1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in , , , and Other Intracellular Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Daisy Vanrompay1, Thi Loan Anh Nguyen2, Sally J. Cutler3, Patrick Butaye4
  • Editors: Frank Møller Aarestrup5, Stefan Schwarz6, Jianzhong Shen7, Lina Cavaco8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; 2: Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; 3: School of Health, Sport, and Bioscience, University of East London, London, United Kingdom; 4: Department of BioSciences, Ross University, School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis, West Indies and Department of Pathology, Bacteriology, and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; 5: Technical University of Denmark, Lyngby, Denmark; 6: Friedrich-Loeffler-Institut, Neustadt, Germany; 7: China Agricultural University, Beijing, China; 8: Statens Serum Institut, Copenhagen, Denmark
  • Source: microbiolspec April 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0003-2017
  • Received 24 February 2017 Accepted 10 March 2017 Published 06 April 2018
  • Patrick Butaye, [email protected]; [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Chlamydiales</span>, <span class="jp-italic">Rickettsia</span>, <span class="jp-italic">Coxiella</span>, and Other Intracellular Pathogens
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in , , , and Other Intracellular Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/2/ARBA-0003-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/2/ARBA-0003-2017-2.gif
  • Abstract:

    This article will provide current insights into antimicrobial susceptibilities and resistance of an important group of bacterial pathogens that are not phylogenetically related but share lifestyle similarities in that they are generally considered to be obligate intracellular microbes. As such, there are shared challenges regarding methods for their detection and subsequent clinical management. Similarly, from the laboratory perspective, susceptibility testing is rarely undertaken, though molecular approaches might provide new insights. One should also bear in mind that the highly specialized microbial lifestyle restricts the opportunity for lateral gene transfer and, consequently, acquisition of resistance.

  • Citation: Vanrompay D, Nguyen T, Cutler S, Butaye P. 2018. Antimicrobial Resistance in , , , and Other Intracellular Pathogens. Microbiol Spectrum 6(2):ARBA-0003-2017. doi:10.1128/microbiolspec.ARBA-0003-2017.

References

1. Seshadri R, Samuel J. 2005. Genome analysis of Coxiella burnetii species: insights into pathogenesis and evolution and implications for biodefense. Ann N Y Acad Sci 1063:442–450. [PubMed]
2. Merhej V, Raoult D. 2011. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 86:379–405 http://dx.doi.org/10.1111/j.1469-185X.2010.00151.x. [PubMed]
3. Zhong J, Jasinskas A, Barbour AG. 2007. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2:e405. doi:10.1371/journal.pone.0000405. [PubMed]
4. Ritter J. 1880. Beitrag zur Frage des Pneumotyphus [Eine Hausepidem ie in Uster (Schweiz) betreffendd]. Dtsch A rchiv für Klin Medizin 25:5, 53–59.
5. Morange A. 1895. De la psittacose, ou Infection Speciale Determinee par les Peruches. Academie de Paris, Paris, France.
6. Longbottom D, Coulter LJ. 2003. Animal chlamydioses and zoonotic implications. J Comp Pathol 128:217–244 http://dx.doi.org/10.1053/jcpa.2002.0629. [PubMed]
7. Coles AC. 1930. Micro-organisms in psittacosis. Lancet 218:1011–1012.
8. Levinthal W. 1930. Die aetiologe der psittakosis. Klin. Wchnsch 9:654.
9. Lillie RD. 1930. Psittacosis-rickettsia-like inclusions in man and in experimental animals. Publ Hlth Rep Wash 45:773–778 http://dx.doi.org/10.2307/4579610.
10. Bedson SP, Western GT, Simpson SL. 1930. Observations on the aetiology of psittacosis. Lancet 1:235–236 http://dx.doi.org/10.1016/S0140-6736(00)87345-6.
11. Bedson SP, Bland JW. 1932. A morphological study of psittacosis virus, with the description of a developmental cycle. Br J Exp Pathol 13:461–466.
12. Bedson SP, Gostling JV. 1954. A study of the mode of multiplication of psittacosis virus. Br J Exp Pathol 35:299–308. [PubMed]
13. Moulder JW. 1966. The relation of the psittacosis group (Chlamydiae) to bacteria and viruses. Annu Rev Microbiol 20:107–130 http://dx.doi.org/10.1146/annurev.mi.20.100166.000543. [PubMed]
14. Derrick EH. 1937. “Q” fever, a new fever entity: clinical features, diagnosis and laboratory investigation. Med J Aust 2:281–299.
15. Davis GE, Cox HR. 1938. Weekly reports for December 30, 1938. Public Health Rep 53:2259–2309 http://dx.doi.org/10.2307/4582746.
16. Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, Mege J-L, Maurin M, Raoult D. 2017. From Q fever to Coxiella burnetii infection: a paradigm change. Clin Microbiol Rev 30:115–190 http://dx.doi.org/10.1128/CMR.00045-16. [PubMed]
17. Hornstra HM, Priestley RA, Georgia SM, Kachur S, Birdsell DN, Hilsabeck R, Gates LT, Samuel JE, Heinzen RA, Kersh GJ, Keim P, Massung RF, Pearson T. 2011. Rapid typing of Coxiella burnetii. PLoS One 6:e26201 http://dx.doi.org/10.1371/journal.pone.0026201. [PubMed]
18. Ricketts HT. 1911. A Summary of Investigations of the Nature and Means of Transmission of Rocky Mountain Spotted Fever. Contributions to Medical Science by Howard Taylor Ricketts, 1870–1910. University of Chicago Press, Chicago, IL.
19. Bechah Y, Capo C, Mege JL, Raoult D. 2008. Epidemic typhus. Lancet Infect Dis 8:417–426 http://dx.doi.org/10.1016/S1473-3099(08)70150-6.
20. Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, Dharmanolla C, Rainey D, Soneja J, Shallom JM, Vishnubhat ND, Wattam R, Purkayastha A, Czar M, Crasta O, Setubal JC, Azad AF, Sobral BS. 2008. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 3:e2018 http://dx.doi.org/10.1371/journal.pone.0002018. [PubMed]
21. Rahman MS, Ammerman NC, Sears KT, Ceraul SM, Azad AF. 2010. Functional characterization of a phospholipase A(2) homolog from Rickettsia typhi. J Bacteriol 192:3294–3303 http://dx.doi.org/10.1128/JB.00155-10. [PubMed]
22. Elfving K, Lukinius A, Nilsson K. 2012. Life cycle, growth characteristics and host cell response of Rickettsia helvetica in a Vero cell line. Exp Appl Acarol 56:179–187 http://dx.doi.org/10.1007/s10493-011-9508-7. [PubMed]
23. Walker DH. 2007. Rickettsiae and rickettsial infections: the current state of knowledge. Clin Infect Dis 45(Suppl 1):S39–S44 http://dx.doi.org/10.1086/518145. [PubMed]
24. Rolain JM. 2007. Antimicrobial susceptibility of rickettsial agents, p 361–369. In Raoult D, Parola P (ed), Rickettsial Diseases. Informa Healthcare, New York, NY. http://dx.doi.org/10.3109/9781420019971.026
25. Tahir D, Socolovschi C, Marié J-L, Ganay G, Berenger J-M, Bompar J-M, Blanchet D, Cheuret M, Mediannikov O, Raoult D, Davoust B, Parola P. 2016. New Rickettsia species in soft ticks Ornithodoros hasei collected from bats in French Guiana. Ticks Tick Borne Dis 7:1089–1096 http://dx.doi.org/10.1016/j.ttbdis.2016.09.004. [PubMed]
26. Oteo JA, Portillo A. 2012. Tick-borne rickettsioses in Europe. Ticks Tick Borne Dis 3:271–278 http://dx.doi.org/10.1016/j.ttbdis.2012.10.035. [PubMed]
27. Pospischil A, Borel N, Andersen AA. 2010. Chlamydia, p 575–588. In Gyles C, Prescott J, Songer J, Thoen C (ed), Pathogenesis of Bacterial Infections in Animals. Wiley-Blackwell, Oxford, United Kingdom. http://dx.doi.org/10.1002/9780470958209.ch30
28. Longbottom D, Livingstone M. 2006. Vaccination against chlamydial infections of man and animals. Vet J 171:263–275 http://dx.doi.org/10.1016/j.tvjl.2004.09.006. [PubMed]
29. Sachse K, Bavoil PM, Kaltenboeck B, Stephens RS, Kuo C-C, Rosselló-Móra R, Horn M. 2015. Emendation of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species. Syst Appl Microbiol 38:99–103 http://dx.doi.org/10.1016/j.syapm.2014.12.004. [PubMed]
30. Dean D, Rothschild J, Ruettger A, Kandel RP, Sachse K. 2013. Zoonotic Chlamydiaceae species associated with trachoma, Nepal. Emerg Infect Dis 19:1948–1955 http://dx.doi.org/10.3201/eid1912.130656. [PubMed]
31. De Puysseleyr K, De Puysseleyr L, Dhondt H, Geens T, Braeckman L, Morré SA, Cox E, Vanrompay D. 2014. Evaluation of the presence and zoonotic transmission of Chlamydia suis in a pig slaughterhouse. BMC Infect Dis 14:560 http://dx.doi.org/10.1186/s12879-014-0560-x. [PubMed]
32. De Puysseleyr L, De Puysseleyr K, Braeckman L, Morré SA, Cox E, Vanrompay D. 2015. Assessment of Chlamydia suis infection in pig farmers. Transbound Emerg Dis 64:826–833. [PubMed]
33. Schautteet K, De Clercq E, Miry C, Van Groenweghe F, Delava P, Kalmar I, Vanrompay D. 2013. Tetracycline-resistant Chlamydia suis in cases of reproductive failure on Belgian, Cypriote and Israeli pig production farms. J Med Microbiol 62:331–334 http://dx.doi.org/10.1099/jmm.0.042861-0. [PubMed]
34. Stewardson AJ, Grayson ML. 2010. Psittacosis. Infect Dis Clin North Am 24:7–25 http://dx.doi.org/10.1016/j.idc.2009.10.003. [PubMed]
35. Vanrompay D, Ducatelle R, Haesebrouck F. 1995. Chlamydia psittaci infections: a review with emphasis on avian chlamydiosis. Vet Microbiol 45:93–119 http://dx.doi.org/10.1016/0378-1135(95)00033-7.
36. Smith KA, Campbell CT, Murphy J, Stobierski MG, Tengelsen LA. 2011. Compendium of measures to control Chlamydophila psittaci infection among humans (psittacosis) and pet birds (avian chlamydiosis), 2010 National Association of State Public Health Veterinarians (NASPHV). J Exot Pet Med 20:32–45 http://dx.doi.org/10.1053/j.jepm.2010.11.007.
37. Beeckman DS, Vanrompay DCG. 2009. Zoonotic Chlamydophila psittaci infections from a clinical perspective. Clin Microbiol Infect 15:11–17 http://dx.doi.org/10.1111/j.1469-0691.2008.02669.x. [PubMed]
38. NASPHV, Centers for Disease Control and Prevention, Council of State and Territorial Epidemiologists, American Veterinary Medical Association. 2011. Compendium of measures to prevent disease associated with animals in public settings, 2009: National Association of State Public Health Veterinarians, Inc. (NASPHV). MMWR Recomm Rep 58(RR-5):1–21.
39. Ahmed B, De Boeck C, Dumont A, Cox E, De Reu K, Vanrompay D. 2015. First experimental evidence for the transmission of Chlamydia psittaci in poultry through eggshell penetration. Transbound Emerg Dis 64:167–170. [PubMed]
40. Geens T, Desplanques A, Van Loock M, Bönner BM, Kaleta EF, Magnino S, Andersen AA, Everett KDE, Vanrompay D. 2005. Sequencing of the Chlamydophila psittaci ompA gene reveals a new genotype, E/B, and the need for a rapid discriminatory genotyping method. J Clin Microbiol 43:2456–2461 http://dx.doi.org/10.1128/JCM.43.5.2456-2461.2005. [PubMed]
41. Pannekoek Y, Dickx V, Beeckman DSA, Jolley KA, Keijzers WC, Vretou E, Maiden MCJ, Vanrompay D, van der Ende A. 2010. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species. PLoS One 5:e14179 http://dx.doi.org/10.1371/journal.pone.0014179. [PubMed]
42. Everett KD, Bush RM, Andersen AA. 1999. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49:415–440 http://dx.doi.org/10.1099/00207713-49-2-415.
