1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Laboratory Methods in Molecular Epidemiology: Bacterial Infections *

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Lee W. Riley1
  • Editor: Michael Sadowsky2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720; 2: BioTechnology Institute, University of Minnesota, St. Paul, MN
  • Source: microbiolspec November 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.AME-0004-2018
  • Received 22 March 2018 Accepted 04 June 2018 Published 02 November 2018
  • Lee W. Riley, [email protected]
image of Laboratory Methods in Molecular Epidemiology: Bacterial Infections<span class="xref">
<a href="#fn1">*</a>
</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Laboratory Methods in Molecular Epidemiology: Bacterial Infections * , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/6/AME-0004-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/6/AME-0004-2018-2.gif
  • Abstract:

    In infectious disease epidemiology, the laboratory plays a critical role in diagnosis, outbreak investigations, surveillance, and characterizing biologic properties of microbes associated with their transmissibility, resistance to anti-infectives, and pathogenesis. The laboratory can inform and refine epidemiologic study design and data analyses. In public health, the laboratory functions to assess effect of an intervention. In addition to research laboratories, the new-generation molecular microbiology technology has been adapted into clinical and public health laboratories to simplify, accelerate, and make precise detection and identification of infectious disease pathogens. This technology is also being applied to subtype microbes to conduct investigations that advance our knowledge of epidemiology of old and emerging infectious diseases. Because of the recent explosive progress in molecular microbiology technology and the vast amount of data generated from the applications of this technology, this Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases describes these methods separately for bacteria, viruses, and parasites. This review discusses past and current advancements made in laboratory methods used to conduct epidemiologic studies of bacterial infections. It describes methods used to subtype bacterial organisms based on molecular microbiology techniques, following a discussion on what is meant by bacterial “species” and “clones.” Discussions on past and new genotyping tests applied to epidemiologic investigations focus on tests that compare electrophoretic band patterns, hybridization matrices, and nucleic acid sequences. Applications of these genotyping tests to address epidemiologic issues are detailed elsewhere in other reviews of this series.

    *This article is part of a curated collection.

  • Citation: Riley L. 2018. Laboratory Methods in Molecular Epidemiology: Bacterial Infections * . Microbiol Spectrum 6(6):AME-0004-2018. doi:10.1128/microbiolspec.AME-0004-2018.

