran N. 2010. Mechanisms of immune evasion induced by a complex of dengue virus and preexisting enhancing antibodies. J Infect Dis 201:923–935. [PubMed][CrossRef]
87. Modhiran N, Kalayanarooj S, Ubol S. 2010. Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse. PLoS Negl Trop Dis 4:e924. doi:10.1371/journal.pntd.0000924. [PubMed][CrossRef]
88. Ubol S, Masrinoul P, Chaijaruwanich J, Kalayanarooj S, Charoensirisuthikul T, Kasisith J. 2008. Differences in global gene expression in peripheral blood mononuclear cells indicate a significant role of the innate responses in progression of dengue fever but not dengue hemorrhagic fever. J Infect Dis 197:1459–1467. [PubMed][CrossRef]
89. Chen LC, Lei HY, Liu CC, Shiesh SC, Chen SH, Liu HS, Lin YS, Wang ST, Shyu HW, Yeh TM. 2006. Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. Am J Trop Med Hyg 74:142–147. [PubMed]
90. Simmons CP, Popper S, Dolocek C, Chau TN, Griffiths M, Dung NT, Long TH, Hoang DM, Chau NV, Thao le TT, Hien TT, Relman DA, Farrar J. 2007. Patterns of host genome-wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever. J Infect Dis 195:1097–1107. [PubMed][CrossRef]
91. Nguyen TH, Lei HY, Nguyen TL, Lin YS, Huang KJ, Le BL, Lin CF, Yeh TM, Do QH, Vu TQ, Chen LC, Huang JH, Lam TM, Liu CC, Halstead SB. 2004. Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J Infect Dis 189:221–232. [PubMed][CrossRef]
92. Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E. 2004. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78:2701–2710. [PubMed][CrossRef]
93. Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E. 2005. Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol 175:3946–3954. [PubMed][CrossRef]
94. Navarro-Sanchez E, Despres P, Cedillo-Barron L. 2005. Innate immune responses to dengue virus. Arch Med Res 36:425–435. [PubMed][CrossRef]
95. Chaturvedi UC, Raghupathy R, Pasca AS, Elbishbishi EA, Agarwal R, Nagar R, Misra A, Kapoor S, Mathur A, Khan M, Azizieh F. 1999. Shift from a Th1-type response to Th1-type in dengue haemorrhagic fever. Curr Sci 76:63–69.
96. Kou Z, Quinn M, Chen H, Rodrigo WW, Rose RC, Schlesinger JJ, Jin X. 2008. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J Med Virol 80:134–146. [PubMed][CrossRef]
97. Blackley S, Kou Z, Chen H, Quinn M, Rose RC, Schlesinger JJ, Coppage M, Jin X. 2007. Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro. J Virol 81:13325–13334. [PubMed][CrossRef]
98. Cohen SN, Halstead SB. 1966. Shock associated with dengue infection. I. Clinical and physiologic manifestations of dengue hemorrhagic fever in Thailand, 1964. J Pediatrics 68:448–456. [PubMed][CrossRef]
99. Rothman AL. 2010. Cellular immunology of sequential dengue virus infection and its role in disease pathogenesis. Curr Top Microbiol Immunol 338:83–98. [PubMed][CrossRef]
100. Bethell DB, Flobbe K, Cao XT, Day NP, Pham TP, Buurman WA, Cardosa MJ, White NJ, Kwiatkowski D. 1998. Pathophysiologic and prognostic role of cytokines in dengue hemorrhagic fever. J Infect Dis 177:778–782. [PubMed][CrossRef]
101. Green S, Vaughn DW, Kalayanarooj S, Suntayakorn S, Nisalak A, Nimmannitya S, Innis BL, Kurane I, Rothman AL, Ennis FA. 1997. 46th Meeting of the American Society of Tropical Medicine and Hygiene, Orlando, FL. AJTMH 57:113.
102. Halstead SB, Rojanasuphot S, Sangkawibha N. 1983. Original antigenic sin in dengue. Am J Trop Med Hyg 32:154–156. [PubMed]
103. Thein S, Aung MM, Shwe TN, Aye M, Zaw A, Aye K, Aye KM, Aaskov J. 1997. Risk factors in dengue shock syndrome. Am J Trop Med Hyg 56:566–572. [PubMed]
104. Graham RR, Juffrie M, Tan R, Hayes CG, Laksono I, Ma'roef C, Erlin, Sutaryo, Porter KR, Halstead SB. 1999. A prospective seroepidemiologic study on dengue in children four to nine years of age in Yogyakarta, Indonesia I. Studies in 1995–1996. Am J Trop Med Hyg 61:412–419. [PubMed]
105. Chungue E, Spiegel A, Roux J, Laudon F, Cardines R. 1990. Dengue-3 in French Polynesia: preliminary data. Med J Aust 152:557–558. [PubMed]
106. Hubert B, Halstead SB. 2009. Dengue 1 virus and dengue hemorrhagic fever, French Polynesia, 2001. Emerg Infect Dis 15:1265–1270. [PubMed][CrossRef]
107. Kou Z, Lim JY, Beltramello M, Quinn M, Chen H, Liu SN, Martinez-Sobrido L, Diamond MS, Schlesinger JJ, de Silva A, Sallusto F, Jin X. 2011. Human antibodies against dengue enhance dengue viral infectivity without suppressing type I interferon secretion in primary human monocytes. Virology 410:240–247. [PubMed][CrossRef]
108. Chotiwan N, Roehrig JT, Schlesinger JJ, Blair CD, Huang CY. 2014. Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcgammaRIIA-mediated antibody-dependent enhancement of infection. Virology 456–457:238–246. [PubMed][CrossRef]