43. Spalatin J, Fraser CE, Connell R, Hanson RP, Berman DT. 1966. Agents of psittacosis-lymphogranuloma venereum group isolated from muskrats and snowshoe hares in Saskatchewan. Can J Comp Med Vet Sci 30:260–264. [PubMed]
44. Stephens RS, Myers G, Eppinger M, Bavoil PM. 2009. Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. FEMS Immunol Med Microbiol 55:115–119 http://dx.doi.org/10.1111/j.1574-695X.2008.00516.x. [PubMed]
45. Schautteet K, Vanrompay D. 2011. Chlamydiaceae infections in pig. Vet Res (Faisalabad) 42:29 http://dx.doi.org/10.1186/1297-9716-42-29. [PubMed]
46. Di Francesco A, Baldelli R, Donati M, Cotti C, Bassi P, Delogu M. 2013. Evidence for Chlamydiaceae and Parachlamydiaceae in a wild boar (Sus scrofa) population in Italy. Vet Ital 49:119–122. [PubMed]
47. Schachter J, Banks J, Sugg N, Sung M, Storz J, Meyer KF. 1975. Serotyping of Chlamydia: isolates of bovine origin. Infect Immun 11:904–907. [PubMed]
48. Storz J, Spears P. 1979. Pathogenesis of chlamydial polyarthritis in domestic animals: characteristics of causative agent. Ann Rheum Dis 38(Suppl 1):111–115 http://dx.doi.org/10.1136/ard.38.Suppl_1.111.
49. Perez-Martinez JA, Storz J. 1985. Antigenic diversity of Chlamydia psittaci of mammalian origin determined by microimmunofluorescence. Infect Immun 50:905–910. [PubMed]
50. Kaltenboeck B, Kousoulas KG, Storz J. 1993. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. J Bacteriol 175:487–502 http://dx.doi.org/10.1128/jb.175.2.487-502.1993. [PubMed]
51. Aitken ID. 2000. Chlamydial abortion, p 81–86. In Martin WB, Aitken ID (ed), Diseases of Sheep. Blackwell Scientific, Oxford, United Kingdom.
52. Everett KDE. 2000. Chlamydia and Chlamydiales: more than meets the eye. Vet Microbiol 75:109–126 http://dx.doi.org/10.1016/S0378-1135(00)00213-3.
53. Rodolakis A, Laroucau K. 2015. Chlamydiaceae and chlamydial infections in sheep or goats. Vet Microbiol 181:107–118 http://dx.doi.org/10.1016/j.vetmic.2015.07.010. [PubMed]
54. Omori T, Morimoto T, Harada K, Inaba Y, Ishii S, Matumoto M. 1957. Miyagawanella: psittacosis-lymphogranuloma group of viruses. I. Excretion of goat pneumonia virus in feces. Jpn J Exp Med 27:131–143.
55. Kawakami Y, Kaji T, Sugimura K, Omori T, Matumoto M. 1958. Miyagawanella: psittacosis-lymphogranuloma group of viruses. V. Isolation of a virus from feces of naturally infected sheep. Jpn J Exp Med 28:51–58. [PubMed]
56. Storz J. 1963. Superinfection of pregnant ewes latently infected with a psittacosis-lymphogranuloma agent. Cornell Vet 53:469–480. [PubMed]
57. Pospischil A, Thoma R, Hilbe M, Grest P, Gebbers J-O. 2002. Abortion in woman caused by caprine Chlamydophila abortus (Chlamydia psittaci serovar 1). Swiss Med Wkly 132:64–66. [PubMed]
58. Walder G, Hotzel H, Brezinka C, Gritsch W, Tauber R, Würzner R, Ploner F. 2005. An unusual cause of sepsis during pregnancy: recognizing infection with Chlamydophila abortus. Obstet Gynecol 106:1215–1217 http://dx.doi.org/10.1097/01.AOG.0000161060.69470.9c. [PubMed]
59. Kampinga GA, Schröder FP, Visser IJ, Anderson JM, Buxton D, Möller AV. 2000. [Lambing ewes as a source of severe psittacosis in a pregnant woman]. Ned Tijdschr Geneeskd 144:2500–2504. (In Dutch.) [PubMed]
60. Wong SY, Gray ES, Buxton D, Finlayson J, Johnson FW. 1985. Acute placentitis and spontaneous abortion caused by Chlamydia psittaci of sheep origin: a histological and ultrastructural study. J Clin Pathol 38:707–711 http://dx.doi.org/10.1136/jcp.38.6.707. [PubMed]
61. Sachse K, Hotzel H, Slickers P, Ellinger T, Ehricht R. 2005. DNA microarray-based detection and identification of Chlamydia and Chlamydophila spp. Mol Cell Probes 19:41–50 http://dx.doi.org/10.1016/j.mcp.2004.09.005. [PubMed]
62. Pantchev A, Sting R, Bauerfeind R, Tyczka J, Sachse K. 2010. Detection of all Chlamydophila and Chlamydia spp. of veterinary interest using species-specific real-time PCR assays. Comp Immunol Microbiol Infect Dis 33:473–484 http://dx.doi.org/10.1016/j.cimid.2009.08.002. [PubMed]
63. De Puysseleyr K, De Puysseleyr L, Geldhof J, Cox E, Vanrompay D. 2014. Development and validation of a real-time PCR for Chlamydia suis diagnosis in swine and humans. PLoS One 9:e96704 http://dx.doi.org/10.1371/journal.pone.0096704. [PubMed]
64. Lis P, Kumala A, Spalinski M, Rypula K. 2014. Novel locked nucleic acid (LNA)-based probe for the rapid identification of Chlamydia suis using real-time PCR. BMC Vet Res 10:225 http://dx.doi.org/10.1186/s12917-014-0225-4. [PubMed]
65. Willigan DA, Beamer PD. 1955. Isolation of a transmissible agent from pericarditis of swine. J Am Vet Med Assoc 126:118–122. [PubMed]
66. Hoffmann K, Schott F, Donati M, Di Francesco A, Hässig M, Wanninger S, Sidler X, Borel N. 2015. Prevalence of chlamydial infections in fattening pigs and their influencing factors. PLoS One 10:e0143576 http://dx.doi.org/10.1371/journal.pone.0143576. [PubMed]
67. Donati M, Balboni A, Laroucau K, Aaziz R, Vorimore F, Borel N, Morandi F, Vecchio Nepita E, Di Francesco A. 2016. Tetracycline susceptibility in Chlamydia suis pig isolates. PLoS One 11:e0149914 http://dx.doi.org/10.1371/journal.pone.0149914. [PubMed]
68. Eggemann G, Wendt M, Hoelzle LE, Jäger C, Weiss R, Failing K. 2000. Prevalence of Chlamydia infections in breeding sows and their importance in reproductive failure. Dtsch Tierarztl Wochenschr 107:3–10. (In German.) [PubMed]
69. Woollen N, Daniels EK, Yeary T, Leipold HW, Phillips RM. 1990. Chlamydial infection and perinatal mortality in a swine herd. J Am Vet Med Assoc 197:600–601. [PubMed]
70. Schiller I, Koesters R, Weilenmann R, Thoma R, Kaltenboeck B, Heitz P, Pospischil A. 1997. Mixed infections with porcine Chlamydia trachomatis/pecorum and infections with ruminant Chlamydia psittaci serovar 1 associated with abortions in swine. Vet Microbiol 58:251–260 http://dx.doi.org/10.1016/S0378-1135(97)00154-5.