References

1. Cronquist AB, Mody RK, Atkinson R, Besser J, Tobin D’Angelo M, Hurd S, Robinson T, Nicholson C, Mahon BE. 2012. Impacts of culture-independent diagnostic practices on public health surveillance for bacterial enteric pathogens. Clin Infect Dis 54(Suppl 5):S432–S439. http://dx.doi.org/10.1093/cid/cis267. [PubMed]
2. Rogers GB, Carroll MP, Bruce KD. 2009. Studying bacterial infections through culture-independent approaches. J Med Microbiol 58:1401–1418. http://dx.doi.org/10.1099/jmm.0.013334-0. [PubMed]
3. Iwamoto M, Huang JY, Cronquist AB, Medus C, Hurd S, Zansky S, Dunn J, Woron AM, Oosmanally N, Griffin PM, Besser J, Henao OL, Centers for Disease Control and Prevention. 2015. Bacterial enteric infections detected by culture-independent diagnostic tests--FoodNet, United States, 2012–2014. MMWR Morb Mortal Wkly Rep 64:252–257. [PubMed]
4. Jorgensen JHPM, Carroll KC, Funke G, Landry ML, Richter SS, Warnock DW (ed). 2015. Manual of Clinical Microbiology, 11th ed. ASM Press, Washington, DC.
5. Whitman WGM, Kämpfer P, Busse H-J, Trujillo M, Ludwig W, Suzuki K, Parte A. 2012. Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag, New York, NY.
6. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackerbrandt E, Starr MP, Truper HG. 1987. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 37:463–464. http://dx.doi.org/10.1099/00207713-37-4-463.
7. Goebel BM, Stackebrandt E. 1994. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614–1621. [PubMed]
8. Konstantinidis KT, Tiedje JM. 2007. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10:504–509. http://dx.doi.org/10.1016/j.mib.2007.08.006. [PubMed]
9. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. 2000. Salmonella nomenclature. J Clin Microbiol 38:2465–2467. [PubMed]
10. Edwards PR, Kauffmann F. 1952. A simplification of the Kauffmann-White schema. Am J Clin Pathol 22(7_ts):692–697. http://dx.doi.org/10.1093/ajcp/22.7_ts.692.
11. Crosa JH, Brenner DJ, Ewing WH, Falkow S. 1973. Molecular relationships among the Salmonelleae. J Bacteriol 115:307–315. [PubMed]
12. Konstantinidis KT, Tiedje JM. 2005. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572. http://dx.doi.org/10.1073/pnas.0409727102. [PubMed]
13. Welch RA, Burland V, Plunkett G, III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99:17020–17024. http://dx.doi.org/10.1073/pnas.252529799. [PubMed]
14. Janda JM, Abbott SL. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764. http://dx.doi.org/10.1128/JCM.01228-07. [PubMed]
15. Schleifer KH. 2009. Classification of Bacteria and Archaea: past, present and future. Syst Appl Microbiol 32:533–542. http://dx.doi.org/10.1016/j.syapm.2009.09.002. [PubMed]
16. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. 2005. The microbial pan-genome. Curr Opin Genet Dev 15:589–594. http://dx.doi.org/10.1016/j.gde.2005.09.006. [PubMed]
17. Tettelin H, Riley D, Cattuto C, Medini D. 2008. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477. http://dx.doi.org/10.1016/j.mib.2008.09.006. [PubMed]
18. Rouli L, Merhej V, Fournier PE, Raoult D. 2015. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect 7:72–85. http://dx.doi.org/10.1016/j.nmni.2015.06.005. [PubMed]
19. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, Sperandio V, Ravel J. 2008. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893. http://dx.doi.org/10.1128/JB.00619-08. [PubMed]
20. Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B, Butler-Wu SM, Lee C, Cookson BT, Shendure J. 2015. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 25:119–128. http://dx.doi.org/10.1101/gr.180190.114. [PubMed]
21. Kaas RS, Friis C, Ussery DW, Aarestrup FM. 2012. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13:577. http://dx.doi.org/10.1186/1471-2164-13-577. [PubMed]
22. Spratt BG. 2004. Exploring the concept of clonality in bacteria. Methods Mol Biol 266:323–352.
23. Riley LW. 2004. Molecular Epidemiology of Infectious Diseases: Principles and Practices. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555817688.
24. Lindsay JA. 2014. Evolution of Staphylococcus aureus and MRSA during outbreaks. Infect Genet Evol 21:548–553. http://dx.doi.org/10.1016/j.meegid.2013.04.017. [PubMed]
25. Maslow JN, Mulligan ME, Arbeit RD. 1993. Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis 17:153–162; quiz, 163–164. [PubMed]
26. Tenover FC, Arbeit RD, Goering RV, Molecular Typing Working Group of the Society for Healthcare Epidemiology of America. 1997. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Infect Control Hosp Epidemiol 18:426–439. http://dx.doi.org/10.2307/30141252. [PubMed]
27. Lipuma JJ. 1998. Molecular tools for epidemiologic study of infectious diseases. Pediatr Infect Dis J 17:667–675. http://dx.doi.org/10.1097/00006454-199808000-00002. [PubMed]
28. Sabat AJ, Budimir A, Nashev D, Sá-Leão R, van Dijl J, Laurent F, Grundmann H, Friedrich AW, ESCMID Study Group of Epidemiological Markers. 2013. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18:20380. http://dx.doi.org/10.2807/ese.18.04.20380-en. [PubMed]
29. Schaberg DR, Tompkins LS, Falkow S. 1981. Use of agarose gel electrophoresis of plasmid deoxyribonucleic acid to fingerprint gram-negative bacilli. J Clin Microbiol 13:1105–1108. [PubMed]
30. Holmberg SD, Wachsmuth IK, Hickman-Brenner FW, Cohen ML. 1984. Comparison of plasmid profile analysis, phage typing, and antimicrobial susceptibility testing in characterizing Salmonella typhimurium isolates from outbreaks. J Clin Microbiol 19:100–104. [PubMed]
31. Farrar WE, Jr. 1983. Molecular analysis of plasmids in epidemiologic investigation. J Infect Dis 148:1–6. http://dx.doi.org/10.1093/infdis/148.1.1.
32. Taylor DN, Wachsmuth IK, Shangkuan YH, Schmidt EV, Barrett TJ, Schrader JS, Scherach CS, McGee HB, Feldman RA, Brenner DJ. 1982. Salmonellosis associated with marijuana: a multistate outbreak traced by plasmid fingerprinting. N Engl J Med 306:1249–1253. http://dx.doi.org/10.1056/NEJM198205273062101. [PubMed]
33. Kapperud G, Gustavsen S, Hellesnes I, Hansen AH, Lassen J, Hirn J, Jahkola M, Montenegro MA, Helmuth R. 1990. Outbreak of Salmonella typhimurium infection traced to contaminated chocolate and caused by a strain lacking the 60-megadalton virulence plasmid. J Clin Microbiol 28:2597–2601. [PubMed]
34. Spika JS, Waterman SH, Hoo GWS, St. Louis ME, Pacer RE, James SM, Bissett ML, Mayer LW, Chiu JY, Hall B, Greene K, Potter ME, Cohen ML, Blake PA. 1987. Chloramphenicol-resistant Salmonella newport traced through hamburger to dairy farms. A major persisting source of human salmonellosis in California. N Engl J Med 316:565–570. http://dx.doi.org/10.1056/NEJM198703053161001. [PubMed]
