1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Susceptibility Testing of Bacteria of Veterinary Origin

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Jeffrey L. Watts1, Michael T. Sweeney2, Brian V. Lubbers3
  • Editors: Frank Møller Aarestrup4, Stefan Schwarz5, Jianzhong Shen6, Lina Cavaco7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Veterinary Medicine Research and Development, Zoetis, Inc., Kalamazoo, MI 49009; 2: Veterinary Medicine Research and Development, Zoetis, Inc., Kalamazoo, MI 49009; 3: Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS 66506; 4: Technical University of Denmark, Lyngby, Denmark; 5: Freie Universität Berlin, Berlin, Germany; 6: China Agricultural University, Beijing, China; 7: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0001-2017
  • Received 10 October 2016 Accepted 17 February 2018 Published 29 March 2018
  • Jeffrey L. Watts, [email protected]
image of Antimicrobial Susceptibility Testing of Bacteria of Veterinary Origin
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Susceptibility Testing of Bacteria of Veterinary Origin, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/2/ARBA-0001-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/2/ARBA-0001-2017-2.gif
  • Abstract:

    Antimicrobial susceptibility testing is an essential tool to the veterinarian for selecting the most appropriate agent for treatment of bacterial diseases of animals. The availability of well-defined methods that incorporate the necessary quality controls coupled to clinical outcome data is foundational in providing relevant test results for clinical decisions. Since 1993, the Clinical Laboratory and Standards Institute (CLSI) Subcommittee on Veterinary Antimicrobial Susceptibility Testing (VAST) has developed specific test methods and interpretive criteria for veterinary pathogens. This information has allowed for veterinarians to more effectively treat animal diseases thereby protecting both animal welfare and human food security. Moreover, the availability of standardized test methods for veterinary pathogens has allowed for the development of antimicrobial surveillance programs to detect the emergence of resistance among veterinary pathogens. Future work by the VAST and other groups will be critical to expanding the current test methods and interpretive criteria to more pathogen-antibacterial combinations, as well as, the incorporation of genomic information for routine antimicrobial susceptibility testing in the veterinary diagnostic laboratory.

  • Citation: Watts J, Sweeney M, Lubbers B. 2018. Antimicrobial Susceptibility Testing of Bacteria of Veterinary Origin. Microbiol Spectrum 6(2):ARBA-0001-2017. doi:10.1128/microbiolspec.ARBA-0001-2017.