71. Kauffold J, Melzer F, Berndt A, Hoffmann G, Hotzel H, Sachse K. 2006. Chlamydiae in oviducts and uteri of repeat breeder pigs. Theriogenology 66:1816–1823 http://dx.doi.org/10.1016/j.theriogenology.2006.04.042. [PubMed]
72. Sarma DK, Tamuli MK, Rahman T, Boro BR, Deka BC, Rajkonwar CK. 1983. Isolation of Chlamydia from a pig with lesions in the urethra and prostate gland. Vet Rec 112:525 http://dx.doi.org/10.1136/vr.112.22.525-a. [PubMed]
73. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260 http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001. [PubMed]
74. Berri M, Rousset E, Champion JL, Russo P, Rodolakis A. 2007. Goats may experience reproductive failures and shed Coxiella burnetii at two successive parturitions after a Q fever infection. Res Vet Sci 83:47–52 http://dx.doi.org/10.1016/j.rvsc.2006.11.001. [PubMed]
75. Rousset E, Berri M, Durand B, Dufour P, Prigent M, Delcroix T, Touratier A, Rodolakis A. 2009. Coxiella burnetii shedding routes and antibody response after outbreaks of Q fever-induced abortion in dairy goat herds. Appl Environ Microbiol 75:428–433 http://dx.doi.org/10.1128/AEM.00690-08. [PubMed]
76. Hawker JI, Ayres JG, Blair I, Evans MR, Smith DL, Smith EG, Burge PS, Carpenter MJ, Caul EO, Coupland B, Desselberger U, Farrell ID, Saunders PJ, Wood MJ. 1998. A large outbreak of Q fever in the West Midlands: windborne spread into a metropolitan area? Commun Dis Public Health 1:180–187. [PubMed]
77. Boden K, Brasche S, Straube E, Bischof W. 2014. Specific risk factors for contracting Q fever: lessons from the outbreak Jena. Int J Hyg Environ Health 217:110–115 http://dx.doi.org/10.1016/j.ijheh.2013.04.004. [PubMed]
78. Schimmer B, Luttikholt S, Hautvast JLA, Graat EAM, Vellema P, Duynhoven YT. 2011. Seroprevalence and risk factors of Q fever in goats on commercial dairy goat farms in the Netherlands, 2009–2010. BMC Vet Res 7:81 http://dx.doi.org/10.1186/1746-6148-7-81. [PubMed]
79. de Cremoux R, Rousset E, Touratier A, Audusseau G, Nicollet P, Ribaud D, David V, Le Pape M. 2012. Coxiella burnetii vaginal shedding and antibody responses in dairy goat herds in a context of clinical Q fever outbreaks. FEMS Immunol Med Microbiol 64:120–122 http://dx.doi.org/10.1111/j.1574-695X.2011.00893.x. [PubMed]
80. Astobiza I, Ruiz-Fons F, Piñero A, Barandika JF, Hurtado A, García-Pérez AL. 2012. Estimation of Coxiella burnetii prevalence in dairy cattle in intensive systems by serological and molecular analyses of bulk-tank milk samples. J Dairy Sci 95:1632–1638 http://dx.doi.org/10.3168/jds.2011-4721. [PubMed]
81. Duron O, Sidi-Boumedine K, Rousset E, Moutailler S, Jourdain E. 2015. The importance of ticks in Q fever transmission: what has (and has not) been demonstrated? Trends Parasitol 31:536–552 http://dx.doi.org/10.1016/j.pt.2015.06.014. [PubMed]
82. Mahamat A, Edouard S, Demar M, Abboud P, Patrice JY, La Scola B, Okandze A, Djossou F, Raoult D. 2013. Unique clone of Coxiella burnetii causing severe Q fever, French Guiana. Emerg Infect Dis 19:1102–1104 http://dx.doi.org/10.3201/eid1907.130044. [PubMed]
83. D’Amato F, Eldin C, Georgiades K, Edouard S, Delerce J, Labas N, Raoult D. 2015. Loss of TSS1 in hypervirulent Coxiella burnetii 175, the caus ative agent of Q fever in French Guiana. Comp Immunol Microbiol Infect Dis 41:35–41 http://dx.doi.org/10.1016/j.cimid.2015.04.003. [PubMed]
84. Davoust B, Marié JL, Pommier de Santi V, Berenger JM, Edouard S, Raoult D. 2014. Three-toed sloth as putative reservoir of Coxiella burnetii, Cayenne, French Guiana. Emerg Infect Dis 20:1760–1761 http://dx.doi.org/10.3201/eid2010.140694. [PubMed]
85. Tan CK, Owens L. 2000. Infectivity, transmission and 16S rRNA sequencing of a rickettsia, Coxiella cheraxi sp. nov., from the freshwater crayfish Cherax quadricarinatus. Dis Aquat Organ 41:115–122 http://dx.doi.org/10.3354/dao041115. [PubMed]
86. Cooper A, Layton R, Owens L, Ketheesan N, Govan B. 2007. Evidence for the classification of a crayfish pathogen as a member of the genus Coxiella. Lett Appl Microbiol 45:558–563 http://dx.doi.org/10.1111/j.1472-765X.2007.02240.x. [PubMed]
87. Vapniarsky N, Barr BC, Murphy B. 2012. Systemic Coxiella-like infection with myocarditis and hepatitis in an eclectus parrot (Eclectus roratus). Vet Pathol 49:717–722 http://dx.doi.org/10.1177/0300985811409251. [PubMed]
88. Duron O. 2015. The IS1111 insertion sequence used for detection of Coxiella burnetii is widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiol Lett 362:fnv132 http://dx.doi.org/10.1093/femsle/fnv132. [PubMed]
89. Duron O, Noël V, McCoy KD, Bonazzi M, Sidi-Boumedine K, Morel O, Vavre F, Zenner L, Jourdain E, Durand P, Arnathau C, Renaud F, Trape JF, Biguezoton AS, Cremaschi J, Dietrich M, Léger E, Appelgren A, Dupraz M, Gómez-Díaz E, Diatta G, Dayo GK, Adakal H, Zoungrana S, Vial L, Chevillon C. 2015. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLoS Pathog 11:e1004892 http://dx.doi.org/10.1371/journal.ppat.1004892. [PubMed]