35. Lin FY, Morris JG, Jr, Trump D, Tilghman D, Wood PK, Jackman N, Israel E, Libonati JP. 1988. Investigation of an outbreak of Salmonella enteritidis gastroenteritis associated with consumption of eggs in a restaurant chain in Maryland. Am J Epidemiol 128:839–844. http://dx.doi.org/10.1093/oxfordjournals.aje.a115037. [PubMed]
36. Riley LW, DiFerdinando GT, Jr, DeMelfi TM, Cohen ML. 1983. Evaluation of isolated cases of salmonellosis by plasmid profile analysis: introduction and transmission of a bacterial clone by precooked roast beef. J Infect Dis 148:12–17. http://dx.doi.org/10.1093/infdis/148.1.12. [PubMed]
37. Threlfall EJ, Hampton MD, Chart H, Rowe B. 1994. Use of plasmid profile typing for surveillance of Salmonella enteritidis phage type 4 from humans, poultry and eggs. Epidemiol Infect 112:25–31. http://dx.doi.org/10.1017/S0950268800057381. [PubMed]
38. Dorn CR, Silapanuntakul R, Angrick EJ, Shipman LD. 1993. Plasmid analysis of Salmonella enteritidis isolated from human gastroenteritis cases and from epidemiologically associated poultry flocks. Epidemiol Infect 111:239–243. http://dx.doi.org/10.1017/S0950268800056946. [PubMed]
39. O’Brien TF, Hopkins JD, Gilleece ES, Medeiros AA, Kent RL, Blackburn BO, Holmes MB, Reardon JP, Vergeront JM, Schell WL, Christenson E, Bissett ML, Morse EV. 1982. Molecular epidemiology of antibiotic resistance in salmonella from animals and human beings in the United States. N Engl J Med 307:1–6. http://dx.doi.org/10.1056/NEJM198207013070101. [PubMed]
40. Riley LW, Ceballos BS, Trabulsi LR, Fernandes de Toledo MR, Blake PA. 1984. The significance of hospitals as reservoirs for endemic multiresistant Salmonella typhimurium causing infection in urban Brazilian children. J Infect Dis 150:236–241. http://dx.doi.org/10.1093/infdis/150.2.236. [PubMed]
41. Nakamura M, Sato S, Ohya T, Suzuki S, Ikeda S. 1986. Plasmid profile analysis in epidemiological studies of animal Salmonella typhimurium infection in Japan. J Clin Microbiol 23:360–365. [PubMed]
42. Wray C, McLaren IM, Jones YE. 1998. The epidemiology of Salmonella typhimurium in cattle: plasmid profile analysis of definitive phage type (DT) 204c. J Med Microbiol 47:483–487. http://dx.doi.org/10.1099/00222615-47-6-483. [PubMed]
43. Ostroff SM, Griffin PM, Tauxe RV, Shipman LD, Greene KD, Wells JG, Lewis JH, Blake PA, Kobayashi JM. 1990. A statewide outbreak of Escherichia coli O157:H7 infections in Washington State. Am J Epidemiol 132:239–247. http://dx.doi.org/10.1093/oxfordjournals.aje.a115653.
44. Tornieporth NG, John J, Salgado K, de Jesus P, Latham E, Melo MC, Gunzburg ST, Riley LW. 1995. Differentiation of pathogenic Escherichia coli strains in Brazilian children by PCR. J Clin Microbiol 33:1371–1374. [PubMed]
45. Gunzburg ST, Tornieporth NG, Riley LW. 1995. Identification of enteropathogenic Escherichia coli by PCR-based detection of the bundle-forming pilus gene. J Clin Microbiol 33:1375–1377. [PubMed]
46. Girón JA, Donnenberg MS, Martin WC, Jarvis KG, Kaper JB. 1993. Distribution of the bundle-forming pilus structural gene (bfpA) among enteropathogenic Escherichia coli. J Infect Dis 168:1037–1041. http://dx.doi.org/10.1093/infdis/168.4.1037. [PubMed]
47. Sethabutr O, Venkatesan M, Murphy GS, Eampokalap B, Hoge CW, Echeverria P. 1993. Detection of shigellae and enteroinvasive Escherichia coli by amplification of the invasion plasmid antigen H DNA sequence in patients with dysentery. J Infect Dis 167:458–461. http://dx.doi.org/10.1093/infdis/167.2.458. [PubMed]
48. Moseley SL, Hardy JW, Hug MI, Echeverria P, Falkow S. 1983. Isolation and nucleotide sequence determination of a gene encoding a heat-stable enterotoxin of Escherichia coli. Infect Immun 39:1167–1174. [PubMed]
49. Blomén ILS, Stenström TA, Norberg R. 1993. Identification of enterotoxigenic Escherichia coli isolates: a comparison of PCR, DNA hybridization, ELISA and bioassays. J Microbiol Methods 17:181–191. http://dx.doi.org/10.1016/0167-7012(93)90045-J.
50. Berg DEAN, Kersulyte D. 1994. Fingerprinting microbial genomes using the RAPD or AP-PCR method. Methods Mol Cell Biol 5:13–24.
51. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. http://dx.doi.org/10.1093/nar/18.22.6531. [PubMed]
52. del Tufo JPTS, Tingey SV. 1994. RAPD assay. A novel technique for genetic diagnostics. Methods Mol Biol 28:237–241. [PubMed]
53. Lin AW, Usera MA, Barrett TJ, Goldsby RA. 1996. Application of random amplified polymorphic DNA analysis to differentiate strains of Salmonella enteritidis. J Clin Microbiol 34:870–876. [PubMed]
54. Welsh J, McClelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218. http://dx.doi.org/10.1093/nar/18.24.7213. [PubMed]
55. Berg DE, Akopyants NS, Kersulyte D. 1994. Fingerprinting microbial genomes using the RAPD or AP-PCR method. Methods Mol Cell Biol 5:13–24.
56. Gillings M, Holley M. 1997. Amplification of anonymous DNA fragments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to genetic variation. Electrophoresis 18:1512–1518. http://dx.doi.org/10.1002/elps.1150180904. [PubMed]
57. Goh SH, Byrne SK, Zhang JL, Chow AW. 1992. Molecular typing of Staphylococcus aureus on the basis of coagulase gene polymorphisms. J Clin Microbiol 30:1642–1645. [PubMed]
58. Sayada C, Denamur E, Orfila J, Catalan F, Elion J. 1991. Rapid genotyping of the Chlamydia trachomatis major outer membrane protein by the polymerase chain reaction. FEMS Microbiol Lett 67:73–78. http://dx.doi.org/10.1111/j.1574-6968.1991.tb04392.x. [PubMed]
59. Heyndrickx M, Vauterin L, Vandamme P, Kersters K, DeVos P. 1996. Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J Microbiol Methods 26:247–259. http://dx.doi.org/10.1016/0167-7012(96)00916-5.
60. Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM. 1995. Bacterial Community Fingerprinting of Amplified 16S and 16-23S Ribosomal DNA Gene Sequences and Restriction Endonuclease Analysis (ARDRA). Kluwer, Dordrecht, The Netherlands. http://dx.doi.org/10.1007/978-94-011-0351-0_20.
61. De Baere T, de Mendonça R, Claeys G, Verschraegen G, Mijs W, Verhelst R, Rottiers S, Van Simaey L, De Ganck C, Vaneechoutte M. 2002. Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of cultured mycobacteria in a diagnostic laboratory. BMC Microbiol 2:4. http://dx.doi.org/10.1186/1471-2180-2-4. [PubMed]
62. Kimura R, Mandrell RE, Galland JC, Hyatt D, Riley LW. 2000. Restriction-site-specific PCR as a rapid test to detect enterohemorrhagic Escherichia coli O157:H7 strains in environmental samples. Appl Environ Microbiol 66:2513–2519. http://dx.doi.org/10.1128/AEM.66.6.2513-2519.2000. [PubMed]
63. Torres AG, Payne SM. 1997. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 23:825–833. http://dx.doi.org/10.1046/j.1365-2958.1997.2641628.x.
64. Janssen P, Coopman R, Huys G, Swings J, Bleeker M, Vos P, Zabeau M, Kersters K. 1996. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142:1881–1893. http://dx.doi.org/10.1099/13500872-142-7-1881. [PubMed]