References

1. Michael GB, Freitag C, Wendlandt S, Eidam C, Feßler AT, Lopes GV, Kadlec K, Schwarz S. 2015. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol 10:427–443 http://dx.doi.org/10.2217/fmb.14.93. [PubMed]
2. Guardabassi L, Prescott JF. 2015. Antimicrobial stewardship in small animal veterinary practice: from theory to practice. Vet Clin North Am Small Anim Pract 45:361–376, vii http://dx.doi.org/10.1016/j.cvsm.2014.11.005. [PubMed]
3. DeDonder KD, Harhay DM, Apley MD, Lubbers BV, Clawson ML, Schuller G, Harhay GP, White BJ, Larson RL, Capik SF, Riviere JE, Kalbfleisch T, Tessman RK. 2016. Observations on macrolide resistance and susceptibility testing performance in field isolates collected from clinical bovine respiratory disease cases. Vet Microbiol 192:186–193 http://dx.doi.org/10.1016/j.vetmic.2016.07.021. [PubMed]
4. Levy SB. 2001. Antibiotic resistance: consequences of inaction. Clin Infect Dis 33(Suppl 3):S124–S129 http://dx.doi.org/10.1086/321837. [PubMed]
5. Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J. 2004. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52. [PubMed]
6. Seyfarth AM, Wegener HC, Frimodt-Møller N. 1997. Antimicrobial resistance in Salmonella enterica subsp. enterica serovar typhimurium from humans and production animals. J Antimicrob Chemother 40:67–75 http://dx.doi.org/10.1093/jac/40.1.67. [PubMed]
7. Watts JL, Yancey RJ Jr. 1994. Identification of veterinary pathogens by use of commercial identification systems and new trends in antimicrobial susceptibility testing of veterinary pathogens. Clin Microbiol Rev 7:346–356 http://dx.doi.org/10.1128/CMR.7.3.346. [PubMed]
8. Ferraro MJ. 2001. Should we reevaluate antibiotic breakpoints? Clin Infect Dis 33(Suppl 3):S227–S229 http://dx.doi.org/10.1086/321852. [PubMed]
9. Clinical and Laboratory Standards Institute (CLSI). 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard—4th ed. CLSI document VET01-A4. CLSI, Wayne, PA
10. Clinical and Laboratory Standards Institute (CLSI). 2013. Development of in vitro susceptibility testing criteria and QC parameters for veterinary antimicrobial agents; approved guideline—3rd ed. CLSI document VET02-A3. CLSI, Wayne, PA
11. Clinical and Laboratory Standards Institute (CLSI). 2015. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals—3rd ed. CLSI supplement VET01S. CLSI, Wayne, PA.
12. Turnidge JD, Ferraro MJ, Jorgensen JH. 2003. Susceptibility test methods: general considerations, p 1102–1107. In Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (ed), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, DC.
13. National Committee on Clinical Laboratory Standards. 2002. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard—2nd ed. NCCLS document M31-A2, NCCLS, Wayne, PA.
14. Woolcock JB, Mutimer MD. 1983. Antibiotic susceptibility testing: caeci caecos ducentes? Vet Rec 113:125–128 http://dx.doi.org/10.1136/vr.113.6.125. [PubMed]
15. Clinical and Laboratory Standards Institute (CLSI). 2013. Methods for broth dilution susceptibility testing of bacteria isolated from aquatic animals—2nd ed. CLSI document VET04-A2. CLSI, Wayne, PA.
16. Clinical and Laboratory Standards Institute (CLSI). 2017. Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated from Animals - 1st ed. CLSI Supplement VET06.CLSI, Wayne PA.
17. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID). 2000. EUCAST definitive document E.DEF 3.1, June 2000: determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin Microbiol Infect 6:509–515 http://dx.doi.org/10.1046/j.1469-0691.2000.00142.x. [PubMed]
18. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). 2000. EUCAST definitive document E.DEF 2.1, August 2000: determination of antimicrobial susceptibility test breakpoints. Clin Microbiol Infect 6:570–572 http://dx.doi.org/10.1046/j.1469-0691.2000.00178.x. [PubMed]
19. Kahlmeter G, Brown DFJ, Goldstein FW, MacGowan AP, Mouton JW, Osterlund A, Rodloff A, Steinbakk M, Urbaskova P, Vatopoulos A. 2003. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J Antimicrob Chemother 52:145–148 http://dx.doi.org/10.1093/jac/dkg312. [PubMed]
20. Kahlmeter G, Brown D. 2004. Harmonisation of European breakpoints: can it be achieved. Clin Microbiol Newsl 26:187–192 http://dx.doi.org/10.1016/S0196-4399(04)80015-1.
21. Bell SM, Gatus BJ, Pham JN, Rafferty DL. 2002. Antibiotic susceptibility testing by the CDS method. The Antibiotic Reference Laboratory, Department of Microbiology, The Prince of Wales Hospital, New South Wales, Australia.
22. Clinical and Laboratory Standards Institute (CLSI). 2014. Analysis and presentation of cumulative antimicrobial susceptibility test data; approved guideline—4th ed. CLSI document M39-A4. CLSI, Wayne, PA.