90. Roest HIJ, Tilburg JJHC, van der Hoek W, Vellema P, van Zijderveld FG, Klaassen CHW, Raoult D. 2011. The Q fever epidemic in The Netherlands: history, onset, response and reflection. Epidemiol Infect 139:1–12 http://dx.doi.org/10.1017/S0950268810002268. [PubMed]
91. Bozeman FM, Masiello SA, Williams MS, Elisberg BL. 1975. Epidemic typhus Rickettsiae isolated from flying squirrels. Nature 255:545–547 http://dx.doi.org/10.1038/255545a0. [PubMed]
92. Abramowicz KF, Wekesa JW, Nwadike CN, Zambrano ML, Karpathy SE, Cecil D, Burns J, Hu R, Eremeeva ME. 2012. Rickettsia felis in cat fleas, Ctenocephalides felis parasitizing opossums, San Bernardino County, California. Med Vet Entomol 26:458–462 http://dx.doi.org/10.1111/j.1365-2915.2012.01017.x. [PubMed]
93. Walker DH, Ismail N, Olano JP, Valbuena G, McBride J. 2007. Pathogenesis, immunity, pathology, and pathophysiology in rickettsial diseases, p 15–26. In Raoult D, Parola P (ed), Rickettsial Diseases. Informa Healthcare, New York, NY. http://dx.doi.org/10.3109/9781420019971.002
94. López Del P J, Abarca VK, Azócar AT. 2007. Clinical and serological evidence of canine rickettsiosis in Chile. Rev Chilena Infectol 24:189–193 http://dx.doi.org/10.4067/S0716-10182007000300002. (In Spanish.)
95. Fortes FS, Biondo AW, Molento MB. 2011. Brazilian spotted fever in dogs. Semina Cienc Agrar Londrina 32:339–354 http://dx.doi.org/10.5433/1679-0359.2011v32n1p339.
96. Inokuma H, Matsuda H, Sakamoto L, Tagawa M, Matsumoto K. 2011. Evaluation of Rickettsia japonica pathogenesis and reservoir potential in dogs by experimental inoculation and epidemiologic survey. Clin Vaccine Immunol 18:161–166 http://dx.doi.org/10.1128/CVI.00369-10. [PubMed]
97. Levin ML, Killmaster LF, Zemtsova GE, Ritter JM, Langham G. 2014. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite. PLoS One 9:e115105 http://dx.doi.org/10.1371/journal.pone.0115105. [PubMed]
98. Solano-Gallego L, Kidd L, Trotta M, Di Marco M, Caldin M, Furlanello T, Breitschwerdt E. 2006. Febrile illness associated with Rickettsia conorii infection in dogs from Sicily. Emerg Infect Dis 12:1985–1988 http://dx.doi.org/10.3201/eid1212.060326. [PubMed]
99. Zavala-Castro JE, Zavala-Velázquez JE, del Rosario García M, León JJA, Dzul-Rosado KR. 2009. A dog naturally infected with Rickettsia akari in Yucatan, México. Vector Borne Zoonotic Dis 9:345–347 http://dx.doi.org/10.1089/vbz.2008.0189. [PubMed]
100. Bayliss DB, Morris AK, Horta MC, Labruna MB, Radecki SV, Hawley JR, Brewer MM, Lappin MR. 2009. Prevalence of Rickettsia species antibodies and Rickettsia species DNA in the blood of cats with and without fever. J Feline Med Surg 11:266–270 http://dx.doi.org/10.1016/j.jfms.2008.06.007. [PubMed]
101. Mediannikov O, Diatta G, Zolia Y, Balde MC, Kohar H, Trape JF, Raoult D. 2012. Tick-borne Rickettsiae in Guinea and Liberia. Ticks Tick Borne Dis 3:43–48 http://dx.doi.org/10.1016/j.ttbdis.2011.08.002. [PubMed]
102. Edwards KT. 2011. Gotch ear: a poorly described, local, pathologic condition of livestock associated primarily with the Gulf Coast tick, Amblyomma maculatum. Vet Parasitol 183:1–7 http://dx.doi.org/10.1016/j.vetpar.2011.09.038. [PubMed]
103. Edwards KT, Goddard J, Jones TL, Paddock CD, Varela-Stokes AS. 2011. Cattle and the natural history of Rickettsia parkeri in Mississippi. Vector Borne Zoonotic Dis 11:485–491 http://dx.doi.org/10.1089/vbz.2010.0056. [PubMed]
104. Edwards KT, Varela-Stokes AS, Paddock CD, Goddard J. 2011. Gotch ear in a goat: a case report. Vector Borne Zoonotic Dis 11:1217–1219 http://dx.doi.org/10.1089/vbz.2010.0204. [PubMed]
105. Butaye P, Devriese LA, Haesebrouck F. 2003. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin Microbiol Rev 16:175–188 http://dx.doi.org/10.1128/CMR.16.2.175-188.2003. [PubMed]
106. Butaye P, Devriese LA, Haesebrouck F. 1999. Phenotypic distinction in Enterococcus faecium and Enterococcus faecalis strains between susceptibility and resistance to growth-enhancing antibiotics. Antimicrob Agents Chemother 43:2569–2570. [PubMed]
107. Butaye P, Devriese LA, Haesebrouck F. 1998. Effects of different test conditions on the minimal inhibitory concentration of growth promoting antibacterial agents with enterococci. J Clin Microbiol 36:1907–1911. [PubMed]
108. Butaye P, Devriese LA, Haesebrouck F. 2000. Influence of different medium components on the in vitro activity of the growth-promoting antibiotic flavomycin against enterococci. J Antimicrob Chemother 46:713–716 http://dx.doi.org/10.1093/jac/46.5.713. [PubMed]
109. Van Bambeke F, Glupczynski Y, Plésiat P, Pechère JC, Tulkens PM. 2003. Antibiotic efflux pumps in prokaryotic cells: occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J Antimicrob Chemother 51:1055–1065 http://dx.doi.org/10.1093/jac/dkg224. [PubMed]
110. Van Bambeke F, Michot JM, Tulkens PM. 2003. Antibiotic efflux pumps in eukaryotic cells: occurrence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodynamics. J Antimicrob Chemother 51:1067–1077 http://dx.doi.org/10.1093/jac/dkg225. [PubMed]
111. Henning K, Krauss H. 1986. Zur methodiek der bestimmung der antobiotikumempfindlichkeit von Chlamydien in vitro. J Vet Med Ser B 33:447–461 http://dx.doi.org/10.1111/j.1439-0450.1986.tb00056.x.