65. Huys G, Coopman R, Janssen P, Kersters K. 1996. High-resolution genotypic analysis of the genus Aeromonas by AFLP fingerprinting. Int J Syst Bacteriol 46:572–580. http://dx.doi.org/10.1099/00207713-46-2-572. [PubMed]
66. Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. http://dx.doi.org/10.1093/nar/23.21.4407. [PubMed]
67. Versalovic J, Koeuth T, Lupski JR. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831. http://dx.doi.org/10.1093/nar/19.24.6823. [PubMed]
68. Versalovic JSM, de Bruijn FJ, Lupski JR. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40.
69. Lupski JR, Weinstock GM. 1992. Short, interspersed repetitive DNA sequences in prokaryotic genomes. J Bacteriol 174:4525–4529. http://dx.doi.org/10.1128/jb.174.14.4525-4529.1992.
70. Stern MJ, Ames GF, Smith NH, Robinson EC, Higgins CF. 1984. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37:1015–1026. http://dx.doi.org/10.1016/0092-8674(84)90436-7.
71. Gilson E, Clément JM, Brutlag D, Hofnung M. 1984. A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. EMBO J 3:1417–1421. [PubMed]
72. Hulton CS, Higgins CF, Sharp PM. 1991. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834. http://dx.doi.org/10.1111/j.1365-2958.1991.tb00755.x. [PubMed]
73. Sharples GJ, Lloyd RG. 1990. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res 18:6503–6508. http://dx.doi.org/10.1093/nar/18.22.6503.
74. Higgins CF, Ames GF, Barnes WM, Clement JM, Hofnung M. 1982. A novel intercistronic regulatory element of prokaryotic operons. Nature 298:760–762. http://dx.doi.org/10.1038/298760a0. [PubMed]
75. Woese CR. 1987. Bacterial evolution. Microbiol Rev 51:221–271. [PubMed]
76. Higgins CF, McLaren RS, Newbury SF. 1988. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene 72:3–14. http://dx.doi.org/10.1016/0378-1119(88)90122-9.
77. Shyamala V, Schneider E, Ames GF. 1990. Tandem chromosomal duplications: role of REP sequences in the recombination event at the join-point. EMBO J 9:939–946. [PubMed]
78. Martin B, Humbert O, Camara M, Guenzi E, Walker J, Mitchell T, Andrew P, Prudhomme M, Alloing G, Hakenbeck R, Morrison DA, Boulnois GJ, Claverys J-P. 1992. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 20:3479–3483. http://dx.doi.org/10.1093/nar/20.13.3479. [PubMed]
79. Koeuth T, Versalovic J, Lupski JR. 1995. Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:408–418. http://dx.doi.org/10.1101/gr.5.4.408. [PubMed]
80. Del Vecchio VG, Petroziello JM, Gress MJ, McCleskey FK, Melcher GP, Crouch HK, Lupski JR. 1995. Molecular genotyping of methicillin-resistant Staphylococcus aureus via fluorophore-enhanced repetitive-sequence PCR. J Clin Microbiol 33:2141–2144. [PubMed]
81. Georghiou PR, Doggett AM, Kielhofner MA, Stout JE, Watson DA, Lupski JR, Hamill RJ. 1994. Molecular fingerprinting of Legionella species by repetitive element PCR. J Clin Microbiol 32:2989–2994. [PubMed]
82. Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ. 1994. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60:2286–2295. [PubMed]
83. Gillings M, Holley M. 1997. Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Lett Appl Microbiol 25:17–21. http://dx.doi.org/10.1046/j.1472-765X.1997.00162.x. [PubMed]
84. Koressaar T, Remm M. 2012. Characterization of species-specific repeats in 613 prokaryotic species. DNA Res 19:219–230. [PubMed]
85. Koressaar T, Jõers K, Remm M. 2009. Automatic identification of species-specific repetitive DNA sequences and their utilization for detecting microbial organisms. Bioinformatics 25:1349–1355. http://dx.doi.org/10.1093/bioinformatics/btp241. [PubMed]
86. Ross BC, Raios K, Jackson K, Dwyer B. 1992. Molecular cloning of a highly repeated DNA element from Mycobacterium tuberculosis and its use as an epidemiological tool. J Clin Microbiol 30:942–946. [PubMed]
87. Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. 2000. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 36:762–771. http://dx.doi.org/10.1046/j.1365-2958.2000.01905.x. [PubMed]
88. Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V, Gicquel B, Tibayrenc M, Locht C, Supply P. 2001. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci U S A 98:1901–1906. http://dx.doi.org/10.1073/pnas.98.4.1901. [PubMed]
89. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D. 2006. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510. http://dx.doi.org/10.1128/JCM.01392-06. [PubMed]
90. van Soolingen D, de Haas PE, Hermans PW, Groenen PM, van Embden JD. 1993. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol 31:1987–1995. [PubMed]
91. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J. 1997. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914. [PubMed]
92. Groenen PM, Bunschoten AE, van Soolingen D, van Embden JD. 1993. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 10:1057–1065. http://dx.doi.org/10.1111/j.1365-2958.1993.tb00976.x. [PubMed]
93. Frothingham R. 1995. Differentiation of strains in Mycobacterium tuberculosis complex by DNA sequence polymorphisms, including rapid identification of M. bovis BCG. J Clin Microbiol 33:840–844. [PubMed]
94. Frothingham R, Meeker-O’Connell WA. 1998. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144:1189–1196. http://dx.doi.org/10.1099/00221287-144-5-1189. [PubMed]
95. van Belkum A. 1999. Short sequence repeats in microbial pathogenesis and evolution. Cell Mol Life Sci 56:729–734. http://dx.doi.org/10.1007/s000180050019. [PubMed]
96. Hawkey PM, Smith EG, Evans JT, Monk P, Bryan G, Mohamed HH, Bardhan M, Pugh RN. 2003. Mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis compared to IS6110-based restriction fragment length polymorphism analysis for investigation of apparently clustered cases of tuberculosis. J Clin Microbiol 41:3514–3520. http://dx.doi.org/10.1128/JCM.41.8.3514-3520.2003. [PubMed]
97. Christianson S, Wolfe J, Orr P, Karlowsky J, Levett PN, Horsman GB, Thibert L, Tang P, Sharma MK. 2010. Evaluation of 24 locus MIRU-VNTR genotyping of Mycobacterium tuberculosis isolates in Canada. Tuberculosis (Edinb) 90:31–38. http://dx.doi.org/10.1016/j.tube.2009.12.003. [PubMed]
98. Valcheva V, Mokrousov I, Narvskaya O, Rastogi N, Markova N. 2008. Utility of new 24-locus variable-number tandem-repeat typing for discriminating Mycobacterium tuberculosis clinical isolates collected in Bulgaria. J Clin Microbiol 46:3005–3011. http://dx.doi.org/10.1128/JCM.00437-08. [PubMed]
99. Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM, Okinaka R, Jackson PJ, Hugh-Jones ME. 2000. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol 182:2928–2936. http://dx.doi.org/10.1128/JB.182.10.2928-2936.2000. [PubMed]
100. Ramisse V, Houssu P, Hernandez E, Denoeud F, Hilaire V, Lisanti O, Ramisse F, Cavallo JD, Vergnaud G. 2004. Variable number of tandem repeats in Salmonella enterica subsp. enterica for typing purposes. J Clin Microbiol 42:5722–5730. http://dx.doi.org/10.1128/JCM.42.12.5722-5730.2004. [PubMed]