23. Sweeney MT, Zurenko GE. 2003. In vitro activities of linezolid combined with other antimicrobial agents against staphylococci, enterococci, pneumococci, and selected Gram-negative organisms. Antimicrob Agents Chemother 47:1902–1906 http://dx.doi.org/10.1128/AAC.47.6.1902-1906.2003. [PubMed]
24. Sweeney MT, Brumbaugh GW, Watts JL. 2008. In vitro activities of tulathromycin and ceftiofur combined with other antimicrobial agents using bovine Pasteurella multocida and Mannheimia haemolytica isolates. Vet Therap 9:212–222.
25. Aarestrup F. 2004. Antibiotic Resistance in Bacteria of Animal Origin II: External Quality Assurance Systems. Danish Inst. Food Vet. Res., Copenhagen, Denmark.
26. Andrews JM, BSAC Working Party on Susceptibility Testing. 2001. BSAC standardized disk susceptibility test method. J Antimicrob Chemother 48(suppl 1):S43–S57 http://dx.doi.org/10.1093/jac/48.suppl_1.43.
27. AVMF. Animal Medicinal Drug Use Clarification Act (AMDUCA). https://www.avma.org/KB/Resources/Reference/Pages/AMDUCA.aspx.
30. Michael GB, Eidam C, Kadlec K, Meyer K, Sweeney MT, Murray RW, Watts JL, Schwarz S. 2012. Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm(42) and msr(E)-mph(E) for bovine Pasteurella multocida and Mannheimia haemolytica. J Antimicrob Chemother 67:1555–1557. [PubMed]
31. Sweeney, MT, Papich MG, Watts JL. 2017. New interpretive criteria for danofloxacin antibacterial susceptibility testing against Mannheimia haemolytica and Pasteurella multocida associated with bovine respiratory disease. J. Vet. Diagn. Invest. 29:224–227. [PubMed]
32. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. 1993. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37:1073–1081 http://dx.doi.org/10.1128/AAC.37.5.1073. [PubMed]
33. Drusano GL, Johnson DE, Rosen M, Standiford HC. 1993. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother 37:483–490 http://dx.doi.org/10.1128/AAC.37.3.483. [PubMed]
34. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL. 2007. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44:79–86 http://dx.doi.org/10.1086/510079. [PubMed]
35. Turnidge JD. 1998. The pharmacodynamics of beta-lactams. Clin Infect Dis 27:10–22 http://dx.doi.org/10.1086/514622. [PubMed]
36. Knudsen JD, Fuursted K, Espersen F, Frimodt-Møller N. 1997. Activities of vancomycin and teicoplanin against penicillin-resistant pneumococci in vitro and in vivo and correlation to pharmacokinetic parameters in the mouse peritonitis model. Antimicrob Agents Chemother 41:1910–1915. [PubMed]
37. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. 1993. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37:1073–1081 http://dx.doi.org/10.1128/AAC.37.5.1073. [PubMed]
38. Blaser J, Stone BB, Groner MC, Zinner SH. 1987. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother 31:1054–1060 http://dx.doi.org/10.1128/AAC.31.7.1054. [PubMed]
39. van Ogtrop ML, Andes D, Stamstad TJ, Conklin B, Weiss WJ, Craig WA, Vesga O. 2000. In vivo pharmacodynamic activities of two glycylcyclines (GAR-936 and WAY 152,288) against various Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 44:943–949 http://dx.doi.org/10.1128/AAC.44.4.943-949.2000. [PubMed]
40. Andes D, van Ogtrop ML, Peng J, Craig WA. 2002. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother 46:3484–3489 http://dx.doi.org/10.1128/AAC.46.11.3484-3489.2002. [PubMed]
41. Rey JF, Laffont CM, Croubels S, De Backer P, Zemirline C, Bousquet E, Guyonnet J, Ferran AA, Bousquet-Melou A, Toutain PL. 2014. Use of Monte Carlo simulation to determine pharmacodynamic cutoffs of amoxicillin to establish a breakpoint for antimicrobial susceptibility testing in pigs. Am J Vet Res 75:124–131 http://dx.doi.org/10.2460/ajvr.75.2.124. [PubMed]
42. Shukla BS, Shelburne S, Reyes K, Kamboj M, Lewis JD, Rincon SL, Reyes J, Carvajal LP, Panesso D, Sifri CD, Zervos MJ, Pamer EG, Tran TT, Adachi J, Munita JM, Hasbun R, Arias CA. 2015. Influence of minimum inhibitory concentration in clinical outcomes of Enterococcus faecium bacteremia treated with daptomycin: is it time to change the breakpoint? Clin Infect Dis. 62:1514–1520. [PubMed]
43. Turnidge J, Paterson DL. 2007. Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20:391–408 http://dx.doi.org/10.1128/CMR.00047-06. [PubMed]
44. Turnidge JD, Subcommittee on Antimicrobial Susceptibility Testing of the Clinical and Laboratory Standards Institute. 2011. Cefazolin and Enterobacteriaceae: rationale for revised susceptibility testing breakpoints. Clin Infect Dis 52:917–924. [PubMed]
45. Doern GV, Brecher SM. 2011. The clinical predictive value (or lack thereof) of the results of in vitro antimicrobial susceptibility tests. J Clin Microbiol 49(Supplement):S11–S14 http://dx.doi.org/10.1128/JCM.00580-11.
46. Breteler KBK, Rentenaar RJ, Verkaart G, Sturm PDJ. 2011. Performance and clinical significance of direct antimicrobial susceptibility testing on urine from hospitalized patients. Scand J Infect Dis 43:771–776 http://dx.doi.org/10.3109/00365548.2011.588609. [PubMed]