109. Laoprasopwattana K, Libraty D, Endy T, Nisalak A, Chunsittiwat S, Vaughn DW, Reed G, Ennis FA, Rothman A, Green S. 2005. Dengue virus (DV) enhancing antibody activity in preillness plasma does not predict subsequent disease severity or viremia in secondary DV infection. J Infect Dis 192:510–519. [PubMed][CrossRef]
110. Rodrigo WW, Jin X, Blackley SD, Rose RC, Schlesinger JJ. 2006. Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human Fcgamma RIA (CD64) or FcgammaRIIA (CD32). J Virol 80:10128–10138. [PubMed][CrossRef]
111. Moi ML, Lim CK, Takasaki T, Kurane I. 2010. Involvement of the Fc{gamma} receptor IIA cytoplasmic domain in antibody-dependent enhancement of dengue virus infection. J Gen Virol 91:103–111. [PubMed][CrossRef]
112. Moi ML, Lim CK, Kotaki A, Takasaki T, Kurane I. 2010. Development of an antibody-dependent enhancement assay for dengue virus using stable BHK-21 cell lines expressing FcgammaRIIA. J Virol Methods 163:205–209. [PubMed][CrossRef]
113. Moi ML, Lim CK, Kotaki A, Takasaki T, Kurane I. 2010. Discrepancy in dengue virus neutralizing antibody titers between plaque reduction neutralizing tests with Fcgamma receptor (FcgammaR)-negative and FcgammaR-expressing BHK-21 cells. Clin Vaccine Immunol 17:402–407. [PubMed][CrossRef]
114. Moi ML, Lim CK, Kotaki A, Takasaki T, Kurane I. 2011. Detection of higher levels of dengue viremia using FcgammaR-expressing BHK-21 cells than FcgammaR-negative cells in secondary infection but not in primary infection. J Infect Dis 203:1405–1414. [PubMed][CrossRef]
115. Moi ML, Takasaki T, Saijo M, Kurane I. 2014. Determination of antibody concentration as the main parameter in a dengue virus antibody-dependent enhancement assay using FcgammaR-expressing BHK cells. Arch Virol 159:103–116. [PubMed][CrossRef]
116. Buxbaum LU. 2011. Type I IFNs promote the early IFN-gamma response and the IL-10 response in Leishmania mexicana infection. Parasite Immunol 32:153–160. [PubMed][CrossRef]
117. Morens DM, Marchette NJ, Chu MC, Halstead SB. 1991. Growth of dengue type 2 virus isolates in human peripheral blood leukocytes correlates with severe and mild dengue disease. Am J Trop Med Hyg 45:644–651. [PubMed]
118. Rico-Hesse R. 2003. Microevolution and virulence of dengue viruses. Adv Virus Res 59:315–341. [PubMed][CrossRef]
119. Anderson CR, Downs WG. 1956. Isolation of dengue virus from a human being in Trinidad. Science 124:224–225. [PubMed][CrossRef]
120. Rosen L. 1958. Observations on the epidemiology of dengue in Panama. Am J Hyg 68:45–58. [PubMed]
121. Guzman MG, Kouri GP, Bravo J, Soler M, Vazquez S, Morier L. 1990. Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am J Trop Med Hyg 42:179–184. [PubMed]
122. Neff JM, Morris L, Gonzalez-Alcover R, Coleman PH, Lyss SB, Negron H. 1967. Dengue fever in a Puerto Rican community. Am J Epidemiol 86:162–184. [PubMed]
123. Kouri GP, Guzman MG, Bravo JR, Triana C. 1989. Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic, 1981. Bull World Health Organ 67:375–380. [PubMed]
124. Guzman MG, Deubel V, Pelegrino JL, Rosario D, Marrero M, Sariol C, Kouri G. 1995. Partial nucleotide and amino acid sequences of the envelope and the envelope/nonstructural protein-1 gene junction of four dengue-2 virus strains isolated during the 1981 Cuban epidemic. Am J Trop Med Hyg 52:241–246. [PubMed]
125. Watts DM, Porter KR, Putvatana P, Vasquez B, Calampa C, Hayes CG, Halstead SB. 1999. Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever [see comments]. Lancet 354:1431–1434. [PubMed][CrossRef]
126. Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, de Chacon, Ramos C, Rico-Hesse R. 1999. Dengue virus structural differences that correlate with pathogenesis. J Virol 73:4738–4747. [PubMed]
127. Kochel TJ, Watts DM, Halstead SB, Hayes CG, Espinosa A, Felices V, Caceda R, Bautista T, Montoya Y, Douglas S, Russell KL. 2002. Effect of dengue-1 antibodies on American dengue-2 viral infection and dengue haemorrhagic fever. Lancet 360:310–312. [PubMed][CrossRef]
128. Vasilakis N, Weaver SC. 2008. The history and evolution of human dengue emergence. Adv Virus Res 72:1–76. [PubMed][CrossRef]
129. Guzman MG, Kouri G, Halstead SB. 2000. Do escape mutants explain rapid increases in dengue case-fatality rates within epidemics? Lancet 355:1902–1903. [PubMed][CrossRef]
130. Rodriguez-Roche R, Sanchez L, Burgher Y, Rosario D, Alvarez M, Kouri G, Halstead SB, Gould EA, Guzman MG. 2011. Virus role during intraepidemic increase in dengue disease severity. Vector Borne Zoonotic Dis 11:675–681. [PubMed][CrossRef]
131. Alvarez M, Rodriguez R, Bernardo L, Vasquez S, Morier L, Gonzalez D, Castro O, Kouri G, Halstead SB, Guzman MG. 2006. Dengue hemorrhagic fever caused by sequential dengue 1 - 3 infections at a long interval: Havana epidemic, 2001–2002. Am J Trop Med Hyg 75:1113–1117. [PubMed]