101. Le Flèche P, Hauck Y, Onteniente L, Prieur A, Denoeud F, Ramisse V, Sylvestre P, Benson G, Ramisse F, Vergnaud G. 2001. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis. BMC Microbiol 1:2. http://dx.doi.org/10.1186/1471-2180-1-2. [PubMed]
102. Farlow J, Smith KL, Wong J, Abrams M, Lytle M, Keim P. 2001. Francisella tularensis strain typing using multiple-locus, variable-number tandem repeat analysis. J Clin Microbiol 39:3186–3192. http://dx.doi.org/10.1128/JCM.39.9.3186-3192.2001. [PubMed]
103. Onteniente L, Brisse S, Tassios PT, Vergnaud G. 2003. Evaluation of the polymorphisms associated with tandem repeats for Pseudomonas aeruginosa strain typing. J Clin Microbiol 41:4991–4997. http://dx.doi.org/10.1128/JCM.41.11.4991-4997.2003. [PubMed]
104. Noller AC, McEllistrem MC, Stine OC, Morris JG, Jr, Boxrud DJ, Dixon B, Harrison LH. 2003. Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157:H7 isolates that are distinct by pulsed-field gel electrophoresis. J Clin Microbiol 41:675–679. http://dx.doi.org/10.1128/JCM.41.2.675-679.2003. [PubMed]
105. Pourcel C, André-Mazeaud F, Neubauer H, Ramisse F, Vergnaud G. 2004. Tandem repeats analysis for the high resolution phylogenetic analysis of Yersinia pestis. BMC Microbiol 4:22. http://dx.doi.org/10.1186/1471-2180-4-22. [PubMed]
106. Pourcel C, Vidgop Y, Ramisse F, Vergnaud G, Tram C. 2003. Characterization of a tandem repeat polymorphism in Legionella pneumophila and its use for genotyping. J Clin Microbiol 41:1819–1826. http://dx.doi.org/10.1128/JCM.41.5.1819-1826.2003. [PubMed]
107. Liu Y, Lee MA, Ooi EE, Mavis Y, Tan AL, Quek HH. 2003. Molecular typing of Salmonella enterica serovar Typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats. J Clin Microbiol 41:4388–4394. http://dx.doi.org/10.1128/JCM.41.9.4388-4394.2003. [PubMed]
108. Lindstedt BA, Torpdahl M, Vergnaud G, Le Hello S, Weill FX, Tietze E, Malorny B, Prendergast DM, Ní Ghallchoir E, Lista RF, Schouls LM, Söderlund R, Börjesson S, Åkerström S. 2013. Use of multilocus variable-number tandem repeat analysis (MLVA) in eight European countries, 2012. Euro Surveill 18:20385. http://dx.doi.org/10.2807/ese.18.04.20385-en. [PubMed]
109. Hyytiä-Trees E, Smole SC, Fields PA, Swaminathan B, Ribot EM. 2006. Second generation subtyping: a proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 (STEC O157). Foodborne Pathog Dis 3:118–131. http://dx.doi.org/10.1089/fpd.2006.3.118. [PubMed]
110. Torpdahl M, Sørensen G, Lindstedt BA, Nielsen EM. 2007. Tandem repeat analysis for surveillance of human Salmonella Typhimurium infections. Emerg Infect Dis 13:388–395. http://dx.doi.org/10.3201/eid1303.060460. [PubMed]
111. Noller AC, McEllistrem MC, Pacheco AG, Boxrud DJ, Harrison LH. 2003. Multilocus variable-number tandem repeat analysis distinguishes outbreak and sporadic Escherichia coli O157:H7 isolates. J Clin Microbiol 41:5389–5397. http://dx.doi.org/10.1128/JCM.41.12.5389-5397.2003. [PubMed]
112. Ross BC, Dwyer B. 1993. Rapid, simple method for typing isolates of Mycobacterium tuberculosis by using the polymerase chain reaction. J Clin Microbiol 31:329–334. [PubMed]
113. Friedman CR, Stoeckle MY, Johnson WD, Jr, Riley LW. 1995. Double-repetitive-element PCR method for subtyping Mycobacterium tuberculosis clinical isolates. J Clin Microbiol 33:1383–1384. [PubMed]
114. Harris E. 1998. A Low-Cost Approach to PCR. Oxford University Press, New York, NY.
115. White BA. 1993. PCR Protocols: Current Methods and Applications, vol 15. Humana Press, Totowa, NJ. http://dx.doi.org/10.1385/0896032442.
116. Schwartz DC, Cantor CR. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75. http://dx.doi.org/10.1016/0092-8674(84)90301-5.
117. Chu G, Vollrath D, Davis RW. 1986. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582–1585. http://dx.doi.org/10.1126/science.3538420. [PubMed]
118. Arbeit RD, Arthur M, Dunn R, Kim C, Selander RK, Goldstein R. 1990. Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field electrophoresis to molecular epidemiology. J Infect Dis 161:230–235. http://dx.doi.org/10.1093/infdis/161.2.230. [PubMed]
119. Maslow JN, Arbeit RD. 1993. Application of pulsed field gel electrophoresis to molecular epidemiology. Clin Infect Dis 17:153–162. [PubMed]
120. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239. [PubMed]
121. Goering RV. 2010. Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10:866–875. http://dx.doi.org/10.1016/j.meegid.2010.07.023. [PubMed]
122. Salipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR, Cookson BT. 2015. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J Clin Microbiol 53:1072–1079. http://dx.doi.org/10.1128/JCM.03385-14. [PubMed]
123. Scharff RL, Besser J, Sharp DJ, Jones TF, Peter GS, Hedberg CW. 2016. An economic evaluation of PulseNet: a network for foodborne disease surveillance. Am J Prev Med 50(Suppl 1):S66–S73. http://dx.doi.org/10.1016/j.amepre.2015.09.018. [PubMed]
124. Chung M, de Lencastre H, Matthews P, Tomasz A, Adamsson I, Aires de Sousa M, Camou T, Cocuzza C, Corso A, Couto I, Dominguez A, Gniadkowski M, Goering R, Gomes A, Kikuchi K, Marchese A, Mato R, Melter O, Oliveira D, Palacio R, Sá-Leão R, Santos Sanches I, Song JH, Tassios PT, Villari P, Multilaboratory Project Collaborators. 2000. Molecular typing of methicillin-resistant Staphylococcus aureus by pulsed-field gel electrophoresis: comparison of results obtained in a multilaboratory effort using identical protocols and MRSA strains. Microb Drug Resist 6:189–198. http://dx.doi.org/10.1089/mdr.2000.6.189. [PubMed]
125. Cookson BD, Aparicio P, Deplano A, Struelens M, Goering R, Marples R. 1996. Inter-centre comparison of pulsed-field gel electrophoresis for the typing of methicillin-resistant Staphylococcus aureus. J Med Microbiol 44:179–184. http://dx.doi.org/10.1099/00222615-44-3-179. [PubMed]
126. Davis MA, Hancock DD, Besser TE, Call DR. 2003. Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157:H7. J Clin Microbiol 41:1843–1849. http://dx.doi.org/10.1128/JCM.41.5.1843-1849.2003. [PubMed]
127. Southern EM. 1979. Analysis of restriction-fragment patterns from complex deoxyribonucleic acid species. Biochem Soc Symp 44:37–41. [PubMed]
128. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM. 1993. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31:406–409. [PubMed]
129. Thierry D, Brisson-Noël A, Vincent-Lévy-Frébault V, Nguyen S, Guesdon JL, Gicquel B. 1990. Characterization of a Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. J Clin Microbiol 28:2668–2673. [PubMed]
130. Thierry D, Cave MD, Eisenach KD, Crawford JT, Bates JH, Gicquel B, Guesdon JL. 1990. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res 18:188. http://dx.doi.org/10.1093/nar/18.1.188. [PubMed]