47. Egervärn M, Lindmark H, Roos S, Huys G, Lindgren S. 2007. Effects of inoculum size and incubation time on broth microdilution susceptibility testing of lactic acid bacteria. Antimicrob Agents Chemother 51:394–396 http://dx.doi.org/10.1128/AAC.00637-06. [PubMed]
48. Udekwu KI, Parrish N, Ankomah P, Baquero F, Levin BR. 2009. Functional relationship between bacterial cell density and the efficacy of antibiotics. J Antimicrob Chemother 63:745–757 http://dx.doi.org/10.1093/jac/dkn554. [PubMed]
49. Rex JH, Pfaller MA. 2002. Has antifungal susceptibility testing come of age? Clin Infect Dis 35:982–989 http://dx.doi.org/10.1086/342384. [PubMed]
50. Constable PD, Morin DE. 2003. Treatment of clinical mastitis. Using antimicrobial susceptibility profiles for treatment decisions. Vet Clin North Am Food Anim Pract 19:139–155 http://dx.doi.org/10.1016/S0749-0720(02)00068-3.
51. Barlow J. 2011. Mastitis therapy and antimicrobial susceptibility: a multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle. J Mammary Gland Biol Neoplasia 16:383–407 http://dx.doi.org/10.1007/s10911-011-9235-z. [PubMed]
52. McClary DG, Loneragan GH, Shryock TR, Carter BL, Guthrie CA, Corbin MJ, Mechor GD. 2011. Relationship of in vitro minimum inhibitory concentrations of tilmicosin against Mannheimia haemolytica and Pasteurella multocida and in vivo tilmicosin treatment outcome among calves with signs of bovine respiratory disease. J Am Vet Med Assoc 239:129–135 http://dx.doi.org/10.2460/javma.239.1.129. [PubMed]
53. Allen JW, Viel L, Bateman KG, Rosendal S, Shewen PE, Physick-Sheard P. 1991. The microbial flora of the respiratory tract in feedlot calves: associations between nasopharyngeal and bronchoalveolar lavage cultures. Can J Vet Res 55:341–346. [PubMed]
54. DeRosa DC, Mechor GD, Staats JJ, Chengappa MM, Shryock TR. 2000. Comparison of Pasteurella spp. simultaneously isolated from nasal and transtracheal swabs from cattle with clinical signs of bovine respiratory disease. J Clin Microbiol 38:327–332. [PubMed]
55. Godinho KS, Sarasola P, Renoult E, Tilt N, Keane S, Windsor GD, Rowan TG, Sunderland SJ. 2007. Use of deep nasopharyngeal swabs as a predictive diagnostic method for natural respiratory infections in calves. Vet Rec 160:22–25 http://dx.doi.org/10.1136/vr.160.1.22. [PubMed]
56. Nguyen MH, Yu VL, Morris AJ, McDermott L, Wagener MW, Harrell L, Snydman DR. 2000. Antimicrobial resistance and clinical outcome of Bacteroides bacteremia: findings of a multicenter prospective observational trial. Clin Infect Dis 30:870–876 http://dx.doi.org/10.1086/313805. [PubMed]
57. Bastos ML, Hussain H, Weyer K, Garcia-Garcia L, Leimane V, Leung CC, Narita M, Penã JM, Ponce-de-Leon A, Seung KJ, Shean K, Sifuentes-Osornio J, Van der Walt M, Van der Werf TS, Yew WW, Menzies D, Collaborative Group for Meta-analysis of Individual Patient Data in MDR-TB. 2014. Treatment outcomes of patients with multidrug-resistant and extensively drug-resistant tuberculosis according to drug susceptibility testing to first- and second-line drugs: an individual patient data meta-analysis. Clin Infect Dis 59:1364–1374 http://dx.doi.org/10.1093/cid/ciu619. [PubMed]
58. López-Góngora S, Puig I, Calvet X, Villoria A, Baylina M, Muñoz N, Sanchez-Delgado J, Suarez D, García-Hernando V, Gisbert JP. 2015. Systematic review and meta-analysis: susceptibility-guided versus empirical antibiotic treatment for Helicobacter pylori infection. J Antimicrob Chemother 70:2447–2455 http://dx.doi.org/10.1093/jac/dkv155. [PubMed]
59. Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC Jr, Eliopoulos GM. 2004. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42:2398–2402 http://dx.doi.org/10.1128/JCM.42.6.2398-2402.2004. [PubMed]
60. Mavros MN, Tansarli GS, Vardakas KZ, Rafailidis PI, Karageorgopoulos DE, Falagas ME. 2012. Impact of vancomycin minimum inhibitory concentration on clinical outcomes of patients with vancomycin-susceptible Staphylococcus aureus infections: a meta-analysis and meta-regression. Int J Antimicrob Agents 40:496–509 http://dx.doi.org/10.1016/j.ijantimicag.2012.07.023. [PubMed]
61. Silley P, Simjee S, Schwarz S. 2012. Surveillance and monitoring of antimicrobial resistance and antibiotic consumption in humans and animals. Rev Sci Tech 31:105–120 http://dx.doi.org/10.20506/rst.31.1.2100. [PubMed]
62. Venugopal AA, Riederer K, Patel SM, Szpunar S, Jahamy H, Valenti S, Shemes SP, Khatib R, Johnson LB. 2012. Lack of association of outcomes with treatment duration and microbiologic susceptibility data in Clostridium difficile infections in a non-NAP1/BI/027 setting. Scand J Infect Dis 44:243–249 http://dx.doi.org/10.3109/00365548.2011.631029. [PubMed]
63. Smith AL, Fiel SB, Mayer-Hamblett N, Ramsey B, Burns JL. 2003. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest 123:1495–1502 http://dx.doi.org/10.1378/chest.123.5.1495. [PubMed]
