1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

History and Current Use of Antimicrobial Drugs in Veterinary Medicine

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: John F. Prescott1
  • Editors: Frank Møller Aarestrup2, Stefan Schwarz3, Jianzhong Shen4, Lina Cavaco5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; 2: Technical University of Denmark, Lyngby, Denmark; 3: Freie Universität Berlin, Berlin, Germany; 4: China Agricultural University, Beijing, China; 5: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec December 2017 vol. 5 no. 6 doi:10.1128/microbiolspec.ARBA-0002-2017
  • Received 24 February 2017 Accepted 06 November 2017 Published 21 December 2017
  • J. F. Prescott, prescott@uoguelph.ca
image of History and Current Use of Antimicrobial Drugs in Veterinary Medicine
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    History and Current Use of Antimicrobial Drugs in Veterinary Medicine, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/6/ARBA-0002-2017-1.gif /docserver/preview/fulltext/microbiolspec/5/6/ARBA-0002-2017-2.gif
  • Abstract:

    This chapter briefly reviews the history and current use of antimicrobials in animals, with a focus on food animals in the more economically developed countries. It identifies some of the differences between human medical and food animal use, particularly in growth promotional and “subtherapeutic” use of medically-important antibiotics in animals. The public health impact of the extensive use of antibiotics in food animals for these purposes, differences internationally in such usage, and the major changes in current practices now underway in agricultural use are summarized. The emerging framing of the dimensions of antimicrobial resistance within a “One Health” framework is focusing global efforts to address the antimicrobial resistance crisis in a collaborative manner. The rapidly evolving development and application of practices of antimicrobial stewardship in animal is a critical part of the huge global effort to address antimicrobial resistance. The outcome is still uncertain.

  • Citation: Prescott J. 2017. History and Current Use of Antimicrobial Drugs in Veterinary Medicine. Microbiol Spectrum 5(6):ARBA-0002-2017. doi:10.1128/microbiolspec.ARBA-0002-2017.