131. Zainuddin ZF, Dale JW. 1989. Polymorphic repetitive DNA sequences in Mycobacterium tuberculosis detected with a gene probe from a Mycobacterium fortuitum plasmid. J Gen Microbiol 135:2347–2355. [PubMed]
132. Eisenach KD, Crawford JT, Bates JH. 1988. Repetitive DNA sequences as probes for Mycobacterium tuberculosis. J Clin Microbiol 26:2240–2245. [PubMed]
133. Jansen R, van Embden JD, Gaastra W, Schouls LM. 2002. Identification of a novel family of sequence repeats among prokaryotes. OMICS 6:23–33. http://dx.doi.org/10.1089/15362310252780816. [PubMed]
134. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. http://dx.doi.org/10.1126/science.1138140. [PubMed]
135. Nakata A, Amemura M, Makino K. 1989. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J Bacteriol 171:3553–3556. http://dx.doi.org/10.1128/jb.171.6.3553-3556.1989. [PubMed]
136. Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244–246. http://dx.doi.org/10.1046/j.1365-2958.2000.01838.x. [PubMed]
137. Dale JW, Brittain D, Cataldi AA, Cousins D, Crawford JT, Driscoll J, Heersma H, Lillebaek T, Quitugua T, Rastogi N, Skuce RA, Sola C, Van Soolingen D, Vincent V. 2001. Spacer oligonucleotide typing of bacteria of the Mycobacterium tuberculosis complex: recommendations for standardised nomenclature. Int J Tuberc Lung Dis 5:216–219. [PubMed]
138. Sola C, Filliol I, Gutierrez MC, Mokrousov I, Vincent V, Rastogi N. 2001. Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiologic and phylogenetic perspectives. Emerg Infect Dis 7:390–396. http://dx.doi.org/10.3201/10.3201/eid0703.0107304. [PubMed]
139. Demay C, Liens B, Burguière T, Hill V, Couvin D, Millet J, Mokrousov I, Sola C, Zozio T, Rastogi N. 2012. SITVITWEB—a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol 12:755–766. http://dx.doi.org/10.1016/j.meegid.2012.02.004. [PubMed]
140. Filliol I, Driscoll JR, van Soolingen D, Kreiswirth BN, Kremer K, Valétudie G, Dang DA, Barlow R, Banerjee D, Bifani PJ, Brudey K, Cataldi A, Cooksey RC, Cousins DV, Dale JW, Dellagostin OA, Drobniewski F, Engelmann G, Ferdinand S, Gascoyne-Binzi D, Gordon M, Gutierrez MC, Haas WH, Heersma H, Kassa-Kelembho E, Ho ML, Makristathis A, Mammina C, Martin G, Moström P, Mokrousov I, Narbonne V, Narvskaya O, Nastasi A, Niobe-Eyangoh SN, Pape JW, Rasolofo-Razanamparany V, Ridell M, Rossetti ML, Stauffer F, Suffys PN, Takiff H, Texier-Maugein J, Vincent V, de Waard JH, Sola C, Rastogi N. 2003. Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol 41:1963–1970. http://dx.doi.org/10.1128/JCM.41.5.1963-1970.2003. [PubMed]
141. Grissa I, Vergnaud G, Pourcel C. 2009. Clustered regularly interspaced short palindromic repeats (CRISPRs) for the genotyping of bacterial pathogens. Methods Mol Biol 551:105–116. http://dx.doi.org/10.1007/978-1-60327-999-4_9. [PubMed]
142. Hoe N, Nakashima K, Grigsby D, Pan X, Dou SJ, Naidich S, Garcia M, Kahn E, Bergmire-Sweat D, Musser JM. 1999. Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg Infect Dis 5:254–263. http://dx.doi.org/10.3201/eid0502.990210. [PubMed]
143. Price EP, Smith H, Huygens F, Giffard PM. 2007. High-resolution DNA melt curve analysis of the clustered, regularly interspaced short-palindromic-repeat locus of Campylobacter jejuni. Appl Environ Microbiol 73:3431–3436. http://dx.doi.org/10.1128/AEM.02702-06. [PubMed]
144. Pourcel C, Salvignol G, Vergnaud G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663. http://dx.doi.org/10.1099/mic.0.27437-0. [PubMed]
145. Mokrousov I, Limeschenko E, Vyazovaya A, Narvskaya O. 2007. Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnol J 2:901–906. http://dx.doi.org/10.1002/biot.200700035. [PubMed]
146. Delannoy S, Beutin L, Fach P. 2012. Use of clustered regularly interspaced short palindromic repeat sequence polymorphisms for specific detection of enterohemorrhagic Escherichia coli strains of serotypes O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 by real-time PCR. J Clin Microbiol 50:4035–4040. http://dx.doi.org/10.1128/JCM.02097-12. [PubMed]
147. Delannoy S, Beutin L, Burgos Y, Fach P. 2012. Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR. J Clin Microbiol 50:3485–3492. http://dx.doi.org/10.1128/JCM.01656-12. [PubMed]
148. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. 1991. Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773. http://dx.doi.org/10.1126/science.1990438. [PubMed]
149. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. 1999. High density synthetic oligonucleotide arrays. Nat Genet 21(Suppl):20–24. http://dx.doi.org/10.1038/4447. [PubMed]
150. Lockhart DJ, Winzeler EA. 2000. Genomics, gene expression and DNA arrays. Nature 405:827–836. http://dx.doi.org/10.1038/35015701. [PubMed]
151. Chu Y, Corey DR. 2012. RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acid Ther 22:271–274. http://dx.doi.org/10.1089/nat.2012.0367. [PubMed]
152. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349. http://dx.doi.org/10.1126/science.1158441. [PubMed]
153. Martin JA, Wang Z. 2011. Next-generation transcriptome assembly. Nat Rev Genet 12:671–682. http://dx.doi.org/10.1038/nrg3068. [PubMed]
154. Ozsolak F, Milos PM. 2011. Transcriptome profiling using single-molecule direct RNA sequencing. Methods Mol Biol 733:51–61. http://dx.doi.org/10.1007/978-1-61779-089-8_4. [PubMed]
155. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145. http://dx.doi.org/10.1073/pnas.95.6.3140. [PubMed]
156. Maiden MC. 2006. Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588. http://dx.doi.org/10.1146/annurev.micro.59.030804.121325. [PubMed]
157. Enright MC, Spratt BG. 1999. Multilocus sequence typing. Trends Microbiol 7:482–487. http://dx.doi.org/10.1016/S0966-842X(99)01609-1.
158. Zhang W, Jayarao BM, Knabel SJ. 2004. Multi-virulence-locus sequence typing of Listeria monocytogenes. Appl Environ Microbiol 70:913–920. http://dx.doi.org/10.1128/AEM.70.2.913-920.2004. [PubMed]
159. Nemoy LL, Kotetishvili M, Tigno J, Keefer-Norris A, Harris AD, Perencevich EN, Johnson JA, Torpey D, Sulakvelidze A, Morris JG, Jr, Stine OC. 2005. Multilocus sequence typing versus pulsed-field gel electrophoresis for characterization of extended-spectrum beta-lactamase-producing Escherichia coli isolates. J Clin Microbiol 43:1776–1781. http://dx.doi.org/10.1128/JCM.43.4.1776-1781.2005. [PubMed]
160. Tartof SY, Solberg OD, Manges AR, Riley LW. 2005. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J Clin Microbiol 43:5860–5864. http://dx.doi.org/10.1128/JCM.43.12.5860-5864.2005. [PubMed]
161. Francis SS, Plucinski MM, Wallace AD, Riley LW. 2016. Genotyping oral commensal bacteria to predict social contact and structure. PLoS One 11:e0160201. http://dx.doi.org/10.1371/journal.pone.0160201. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.AME-0004-2018
2018-11-02
2018-11-15