64. Zetola NM, Modongo C, Moonan PK, Ncube R, Matlhagela K, Sepako E, Collman RG, Bisson GP. 2014. Clinical outcomes among persons with pulmonary tuberculosis caused by Mycobacterium tuberculosis isolates with phenotypic heterogeneity in results of drug-susceptibility tests. J Infect Dis 209:1754–1763. [PubMed]
65. Silley P. 2012. Susceptibility testing methods, resistance and breakpoints: what do these terms really mean? Rev Sci Tech 31:33–41. [PubMed]
66. Giguère S, Lee E, Williams E, Cohen ND, Chaffin MK, Halbert N, Martens RJ, Franklin RP, Clark CC, Slovis NM. 2010. Determination of the prevalence of antimicrobial resistance to macrolide antimicrobials or rifampin in Rhodococcus equi isolates and treatment outcome in foals infected with antimicrobial-resistant isolates of R equi. J Am Vet Med Assoc 237:74–81 http://dx.doi.org/10.2460/javma.237.1.74. [PubMed]
67. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. 2003. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 36:53–59 http://dx.doi.org/10.1086/345476. [PubMed]
68. Hunter PA, Reeves DS. 2002. The current status of surveillance of resistance to antimicrobial agents: report on a meeting. J Antimicrob Chemother 49:17–23 http://dx.doi.org/10.1093/jac/49.1.17. [PubMed]
69. Franklin A, Acar J, Anthony F, Gupta R, Nicholls T, Tamura Y, Thompson S, Threlfall EJ, Vose D, van Vuuren M, White DG, Wegener HC, Costarrica ML, Office International des Epizooties Ad hoc Group. 2001. Antimicrobial resistance: harmonisation of national antimicrobial resistance monitoring and surveillance programmes in animals and in animal-derived food. Rev Sci Tech 20:859–870 http://dx.doi.org/10.20506/rst.20.3.1315. [PubMed]
70. Clinical and Laboratory Standards Institute (CLSI). 2011. Generation, presentation, and application of antimicrobial susceptibility test data for bacteria of animal origin; a report. CLSI document VET05-R. CLSI, Wayne, PA.
71. U.S. Food and Drug Administration. Judicious use of antimicrobials. http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/JudiciousUseofAntimicrobials/.
72. Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E, Johnson AP, Gaastra W. 2010. Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 65:601–604 http://dx.doi.org/10.1093/jac/dkq037. [PubMed]
73. Prüller S, Turni C, Blackall PJ, Beyerbach M, Klein G, Kreienbrock L, Strutzberg-Minder K, Kaspar H, Meemken D, Kehrenberg C. 2016. Towards a standardized method for broth microdilution susceptibility testing of Haemophilus parasuis. J Clin Microbiol 55:264–273 http://dx.doi.org/10.1128/JCM.01403-16. [PubMed]
74. Miller RA, Reimschuessel R. 2006. Epidemiologic cutoff values for antimicrobial agents against Aeromonas salmonicida isolates determined by frequency distributions of minimal inhibitory concentration and diameter of zone of inhibition data. Am J Vet Res 67:1837–1843 http://dx.doi.org/10.2460/ajvr.67.11.1837. [PubMed]
75. Riesenberg A, Frömke C, Stingl K, Feßler AT, Gölz G, Glocker E-O, Kreienbrock L, Klarmann D, Werckenthin C, Schwarz S. 2017. Antimicrobial susceptibility testing of Arcobacter butzleri: development and application of a new protocol for broth microdilution. J Antimicrob Chemother 72:2769–2774. [PubMed]
76. van Belkum A, Dunne WM Jr. 2013. Next-generation antimicrobial susceptibility testing. J Clin Microbiol 51:2018–2024 http://dx.doi.org/10.1128/JCM.00313-13. [PubMed]
77. Waldeisen JR, Wang T, Debkishore M, Lee LP. 2011. A real-time PCR antibiogram for drug-resistant sepsis. PLoS One 6:e28528. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028528 [PubMed]
78. Hooff GP, van Kampen JJA, Meesters RJW, van Belkum A, Goessens WHF, Luider TM. 2012. Characterization of β-lactamase enzyme activity in bacterial lysates using MALDI-mass spectrometry. J Proteome Res 11:79–84 http://dx.doi.org/10.1021/pr200858r. [PubMed]
79. Marinach C, Alanio A, Palous M, Kwasek S, Fekkar A, Brossas J-Y, Brun S, Snounou G, Hennequin C, Sanglard D, Datry A, Golmard J-L, Mazier D. 2009. MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics 9:4627–4631 http://dx.doi.org/10.1002/pmic.200900152. [PubMed]
80. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M, Posteraro B. 2012. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol 50:2479–2483 http://dx.doi.org/10.1128/JCM.00224-12. [PubMed]
81. Köser CU, Ellington MJ, Cartwright EJP, Gillespie SH, Brown NM, Farrington M, Holden MTG, Dougan G, Bentley SD, Parkhill J, Peacock SJ. 2012. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 8:e1002824 http://dx.doi.org/10.1371/journal.ppat.1002824. [PubMed]
82. Punina NV, Makridakis NM, Remnev MA, Topunov AF. 2015. Whole-genome sequencing targets drug-resistant bacterial infections. Hum Genomics 9:19 http://dx.doi.org/10.1186/s40246-015-0037-z. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0001-2017
2018-03-29
2018-08-19