References

1. Prescott JF. 2006. History of antimicrobial usage in agriculture: an overview, p 19–27. In Aarestrup FM (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC.
2. Little RB, Bryan CS, Petersen WE, Plastridge WN, Schalm OW. 1946. INTRAMAMMARY therapy of bovine mastitis. J Am Vet Med Assoc 108:127–135.
3. Roberts SJ. 1953. Antibiotic therapy in large animals, p 39–48. Conference Proceedings, Am Vet Med Assoc.
4. Collins JH. 1948. The present status of penicillin in veterinary medicine. J Am Vet Med Assoc 113:330–333. [PubMed]
5. Hussar AE, Holley HW. 1954. Antibiotics and Antibiotic Therapy. MacMillan, New York, NY.
6. Weese JS, Page S, Prescott JF. Antimicrobial stewardship in animals, p 117–132. In Giguère S, Prescott JF, Dowling PM (ed), Antimicrobial Therapy in Veterinary Medicine, 5th ed. Wiley Blackwell, Ames, IA.
7. Shryock T, Page S. 2013. Performance uses of antimicrobial agents and non-antimicorbial alternatives, p 379–394. In Giguère S, Prescott JF, Dowling PM (ed), Antimicrobial Therapy in Veterinary Medicine, 5th ed. Wiley Blackwell, Ames, IA. http://dx.doi.org/10.1002/9781118675014.ch22.
8. Burch DGS. 2013. Antimicrobial drug use in swine, p 553–568. In Giguère S, Prescott JF, Dowling PM (ed), Antimicrobial Therapy in Veterinary Medicine, 5th ed. Wiley Blackwell, Ames, IA. http://dx.doi.org/10.1002/9781118675014.ch33.
9. Apley MD, Coetzee JF. 2013. Antimicrobial drug use in cattle, p 495–518. In Giguère S, Prescott JF, Dowling PM (ed), Antimicrobial Therapy in Veterinary Medicine, 5th ed. Wiley Blackwell, Ames, IA. http://dx.doi.org/10.1002/9781118675014.ch29.
10. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. 2015. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112:5649–5654 http://dx.doi.org/10.1073/pnas.1503141112. [PubMed]
11. Grave K, Torren-Edo J, Muller A, Greko C, Moulin G, Mackay D, Fuchs K, Laurier L, Iliev D, Pokludova L, Genakritis M, Jacobsen E, Kurvits K, Kivilahti-Mantyla K, Wallmann J, Kovacs J, Lenharthsson JM, Beechinor JG, Perrella A, Mičule G, Zymantaite U, Meijering A, Prokopiak D, Ponte MH, Svetlin A, Hederova J, Madero CM, Girma K, Eckford S, ESVAC Group. 2014. Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. J Antimicrob Chemother 69:2284–2291 http://dx.doi.org/10.1093/jac/dku106. [PubMed]
12. Dupont N, Fertner M, Sonne Kristensen C, Toft N, Stege H. 2016. Reporting the national antimicrobial consumption in Danish pigs: influence of assigned daily dosage values and population measurement. Acta Vet Scan 58:27. doi:01.1186/s13028-016-0208-5. [PubMed]
13. Speksnijder DC, Mevius DJ, Bruschke CJM, Wagenaar JA. 2015. Reduction of veterinary antimicrobial use in the Netherlands. The Dutch success model. Zoonoses Public Health 62(Suppl 1):79–87 http://dx.doi.org/10.1111/zph.12167. [PubMed]
14. Speksnijder DC, Jaarsma DAC, Verheij TJM, Wagenaar JA. 2015. Attitudes and perceptions of Dutch veterinarians on their role in the reduction of antimicrobial use in farm animals. Prev Vet Med 121:365–373 http://dx.doi.org/10.1016/j.prevetmed.2015.08.014. [PubMed]
15. Dorado-Garcia A, Mevius D, Jacobs JJ, Van Geijlswijk M, Mouton JW, Wagenaar J, Heederik DJ. 2016. Quantitative assessment of antimicrobial resistance in livestock during the course of a nationwide antimicrobial use reduction in the Netherlands. J Antimicrob Chemother 71:3607–3619 http://dx.doi.org/10.1093/jac/dkw308. [PubMed]
16. Chantziaras I, Boyen F, Callens B, Dewulf J. 2014. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J Antimicrob Chemother 69:827–834 http://dx.doi.org/10.1093/jac/dkt443. [PubMed]
17. Bos MEH, Mevius DJ, Wagenaar JA, van Geijlswijk IM, Mouton JW, Heederik DJJ, Netherlands Veterinary Medicines Authority (SDa). 2015. Antimicrobial prescription patterns of veterinarians: introduction of a benchmarking approach. J Antimicrob Chemother 70:2423–2425 http://dx.doi.org/10.1093/jac/dkv104. [PubMed]
18. De Briyne N, Atkinson J, Pokludová L, Borriello SP, Price S. 2013. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe. Vet Rec 173:475 http://dx.doi.org/10.1136/vr.101454. [PubMed]
19. De Briyne N, Atkinson J, Pokludová L, Borriello SP. 2014. Antibiotics used most commonly to treat animals in Europe. Vet Rec 175:325 http://dx.doi.org/10.1136/vr.102462. [PubMed]
20. Lloyd DH. 2012. Multi-resistant Staphylococcus pseudintermedius: a wake-up call in our approach to bacterial infection. J Small Anim Pract 53:145–146 http://dx.doi.org/10.1111/j.1748-5827.2011.01193.x. [PubMed]
21. Perreten V, Kadlec K, Schwarz S, Grönlund Andersson U, Finn M, Greko C, Moodley A, Kania SA, Frank LA, Bemis DA, Franco A, Iurescia M, Battisti A, Duim B, Wagenaar JA, van Duijkeren E, Weese JS, Fitzgerald JR, Rossano A, Guardabassi L. 2010. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother 65:1145–1154 http://dx.doi.org/10.1093/jac/dkq078. [PubMed]
22. McCarthy AJ, Harrison EM, Stanczak-Mrozek K, Leggett B, Waller A, Holmes MA, Lloyd DH, Lindsay JA, Loeffler A. 2015. Genomic insights into the rapid emergence and evolution of MDR in Staphylococcus pseudintermedius. J Antimicrob Chemother 70:997–1007. [PubMed]
23. Buckland EL, O’Neill D, Summers J, Mateus A, Church D, Redmond L, Brodbelt D. 2016. Characterisation of antimicrobial usage in cats and dogs attending UK primary care companion animal veterinary practices. Vet Rec 179:489. http://dx.doi.org/10.1136/vr.103830. [PubMed]
24. Murphy CP, Reid-Smith RJ, Boerlin P, Weese JS, Prescott JF, Janecko N, McEwen SA. 2012. Out-patient antimicrobial drug use in dogs and cats for new disease events from community companion animal practices in Ontario. Can Vet J 53:291–298. [PubMed]
25. Randall CJ. 1969. The Swann Committee. Vet Rec 85:616–621 http://dx.doi.org/10.1136/vr.85.22.616. [PubMed]
26. Linton AH. 1977. Antibiotic resistance: the present situation reviewed. Vet Rec 100:354–360 http://dx.doi.org/10.1136/vr.100.17.354. [PubMed]