112. Suchland RJ, Geisler WM, Stamm WE. 2003. Methodologies and cell lines used for antimicrobial susceptibility testing of Chlamydia spp. Antimicrob Agents Chemother 47:636–642 http://dx.doi.org/10.1128/AAC.47.2.636-642.2003. [PubMed]
113. Bonventre PF, Hayes R, Imhoff J. 1967. Autoradiographic evidence for the impermeability of mouse peritoneal macrophages to tritiated streptomycin. J Bacteriol 93:445–450. [PubMed]
114. Khan MA, Potter CW, Sharrard RM. 1996. A reverse transcriptase-PCR based assay for in-vitro antibiotic susceptibility testing of Chlamydia pneumoniae. J Antimicrob Chemother 37:677–685 http://dx.doi.org/10.1093/jac/37.4.677. [PubMed]
115. Cross NA, Kellock DJ, Kinghorn GR, Taraktchoglou M, Bataki E, Oxley KM, Hawkey PM, Eley A. 1999. Antimicrobial susceptibility testing of Chlamydia trachomatis using a reverse transcriptase PCR-based method. Antimicrob Agents Chemother 43:2311–2313. [PubMed]
116. Rolain JM, Maurin M, Vestris G, Raoult D. 1998. In vitro susceptibilities of 27 rickettsiae to 13 antimicrobials. Antimicrob Agents Chemother 42:1537–1541. [PubMed]
117. Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agersø Y, Zankari E, Leekitcharoenphon P, Stegger M, Kaas RS, Cavaco LM, Hansen DS, Aarestrup FM, Skov RL. 2015. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill 20:49 http://dx.doi.org/10.2807/1560-7917.ES.2015.20.49.30085. [PubMed]
118. Michalova E, Novotna P, Schlegelova J. 2004. Tetracyclines in veterinary medicine and bacterial resistance to them. Vet Med Czech 49:79–100.
119. Butaye P, Ducatelle R, De Backer P, Vermeersch H, Remon JP, Haesebrouck F. 1997. In vitro activities of doxycycline and enrofloxacin against European Chlamydia psittaci strains from turkeys. Antimicrob Agents Chemother 41:2800–2801. [PubMed]
120. Niki Y, Kimura M, Miyashita N, Soejima R. 1994. In vitro and in vivo activities of azithromycin, a new azalide antibiotic, against chlamydia. Antimicrob Agents Chemother 38:2296–2299 http://dx.doi.org/10.1128/AAC.38.10.2296. [PubMed]
121. Miyashita N, Niki Y, Kishimoto T, Nakajima M, Matsushima T. 1997. In vitro and in vivo activities of AM-1155, a new fluoroquinolone, against Chlamydia spp. Antimicrob Agents Chemother 41:1331–1334. [PubMed]
122. Entrican G, Wheelhouse N, Wattegedera SR, Longbottom D. 2012. New challenges for vaccination to prevent chlamydial abortion in sheep. Comp Immunol Microbiol Infect Dis 35:271–276 http://dx.doi.org/10.1016/j.cimid.2011.12.001. [PubMed]
123. Stuen S, Longbottom D. 2011. Treatment and control of chlamydial and rickettsial infections in sheep and goats. Vet Clin North Am Food Anim Pract 27:213–233 http://dx.doi.org/10.1016/j.cvfa.2010.10.017. [PubMed]
124. Andersen A, Rogers D. 1998. Resistance to tetracycline and sulfadiazine in swine C. trachomatis isolates, 313–316. In Stephens RS (ed), Chlamydial infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, CA.
125. Di Francesco A, Donati M, Rossi M, Pignanelli S, Shurdhi A, Baldelli R, Cevenini R. 2008. Tetracycline-resistant Chlamydia suis isolates in Italy. Vet Rec 163:251–252 http://dx.doi.org/10.1136/vr.163.8.251. [PubMed]
126. Borel N, Regenscheit N, Di Francesco A, Donati M, Markov J, Masserey Y, Pospischil A. 2012. Selection for tetracycline-resistant Chlamydia suis in treated pigs. Vet Microbiol 156:143–146 http://dx.doi.org/10.1016/j.vetmic.2011.10.011. [PubMed]
127. Lenart J, Andersen AA, Rockey DD. 2001. Growth and development of tetracycline-resistant Chlamydia suis. Antimicrob Agents Chemother 45:2198–2203 http://dx.doi.org/10.1128/AAC.45.8.2198-2203.2001. [PubMed]
128. Dugan J, Rockey DD, Jones L, Andersen AA. 2004. Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene. Antimicrob Agents Chemother 48:3989–3995 http://dx.doi.org/10.1128/AAC.48.10.3989-3995.2004. [PubMed]
129. Dugan J, Andersen AA, Rockey DD. 2007. Functional characterization of IScs605, an insertion element carried by tetracycline-resistant Chlamydia suis. Microbiology 153:71–79 http://dx.doi.org/10.1099/mic.0.29253-0. [PubMed]
130. Mabey D. 2008. Trachoma: recent developments. Adv Exp Med Biol 609:98–107 http://dx.doi.org/10.1007/978-0-387-73960-1_8. [PubMed]
131. WHO. 2008. Global Incidence and Prevalence of Selected Curable Sexually Transmitted Infections-2008. WHO, Geneva, Switzerland.