Abstract:

Antimicrobial susceptibility testing is an essential tool to the veterinarian for selecting the most appropriate agent for treatment of bacterial diseases of animals. The availability of well-defined methods that incorporate the necessary quality controls coupled to clinical outcome data is foundational in providing relevant test results for clinical decisions. Since 1993, the Clinical Laboratory and Standards Institute (CLSI) Subcommittee on Veterinary Antimicrobial Susceptibility Testing (VAST) has developed specific test methods and interpretive criteria for veterinary pathogens. This information has allowed for veterinarians to more effectively treat animal diseases thereby protecting both animal welfare and human food security. Moreover, the availability of standardized test methods for veterinary pathogens has allowed for the development of antimicrobial surveillance programs to detect the emergence of resistance among veterinary pathogens. Future work by the VAST and other groups will be critical to expanding the current test methods and interpretive criteria to more pathogen-antibacterial combinations, as well as, the incorporation of genomic information for routine antimicrobial susceptibility testing in the veterinary diagnostic laboratory.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Example of a checkerboard plate setup that shows a synergistic reaction between two combined antibiotics (http://www.ibg.kit.edu/nmr/548.php).

Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0001-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Illustrated differences between an epidemiological cutoff value and a clinical breakpoint ( 67 ).

Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0001-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Summary of antimicrobial agents with veterinary-specific interpretive criteria

Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0001-2017
Generic image for table
TABLE 2

Definitions of pharmacodynamic parameters

Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0001-2017
Generic image for table
TABLE 3

Mechanism of action and associated pharmacokinetic/pharmacodynamics (PK/PD) indices of antimicrobial agents used in veterinary medicine

Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0001-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error