Abstract:

In infectious disease epidemiology, the laboratory plays a critical role in diagnosis, outbreak investigations, surveillance, and characterizing biologic properties of microbes associated with their transmissibility, resistance to anti-infectives, and pathogenesis. The laboratory can inform and refine epidemiologic study design and data analyses. In public health, the laboratory functions to assess effect of an intervention. In addition to research laboratories, the new-generation molecular microbiology technology has been adapted into clinical and public health laboratories to simplify, accelerate, and make precise detection and identification of infectious disease pathogens. This technology is also being applied to subtype microbes to conduct investigations that advance our knowledge of epidemiology of old and emerging infectious diseases. Because of the recent explosive progress in molecular microbiology technology and the vast amount of data generated from the applications of this technology, this Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases describes these methods separately for bacteria, viruses, and parasites. This review discusses past and current advancements made in laboratory methods used to conduct epidemiologic studies of bacterial infections. It describes methods used to subtype bacterial organisms based on molecular microbiology techniques, following a discussion on what is meant by bacterial “species” and “clones.” Discussions on past and new genotyping tests applied to epidemiologic investigations focus on tests that compare electrophoretic band patterns, hybridization matrices, and nucleic acid sequences. Applications of these genotyping tests to address epidemiologic issues are detailed elsewhere in other reviews of this series.