132. Gonzalez D, Castro OE, Kouri G, Perez JM, Martinez E, Vazquez S, Rosario D, Cancio R, Guzman MG. 2005. Classical dengue hemorrhagic fever resulting from two dengue infections spaced 20 years or more apart: Havana, dengue 3 epidemic, 2001–2. Int J Infect Dis 9:280–285. [PubMed][CrossRef]
133. Rodriguez-Roche R, Alvarez M, Gritsun T, Rosario D, Halstead SB, Kouri G, Guzman MG. 2005. Dengue virus type 2 in Cuba, 1997: conservation of E gene sequence in isolates obtained at different times during the epidemic. Arch Virol 150:415–425. [PubMed][CrossRef]
134. Rodriguez-Roche R, Alvarez M, Gritsun T, Halstead SB, Kouri G, Gould EA, Guzman MG. 2005. Virus evolution during a severe dengue epidemic in Cuba, 1997. Virology 334:154–159. [PubMed][CrossRef]
135. Blok J, Gibbs AJ, McWilliam SM, Vitarana UT. 1991. NS 1 gene sequences from eight dengue-2 viruses and their evolutionary relationships with other dengue-2 viruses. Arch Virol 118:209–223. [PubMed][CrossRef]
136. Halstead SB. 2014. Intraepidemic increases in dengue disease severity: applying lessons on surveillance and transmission, p 84–101. In Whitehorn J, Farrar J (ed), Clinical Insights: Dengue Fever: Transmission, Diagnosis and Surveillance. Future Medicine, London, United Kingdom. [CrossRef]
137. Chen HL, Lin SR, Liu HF, King CC, Hsieh SC, Wang WK. 2008. Evolution of dengue virus type 2 during two consecutive outbreaks with an increase in severity in southern Taiwan in 2001–2002. Am J Trop Med Hyg 79:495–505. [PubMed]
138. OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborio S, Nunez A, Lennon NJ, Birren BW, Gordon A, Henn MR, Harris E. 2011. Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med 3:114ra128. [PubMed]
139. Farrar J. 2008. Clinical features, p 121–191. In Halstead SB (ed), Dengue, vol. 1. Imperial College Press, London, United Kingdom. [CrossRef]
140. Halstead SB, Streit TG, Lafontant JG, Putvatana R, Russell K, Sun W, Kanesa-Thasan N, Hayes CG, Watts DM. 2001. Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am J Trop Med Hyg 65:180–183. [PubMed]
141. Halstead SB. 2008. Pathogenesis: risk factors prior to infection, p 219–256. In Halstead SB (ed), Dengue, vol. 5. Imperial College Press, London, United Kingdom. [CrossRef]
142. Bokisch VA, Top FH, Jr, Russell PK, Dixon FJ, Muller-Eberhard HJ. 1973. The potential pathogenic role of complement in dengue hemorrhagic shock syndrome. N Engl J Med 289:996–1000. [PubMed][CrossRef]
143. Memoranda. 1973. Pathogenic mechanisms in dengue hemorrhagic fever. Report of an international collaborative study. Bull. WHO 48:117–132.
144. Halstead SB. 2008. Pathophysiology, p 285–326. In Halstead SB (ed), Dengue, vol. 5. Imperial College Press, London, United Kingdom. [CrossRef]
145. Wills B, Tran VN, Nguyen TH, Truong TT, Tran TN, Nguyen MD, Tran VD, Nguyen VV, Dinh TT, Farrar J. 2009. Hemostatic changes in Vietnamese children with mild dengue correlate with the severity of vascular leakage rather than bleeding. Am J Trop Med Hyg 81:638–644. [PubMed][CrossRef]
146. Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, Vaughn DW, Nisalak A, Ennis FA, Rothman AL. 2002. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 186:1165–1168. [PubMed][CrossRef]
147. Kalayanarooj S, Nimmannitya S. 2005. Is dengue severity related to nutritional status? Southeast Asian J Trop Med Public Health 36:378–384. [PubMed]
148. Nimmannitya S, Halstead SB, Cohen S, Margiotta MR. 1969. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. I. Observations on hospitalized patients with hemorrhagic fever. Am J Trop Med Hyg 18:954–971. [PubMed]
149. Anders KL, Nguyet NM, Chau NV, Hung NT, Thuy TT, Lien le B, Farrar J, Wills B, Hien TT, Simmons CP. 2011. Epidemiological factors associated with dengue shock syndrome and mortality in hospitalized dengue patients in Ho Chi Minh City, Vietnam. Am J Trop Med Hyg 84:127–134. [PubMed][CrossRef]
150. Pang T, Cardosa MJ, Guzman MG. 2007. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol Cell Biol 85:43–45. [PubMed][CrossRef]
151. Dung NT, Duyen HT, Thuy NT, Ngoc TV, Chau NV, Hien TT, Rowland-Jones SL, Dong T, Farrar J, Wills B, Simmons CP. 2010. Timing of CD8+ T cell responses in relation to commencement of capillary leakage in children with dengue. J Immunol 184:7281–7287. [PubMed][CrossRef]
152. Larena M, Regner M, Lee E, Lobigs M. 2011. Pivotal role of antibody and subsidiary contribution of CD8+ T cells to recovery from infection in a murine model of Japanese encephalitis. J Virol 85:5446–5455. [PubMed][CrossRef]
153. Pan American Health Organization. 1978. Dengue in the Caribbean, 1977. Proceedings of a workshop held in Montego Bay, Jamaica, 8 to 11 May 1978. Scientific Publication 375. Pan American Health Organization, Washington, DC.
microbiolspec.AID-0022-2014.citations
cm/2/6
content/journal/microbiolspec/10.1128/microbiolspec.AID-0022-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.AID-0022-2014
2014-12-12
2017-09-23