132. Wang SA, Papp JR, Stamm WE, Peeling RW, Martin DH, Holmes KK. 2005. Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report. J Infect Dis 191:917–923 http://dx.doi.org/10.1086/428290. [PubMed]
133. Jones RB, Van der Pol B, Martin DH, Shepard MK. 1990. Partial characterization of Chlamydia trachomatis isolates resistant to multiple antibiotics. J Infect Dis 162:1309–1315 http://dx.doi.org/10.1093/infdis/162.6.1309. [PubMed]
134. Suchland RJ, Sandoz KM, Jeffrey BM, Stamm WE, Rockey DD. 2009. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob Agents Chemother 53:4604–4611 http://dx.doi.org/10.1128/AAC.00477-09. [PubMed]
135. Hicks LD, Raghavan R, Battisti JM, Minnick MF. 2010. A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth. J Bacteriol 192:2077–2084 http://dx.doi.org/10.1128/JB.01324-09. [PubMed]
136. Anderson A, Bijlmer H, Fournier PE, Graves S, Hartzell J, Kersh GJ, Limonard G, Marrie TJ, Massung RF, McQuiston JH, Nicholson WL, Paddock CD, Sexton DJ. 2013. Diagnosis and management of Q fever--United States, 2013: recommendations from CDC and the Q Fever Working Group. MMWR Morb Mortal Wkly Rep 62:1–30.
137. Dijkstra F, Riphagen-Dalhuisen J, Wijers N, Hak E, Van der Sande MAB, Morroy G, Schneeberger PM, Schimmer B, Notermans DW, Van der Hoek W. 2011. Antibiotic therapy for acute Q fever in The Netherlands in 2007 and 2008 and its relation to hospitalization. Epidemiol Infect 139:1332–1341 http://dx.doi.org/10.1017/S0950268810002621. [PubMed]
138. Raoult D, Houpikian P, Tissot Dupont H, Riss JM, Arditi-Djiane J, Brouqui P. 1999. Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch Intern Med 159:167–173 http://dx.doi.org/10.1001/archinte.159.2.167. [PubMed]
139. Darmon A, Million M, Audoly G, Lepidi H, Brouqui P, Raoult D. 2014. Q fever: still a diagnostic and therapeutic challenge in 2014. Rev Francoph Lab 2014:51–59.
140. Raoult D, Drancourt M, Vestris G. 1990. Bactericidal effect of doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells. Antimicrob Agents Chemother 34:1512–1514 http://dx.doi.org/10.1128/AAC.34.8.1512. [PubMed]
141. Carcopino X, Raoult D, Bretelle F, Boubli L, Stein A. 2007. Managing Q fever during pregnancy: the benefits of long-term cotrimoxazole therapy. Clin Infect Dis 45:548–555 http://dx.doi.org/10.1086/520661. [PubMed]
142. Cerar D, Karner P, Avsic-Zupanc T, Strle F. 2009. Azithromycin for acute Q fever in pregnancy. Wien Klin Wochenschr 121:469–472 http://dx.doi.org/10.1007/s00508-009-1180-0. [PubMed]
143. Taurel AF, Guatteo R, Joly A, Beaudeau F. 2012. Effectiveness of vaccination and antibiotics to control Coxiella burnetii shedding around calving in dairy cows. Vet Microbiol 159:432–437 http://dx.doi.org/10.1016/j.vetmic.2012.04.027. [PubMed]
144. Rolain JM, Lambert F, Raoult D. 2005. Activity of telithromycin against thirteen new isolates of C. burnetii including three resistant to doxycycline. Ann N Y Acad Sci 1063:252–256 http://dx.doi.org/10.1196/annals.1355.039. [PubMed]
145. Rouli L, Rolain JM, El Filali A, Robert C, Raoult D. 2012. Genome sequence of Coxiella burnetii 109, a doxycycline-resistant clinical isolate. J Bacteriol 194:6939–6939 http://dx.doi.org/10.1128/JB.01856-12. [PubMed]
146. Gikas A, Spyridaki I, Psaroulaki A, Kofterithis D, Tselentis Y. 1998. In vitro susceptibility of Coxiella burnetii to trovafloxacin in comparison with susceptibilities to pefloxacin, ciprofloxacin, ofloxacin, doxycycline, and clarithromycin. Antimicrob Agents Chemother 42:2747–2748. [PubMed]
147. Gikas A, Spyridaki I, Scoulica E, Psaroulaki A, Tselentis Y. 2001. In vitro susceptibility of Coxiella burnetii to linezolid in comparison with its susceptibilities to quinolones, doxycycline, and clarithromycin. Antimicrob Agents Chemother 45:3276–3278 http://dx.doi.org/10.1128/AAC.45.11.3276-3278.2001.
148. Spyridaki I, Psaroulaki A, Vranakis I, Tselentis Y, Gikas A. 2009. Bacteriostatic and bactericidal activities of tigecycline against Coxiella burnetii and comparison with those of six other antibiotics. Antimicrob Agents Chemother 53:2690–2692 http://dx.doi.org/10.1128/AAC.01424-08. [PubMed]
149. Boulos A, Rolain J-M, Maurin M, Raoult D. 2004. Measurement of the antibiotic susceptibility of Coxiella burnetii using real time PCR. Int J Antimicrob Agents 23:169–174 http://dx.doi.org/10.1016/j.ijantimicag.2003.07.007. [PubMed]
150. Brennan RE, Samuel JE. 2003. Evaluation of Coxiella burnetii antibiotic susceptibilities by real-time PCR assay. J Clin Microbiol 41:1869–1874 http://dx.doi.org/10.1128/JCM.41.5.1869-1874.2003. [PubMed]
151. García-Álvarez L, Busto JH, Peregrina JM, Fernández Recio MA, Avenoza A, Oteo JA. 2013. Nuclear magnetic resonance applied to antimicrobial drug susceptibility. Future Microbiol 8:537–547 http://dx.doi.org/10.2217/fmb.13.8. [PubMed]
152. Eldin C, Perreal C, Mahamat A, Djossou F, Edouard S, Raoult D. 2015. Antibiotic susceptibility determination for six strains of Coxiella burnetii MST 17 from Cayenne, French Guiana. Int J Antimicrob Agents 46:600–602 http://dx.doi.org/10.1016/j.ijantimicag.2015.08.007.