*This article is part of a curated collection.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Repetitive element PCR (rep-PCR). The repeat double-stranded DNA sequences (light grey segments) are targeted as annealing sites for outwardly oriented complementary oligonucleotide primers, which amplify spaces located between these repeats (indicated as dark segments). Only one set of primers is needed to amplify the different segments, which generates amplicons of different sizes, shown at the end of each arrow, that can then be resolved by AGE for comparison of band patterns. (Illustrated by Paolo Harris Paz.) (Photo inset) AGE of band patterns generated by ERIC2 PCR analysis (a type of rep-PCR) of strains isolated from patients with community-acquired urinary tract infection. (Photo by Reina Yamaji.)

Source: microbiolspec November 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.AME-0004-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Conventional gel electrophoresis (left) and pulsed-field gel electrophoresis (PFGE) (right). In conventional gel electrophoresis, negatively charged DNA fragments migrate in one direction towards the positively charged electrode. In PFGE, the electrical field is applied along a contour of a hexagonal array of electrodes powered to generate two alternating electric field vectors, which allows linear pieces of DNA to “snake through” the path of least resistance along its migration in the agarose gel matrix. This allows large DNA fragments to be resolved to generate band patterns. (Illustrated by Paolo Harris Paz.) (Photo inset) PFGE of extraintestinal pathogenic isolates. (Photo by Meena Ramchandani.)

Source: microbiolspec November 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.AME-0004-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Multilocus sequence typing (MLST) of . A 400- to 600-bp region of housekeeping genes (, , , , , , and is amplified by PCR and the amplified products are sequenced. The sequences of the 7 loci are then concatenated, and all the concatenated sequences representing different genotypes are aligned to generate a tree, which can be used to depict strain relatedness. The analysis of similarity by comparison of concatenated sequence is called multilocus sequence analysis. The allele sequences can be uploaded onto an automated submission system (e.g., http://pubmlst.org/ or http://www.mlst.net/), which allows the database curators to provide an ST designation (ST number). Pairwise comparison of allele profiles can be performed by minimal spanning tree analysis using algorithms such as eBURST (http://eburst.mlst.net/default.asp). (Illustrated by Paolo Harris Paz.)

Source: microbiolspec November 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.AME-0004-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Phenotypic characterization of bacterial organisms

Source: microbiolspec November 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.AME-0004-2018
Generic image for table
TABLE 2

Genotyping tests used to conduct epidemiologic investigations of bacterial infections

Source: microbiolspec November 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.AME-0004-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error