27. Spika JS, Waterman SH, Hoo GW, St Louis ME, Pacer RE, James SM, Bissett ML, Mayer LW, Chiu JY, Hall B, Greene K, Potter ME, Cohen ML, Blake P. 1987. Chloramphenicol-resistant Salmonella newport traced through hamburger to dairy farms. A major persisting source of human salmonellosis in California. N Engl J Med 316:565–570 http://dx.doi.org/10.1056/NEJM198703053161001. [PubMed]
28. Smith KE, Besser JM, Hedberg CW, Leano FT, Bender JB, Wicklund JH, Johnson BP, Moore KA, Osterholm MT, Investigation Team. 1999. Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992-1998. N Engl J Med 340:1525–1532 http://dx.doi.org/10.1056/NEJM199905203402001. [PubMed]
29. Bager F, Madsen M, Christensen J, Aarestrup FM. 1997. Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev Vet Med 31:95–112 http://dx.doi.org/10.1016/S0167-5877(96)01119-1. [PubMed]
30. Aarestrup FM, Seyfarth AM, Emborg HD, Pedersen K, Hendriksen RS, Bager F. 2001. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob Agents Chemother 45:2054–2059 http://dx.doi.org/10.1128/AAC.45.7.2054-2059.2001. [PubMed]
31. Jensen LB, Hammerum AM, Poulsen RL, Westh H. 1999. Vancomycin-resistant Enterococcus faecium strains with highly similar pulsed-field gel electrophoresis patterns containing similar Tn1546-like elements isolated from a hospitalized patient and pigs in Denmark. Antimicrob Agents Chemother 43:724–725. [PubMed]
32. Klare I, Badstübner D, Konstabel C, Böhme G, Claus H, Witte W. 1999. Decreased incidence of VanA-type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microb Drug Resist 5:45–52 http://dx.doi.org/10.1089/mdr.1999.5.45. [PubMed]
33. Nordstrom L, Liu CM, Price LB. 2013. Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Front Microbiol 4:29 http://dx.doi.org/10.3389/fmicb.2013.00029. [PubMed]
34. Collignon P, Aarestrup FM, Irwin R, McEwen S. 2013. Human deaths and third-generation cephalosporin use in poultry, Europe. Emerg Infect Dis 19:1339–1340 http://dx.doi.org/10.3201/eid1908.120681. [PubMed]
35. Agersø Y, Aarestrup FM. 2013. Voluntary ban on cephalosporin use in Danish pig production has effectively reduced extended-spectrum cephalosporinase-producing Escherichia coli in slaughter pigs. J Antimicrob Chemother 68:569–572 http://dx.doi.org/10.1093/jac/dks427. [PubMed]
36. Collignon PC, Conly JM, Andremont A, McEwen SA, Aidara-Kane A, Agerso Y, Andremont A, Collignon P, Conly J, Dang Ninh T, Donado-Godoy P, Fedorka-Cray P, Fernandez H, Galas M, Irwin R, Karp B, Matar G, McDermott P, McEwen S, Mitema E, Reid-Smith R, Scott HM, Singh R, DeWaal CS, Stelling J, Toleman M, Watanabe H, Woo GJ, World Health Organization Advisory Group, Bogotá Meeting on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR). 2016. World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies to control antimicrobial resistance from food animals. Clin Infect Dis 63:1087–1093 http://dx.doi.org/10.1093/cid/ciw475. [PubMed]
37. Smith TC, Pearson N. 2011. The emergence of Staphylococcus aureus ST398. Vector Borne Zoonotic Dis 11:327–339 http://dx.doi.org/10.1089/vbz.2010.0072. [PubMed]
38. Cuny C, Wieler LH, Witte W. 2015. Livestock-associated MRSA: the impact on humans. Antibiotics (Basel) 4:521–543 http://dx.doi.org/10.3390/antibiotics4040521. [PubMed]
39. Cavaco LM, Hasman H, Aarestrup FM, Wagenaar JA, Graveland H, Veldman K, Mevius D, Fetsch A, Tenhagen B-A, Concepcion Porrero M, Dominguez L, Granier SA, Jouy E, Butaye P, Kaszanyitzky E, Dán A, Zmudzki J, Battisti A, Franco A, Schwarz S, Gutierrez M, Weese JS, Cui S, Pomba C, Members of MRSA-CG. 2011. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet Microbiol 150:344–348 http://dx.doi.org/10.1016/j.vetmic.2011.02.014. [PubMed]
40. Lloyd DH. 2007. Reservoirs of antimicrobial resistance in pet animals. Clin Infect Dis 45(Suppl 2):S148–S152 http://dx.doi.org/10.1086/519254. [PubMed]
41. Jordan D, Simon J, Fury S, Moss S, Giffard P, Maiwald M, Southwell P, Barton MD, Axon JE, Morris SG, Trott DJ. 2011. Carriage of methicillin-resistant Staphylococcus aureus by veterinarians in Australia. Aust Vet J 89:152–159 http://dx.doi.org/10.1111/j.1751-0813.2011.00710.x. [PubMed]
42. Ewers C, Bethe A, Stamm I, Grobbel M, Kopp PA, Guerra B, Stubbe M, Doi Y, Zong Z, Kola A, Schaufler K, Semmler T, Fruth A, Wieler LH, Guenther S. 2014. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence? J Antimicrob Chemother 69:1224–1230 http://dx.doi.org/10.1093/jac/dkt516. [PubMed]
43. Ewers C, Stamm I, Pfeifer Y, Wieler LH, Kopp PA, Schønning K, Prenger-Berninghoff E, Scheufen S, Stolle I, Günther S, Bethe A. 2014. Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. J Antimicrob Chemother 69:2676–2680 http://dx.doi.org/10.1093/jac/dku217. [PubMed]
44. Abraham S, Wong HS, Turnidge J, Johnson JR, Trott DJ. 2014. Carbapenemase-producing bacteria in companion animals: a public health concern on the horizon. J Antimicrob Chemother 69:1155–1157 http://dx.doi.org/10.1093/jac/dkt518. [PubMed]
45. O’Neill J. 2016. Tackling Drug Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf44.
46. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. 2013. Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13:1057–1098 http://dx.doi.org/10.1016/S1473-3099(13)70318-9.
47. Robinson TP, Bu DP, Carrique-Mas J, Fèvre EM, Gilbert M, Grace D, Hay SI, Jiwakanon J, Kakkar M, Kariuki S, Laxminarayan R, Lubroth J, Magnusson U, Thi Ngoc P, Van Boeckel TP, Woolhouse MEJ. 2016. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg 110:377–380 http://dx.doi.org/10.1093/trstmh/trw048. [PubMed]
48. Guardabassi L, Prescott JF. 2015. Antimicrobial stewardship in small animal veterinary practice: from theory to practice. Vet Clin North Am Small Anim Pract 45:361–376, vii http://dx.doi.org/10.1016/j.cvsm.2014.11.005. [PubMed]
49. Page S, Prescott J, Weese S. 2014. The 5Rs approach to antimicrobial stewardship. Vet Rec 175:207–208 http://dx.doi.org/10.1136/vr.g5327. [PubMed]
50. Prescott JF. 2014. The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Vet Microbiol 171:273–278 http://dx.doi.org/10.1016/j.vetmic.2014.02.035. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0002-2017
2017-12-21
2018-06-22