153. Omsland A. 2012. Axenic growth of Coxiella burnetii. Adv Exp Med Biol 984:215–229 http://dx.doi.org/10.1007/978-94-007-4315-1_11. [PubMed]
154. Omsland A, Beare PA, Hill J, Cockrell DC, Howe D, Hansen B, Samuel JE, Heinzen RA. 2011. Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl Environ Microbiol 77:3720–3725 http://dx.doi.org/10.1128/AEM.02826-10. [PubMed]
155. Omsland A, Cockrell DC, Fischer ER, Heinzen RA. 2008. Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii. J Bacteriol 190:3203–3212 http://dx.doi.org/10.1128/JB.01911-07. [PubMed]
156. Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE, Porcella SF, Heinzen RA. 2009. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci USA 106:4430–4434 http://dx.doi.org/10.1073/pnas.0812074106. [PubMed]
157. Singh S, Eldin C, Kowalczewska M, Raoult D. 2013. Axenic culture of fastidious and intracellular bacteria. Trends Microbiol 21:92–99 http://dx.doi.org/10.1016/j.tim.2012.10.007. [PubMed]
158. Unsworth NB, Dawson RM, Wade JD, Liu CQ. 2014. Susceptibility of intracellular Coxiella burnetii to antimicrobial peptides in mouse fibroblast cells. Protein Pept Lett 21:115–123 http://dx.doi.org/10.2174/0929866521666131223120036. [PubMed]
159. Smith TA, Driscoll T, Gillespie JJ, Raghavan R. 2015. A Coxiella-like endosymbiont is a potential vitamin source for the Lone Star tick. Genome Biol Evol 7:831–838 http://dx.doi.org/10.1093/gbe/evv016. [PubMed]
160. Ives TJ, Marston EL, Regnery RL, Butts JD, Majerus TC. 2000. In vitro susceptibilities of Rickettsia and Bartonella spp. to 14-hydroxy-clarithromycin as determined by immunofluorescent antibody analysis of infected vero cell monolayers. J Antimicrob Chemother 45:305–310 http://dx.doi.org/10.1093/jac/45.3.305. [PubMed]
161. Ives TJ, Marston EL, Regnery RL, Butts JD. 2001. In vitro susceptibilities of Bartonella and Rickettsia spp. to fluoroquinolone antibiotics as determined by immunofluorescent antibody analysis of infected Vero cell monolayers. Int J Antimicrob Agents 18:217–222 http://dx.doi.org/10.1016/S0924-8579(01)00388-0.
162. Czyż DM, Potluri LP, Jain-Gupta N, Riley SP, Martinez JJ, Steck TL, Crosson S, Shuman HA, Gabay JE. 2014. Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogens. MBio 5:e01534-14 http://dx.doi.org/10.1128/mBio.01534-14. [PubMed]
163. Edouard S, Raoult D. 2013. Use of the plaque assay for testing the antibiotic susceptibility of intracellular bacteria. Future Microbiol 8:1301–1316 http://dx.doi.org/10.2217/fmb.13.98. [PubMed]
164. de Almeida AJ, Rodrigues HF, Rodrigues ABF, Di Filippo PA, Pinto ABT. 2014. Comparative study of therapeutic protocols used in the treatment of infections caused by Rickettsiales in dogs. Comp Clin Pathol 24:555–560 http://dx.doi.org/10.1007/s00580-014-1944-4.
165. Strickman D, Sheer T, Salata K, Hershey J, Dasch G, Kelly D, Kuschner R. 1995. In vitro effectiveness of azithromycin against doxycycline-resistant and -susceptible strains of Rickettsia tsutsugamushi, etiologic agent of scrub typhus. Antimicrob Agents Chemother 39:2406–2410 http://dx.doi.org/10.1128/AAC.39.11.2406. [PubMed]
166. Jang HC, Choi SM, Jang MO, Ahn JH, Kim UJ, Kang SJ, Shin JH, Choy HE, Jung SI, Park KH. 2013. Inappropriateness of quinolone in scrub typhus treatment due to gyrA mutation in Orientia tsutsugamushi Boryong strain. J Korean Med Sci 28:667–671 http://dx.doi.org/10.3346/jkms.2013.28.5.667. [PubMed]
167. Tantibhedhyangkul W, Angelakis E, Tongyoo N, Newton PN, Moore CE, Phetsouvanh R, Raoult D, Rolain J-M. 2010. Intrinsic fluoroquinolone resistance in Orientia tsutsugamushi. Int J Antimicrob Agents 35:338–341 http://dx.doi.org/10.1016/j.ijantimicag.2009.11.019. [PubMed]
168. Botelho-Nevers E, Rovery C, Richet H, Raoult D. 2011. Analysis of risk factors for malignant Mediterranean spotted fever indicates that fluoroquinolone treatment has a deleterious effect. J Antimicrob Chemother 66:1821–1830 http://dx.doi.org/10.1093/jac/dkr218. [PubMed]
169. Wood DO, Hines A, Tucker AM, Woodard A, Driskell LO, Burkhardt NY, Kurtti TJ, Baldridge GD, Munderloh UG. 2012. Establishment of a replicating plasmid in Rickettsia prowazekii. PLoS One 7:e34715 http://dx.doi.org/10.1371/journal.pone.0034715. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0003-2017
2018-04-06
2018-08-19

Abstract:

This article will provide current insights into antimicrobial susceptibilities and resistance of an important group of bacterial pathogens that are not phylogenetically related but share lifestyle similarities in that they are generally considered to be obligate intracellular microbes. As such, there are shared challenges regarding methods for their detection and subsequent clinical management. Similarly, from the laboratory perspective, susceptibility testing is rarely undertaken, though molecular approaches might provide new insights. One should also bear in mind that the highly specialized microbial lifestyle restricts the opportunity for lateral gene transfer and, consequently, acquisition of resistance.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error