Abstract:

Dengue provides the most abundant example in human medicine and the greatest human illness burden caused by the phenomenon of intrinsic antibody-dependent infection enhancement (iADE). In this immunopathological phenomenon infection of monocytes or macrophages using infectious immune complexes suppresses innate antiviral systems, permitting logarithmic intracellular growth of dengue virus. The four dengue viruses evolved from a common ancestor yet retain similar ecology and pathogenicity, but although infection with one virus provides short-term cross-protection against infection with a different type, millions of secondary dengue infections occur worldwide each year. When individuals are infected in the virtual absence of cross-protective dengue antibodies, the dengue vascular permeability syndrome (DVPS) may ensue. This occurs in around 2 to 4% of second heterotypic dengue infections. A complete understanding of the biologic mechanism of iADE, dengue biology, and the mechanism of host responses to dengue infection should lead to a comprehensive and complete understanding of the pathogenesis of DVPS. A crucial emphasis must be placed on understanding ADE. Clinical and epidemiological observations of DVPS define the research questions and provide research parameters. This article will review knowledge related to dengue ADE and point to areas where there has been little research progress. These observations relate to the two stages of dengue illnesses: afferent phenomena are those that promote the success of the microorganism to infect and survive; efferent phenomena are those mounted by the host to inhibit infection and replication and to eliminate the infectious agent and infected tissues. Data will be discussed as “knowns” and “unknowns.”

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/6/AID-0022-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.AID-0022-2014&mimeType=html&fmt=ahah

Tables

Generic image for table

Click to view

TABLE 1

Dengue vascular permeability syndrome

Source: microbiolspec December 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.AID-0022-2014
Generic image for table

Click to view

TABLE 2

Context for understanding “known” and studying “unknown” factors that contribute to the pathogenesis of the dengue vascular permeability syndrome via ADE

Source: microbiolspec December 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.AID-0022-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error