Abstract:

This chapter briefly reviews the history and current use of antimicrobials in animals, with a focus on food animals in the more economically developed countries. It identifies some of the differences between human medical and food animal use, particularly in growth promotional and “subtherapeutic” use of medically-important antibiotics in animals. The public health impact of the extensive use of antibiotics in food animals for these purposes, differences internationally in such usage, and the major changes in current practices now underway in agricultural use are summarized. The emerging framing of the dimensions of antimicrobial resistance within a “One Health” framework is focusing global efforts to address the antimicrobial resistance crisis in a collaborative manner. The rapidly evolving development and application of practices of antimicrobial stewardship in animal is a critical part of the huge global effort to address antimicrobial resistance. The outcome is still uncertain.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Routes of exchange of between animals and humans. Note the areas where antimicrobial drug selection for resistance is most likely. The size of the circles or boxes does not indicate the extent of the scale of the movement. After Linton ( 26 ), modified by R. Irwin; reproduced with permission.

Source: microbiolspec December 2017 vol. 5 no. 6 doi:10.1128/microbiolspec.ARBA-0002-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Historical time line of important events and trends in the use of antimicrobial drugs in animals, with emphasis on food animals

Source: microbiolspec December 2017 vol. 5 no. 6 doi:10.1128/microbiolspec.ARBA-0002-2017
Generic image for table
TABLE 2

Suggested categorization of antimicrobial drugs for veterinary use ( 6 )

Source: microbiolspec December 2017 vol. 5 no. 6 doi:10.1128/microbiolspec.ARBA-0002-2017
Generic image for table
TABLE 3

Historical time line of major reports and their conclusions or recommendations relating to the public health aspects of antimicrobial drug use in food animals

Source: microbiolspec December 2017 vol. 5 no. 6 doi:10.1128/microbiolspec.ARBA-0002-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error